Image restoration: constrained approaches
— Support and positivity —

Jean-François Giovannelli
Groupe Signal – Image
Laboratoire de l’Intégration du Matériaux au Système
Univ. Bordeaux – CNRS – BINP
Topics

- Image restoration, deconvolution
 - Motivating examples: medical, astrophysical, industrial, vision, . . .
 - Various problems: deconvolution, Fourier synthesis, denoising. . .
 - Missing information: ill-posed character and regularisation

- Three types of regularised inversion
 1. Quadratic penalties and linear solutions
 - Closed-form expression
 - Computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 2. Non-quadratic penalties and edge preservation
 - Half-quadratic approaches, including computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 3. Constraints: positivity and support
 - Augmented Lagrangian and ADMM, including computation by FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)

- Bayesian strategy: a few incursions
 - Tuning hyperparameters, instrument parameters, . . .
 - Hidden / latent parameters, segmentation, detection, . . .
Convolution / Deconvolution

\[y = Hx + \varepsilon = h \ast x + \varepsilon \]

\[\hat{x} = \hat{X}(y) \]

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, *i.e.*, lack of information
- Methodology: regularisation, *i.e.*, information compensation
 - Specificity of the inversion / reconstruction / restoration methods
 - Trade off and tuning parameters
- Limited quality results
Known: H and y / Unknown: x

Compare observations y and model output Hx

$$J_{LS}(x) = \|y - Hx\|^2$$

Quadratic penalty of the gray level gradient (or other linear combinations)

$$\mathcal{P}(x) = \sum_{p \sim q} (x_p - x_q)^2 = \|Dx\|^2$$

Least squares and quadratic penalty:

$$J_{PLS}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2$$
Quadratic penalty: criterion and solution

- Least squares and quadratic penalty:
 \[
 J_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2
 \]

- Restored image
 \[
 \hat{x}_{\text{PLS}} = \arg \min_x J_{\text{PLS}}(x)
 \]
 \[
 (H^tH + \mu D^tD) \hat{x}_{\text{PLS}} = H^ty
 \]
 \[
 \hat{x}_{\text{PLS}} = (H^tH + \mu D^tD)^{-1} H^ty
 \]

- Computations based on diagonalization through FFT
 \[
 \hat{\mathbf{x}} = (\Lambda^\dagger_h \Lambda_h + \mu \Lambda^\dagger_d \Lambda_d)^{-1} \Lambda^\dagger_h \hat{\mathbf{y}}
 \]
 \[
 \hat{x}_n = \frac{\hat{h}^*}{|\hat{h}_n|^2 + \mu |\hat{d}_n|^2} \hat{y}_n \quad \text{for } n = 1, \ldots N
 \]
Various options and many relationships

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,
- Numerical optimisation
 - gradient descent... and various modifications
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions,...)
Solution from least squares and quadratic penalty
Synthesis and extensions to constraints

- Limited capability to manage conflict between
 - Smoothing and
 - Avoiding noise explosion
 ... that limits resolution capabilities

Extension to non-quadratic penalty
- Less “smoothing” around “discontinuities”
 - Ambivalence:
 - Smoothing (homogeneous regions)
 - Heightening, enhancement, sharpening (discontinuities, edges)
 ... and new compromise, trade off, conciliation

Another extension: include constraints
- Positivity and support
- Better physics and improved resolution
- Resort to the linear solution and FFT (Wiener-Hunt)
 - Augmented Lagrangian and ADMM
Taking constraints into account

- **Expected benefits**
 - Better physical modelling
 - More information \leadsto “quality” improvement
 - Improved resolution

- **Restoration technology**
 - Still based on a penalised criterion...

 $$J_{\text{PLS}}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2$$

 - ...restored image still defined as a minimiser...

 $$\hat{x} = \arg \min_x J_{\text{PLS}}(x)$$

 - ...but including constraints

 ...(about the value of the gray level of pixels)
Taking constraints into account: positivity and support

- **Notation**
 - \(\mathcal{M} \): index set of the image pixels
 - \(S, D \): index set of a subset (support, region, mask, …) of the pixels

- **Investigated constraints here**
 - **Positivity**
 \[C_p : \forall p \in \mathcal{M}, \quad x_p \geq 0 \]
 - **Support, mask**
 \[C_s : \forall p \in \bar{S}, \quad x_p = 0 \]

- **Extensions (non investigated here)**
 - **Template**
 \[\forall p \in \mathcal{M}, \quad t_p^- \leq x_p \leq t_p^+ \]
 - **Partially known map**
 \[\forall p \in D, \quad x_p = m_p \]
Taking constraints into account: positivity and support

General form inequality / equality

\[Bx - b \geq 0 \quad \text{et} \quad Ax - a = 0 \]

- **Positivity**
 \[C_p : \forall p \in \mathcal{M}, \quad x_p \geq 0 \quad \rightsquigarrow \quad B = I \quad \text{et} \quad b = 0 \]

- **Support**
 \[C_s : \forall p \in \bar{S}, \quad x_p = 0 \quad \rightsquigarrow \quad A = T_S \quad \text{et} \quad a = 0 \]

- **Template**
 \[\forall p \in \mathcal{M}, \quad t_p^- \leq x_p \quad \rightsquigarrow \quad B = I \quad \text{et} \quad b = t^- \]
 \[x_p \leq t_p^+ \quad \rightsquigarrow \quad B = -I \quad \text{et} \quad b = -t^+ \]

- **Partially known map**
 \[\forall p \in \mathcal{D}, \quad x_p = m_p \quad \rightsquigarrow \quad A = T_D \quad \text{et} \quad a = m \]
Constrained minimiser

Theoretical point: criterion, constraint and property

- Quadratic criterion: \(J_{\text{PLS}}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2 \)

- Linear constraints:
 \[
 \begin{align*}
 x_p &= 0 \quad \text{for } p \in \bar{S} \\
 x_p &\geq 0 \quad \text{for } p \in \mathcal{M}
 \end{align*}
 \]

- Question of convexity
 - Convex (strict) criterion
 - Convex constraint set

Theoretical point: construction of the solution

- Solution: *the only constrained minimiser*
 \[
 \hat{x} = \arg \min_x \left\{ \|y - Hx\|^2 + \mu \|Dx\|^2 \right\}
 \]
 \[
 \text{s.t.} \quad \begin{align*}
 x_p &= 0 \quad \text{for } p \in \bar{S} \\
 x_p &\geq 0 \quad \text{for } p \in \mathcal{M}
 \end{align*}
 \]
Constraints: some illustrations
One variable: $\alpha(t - \bar{t})^2 + \gamma$

- Unconstrained solution: $\hat{t} = \bar{t}$
- Constrained solution: $\hat{t} = \max[0, \bar{t}]$

Active and inactive constraints
Positivity: two variables (1)

- Two variables: $\alpha_1(t_1 - \bar{t}_1)^2 + \alpha_2(t_2 - \bar{t}_2)^2 + \beta(t_2 - t_1)^2 + \gamma$

- Sometimes / often difficult to deduce
 - the constrained minimiser
 - from the unconstrained one
Positivity: two variables (2)

- Two variables: $\alpha_1(t_1 - \bar{t}_1)^2 + \alpha_2(t_2 - \bar{t}_2)^2 + \beta(t_2 - t_1)^2 + \gamma$

- Constrained solution = Unconstrained solution (1)
- Constrained solution \neq Unconstrained solution (2)

 ... so active constraints
Positivity: two variables (3)

- Two variables: \(\alpha_1(t_1 - \bar{t}_1)^2 + \alpha_2(t_2 - \bar{t}_2)^2 + \beta(t_2 - t_1)^2 + \gamma \)

![Graph 2a](image1)

- Constrained solution \(\neq\) Unconstrained solution (2)
 - . . . so active constraints
 - Constrained solution \(\neq\) Projected unconstrained solution (2a)
 \((\hat{t}_1; \hat{t}_2) \neq (\max [0, \bar{t}_1]; \max [0, \bar{t}_2])\)
 - Constrained solution = Projected unconstrained solution (2b)
 \((\hat{t}_1; \hat{t}_2) = (\max [0, \bar{t}_1]; \max [0, \bar{t}_2])\)
Problem

- Quadratic optimisation with linear constraints
- Difficulties
 - \(N \sim 1\,000\,000 \)
 - Constraints ⊕ non-separable variables

Existing algorithms

- Existing tools *with guaranteed convergence*

 [Bertsekas 95,99; Nocedal 00,08; Boyd 04,11]

- Gradient projection methods, constrained gradient method
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory
- Interior points and barrier
- Pixel-wise descent
- Augmented Lagrangian, ADMM
 - Constrained but separated + non-separated but non-constrained
 - Partial solutions still through FFT
Equality constraints

\[\hat{x} = \arg \min_x \left\{ \| y - Hx \|^2 + \mu \| Dx \|^2 \right\} \]
\[\text{s.t. } x_p = 0 \quad \text{for } p \in \bar{S} \]

- **Sets and subsets of pixels**
 - \(M \): full vector of pixels \(\sim x \in \mathbb{R}^N \)
 - \(S \): vector of unconstrained pixels \(\sim \bar{x} \in \mathbb{R}^M \)

- **Truncation**
 - \(\bar{x} = T x \) truncation, selection of unconstrained pixels
 - \(T \) is \(M \times N \) (\(M < N \)), e.g., \(T = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \)

- **Properties: zero-padding,\ldots**
 - \(T^t \bar{x} \) zero-padding, fill with zeros
 - \(TT^t = I_M \)
 - \(T^t T = \text{diag}[\ldots 0 / 1 \ldots] \): projection, “nullification matrix”
Equality: direct closed form expression

- Original (unconstrained) criterion
 \[J_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 \]

- Zero-padded variable
 \[x = T^t \bar{x} \]

- Restricted criterion
 \[\bar{J}_{\text{PLS}}(\bar{x}) = \| y - HT^t \bar{x} \|^2 + \mu \| DT^t \bar{x} \|^2 \]

- Closed form expression for the solution
 \[
 \hat{\bar{x}} = \arg \min_{\bar{x} \in \mathbb{R}^M} \bar{J}_{\text{PLS}}(\bar{x}) \\
 = \left[TH^t HT^t + \mu TD^t DT^t \right]^{-1} TH^t y \\
 = \left[T (H^t H + \mu D^t D) T^t \right]^{-1} TH^t y \\
 \]
 \[
 \hat{x} = T^t \bar{x} \\
 = T^t \left[T (H^t H + \mu D^t D) T^t \right]^{-1} TH^t y
 \]
Equality: closed form expression via Lagrangian

- Original (unconstrained) criterion
 \[J_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 \]

- Equality constraints:
 \[
 \begin{align*}
 x_p &= 0 \text{ for } p \in \bar{S} \\
 \bar{T}x &= 0
 \end{align*}
 \]

- Equality constraints and Lagrangian term
 \[
 \sum_{p \in \bar{S}} \ell_p x_p = \ell^t \bar{T}x
 \]

- Lagrangian
 \[
 \mathcal{L}(x, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \ell^t \bar{T}x
 \]

- Closed form expression (see exercise)
 \[
 \hat{x} = \left[Q^{-1} - Q^{-1} \bar{T}^t (\bar{T}Q^{-1} \bar{T}^t)^{-1} \bar{T}Q^{-1} \right] H^t y
 \]
 \[
 Q = (H^t H + \mu D^t D)
 \]
Original (unconstrained) criterion

\[J_{\text{PLS}}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2 \]

Equality constraints:

\[\bar{T}x = 0 \]

Lagrangian

\[L(x, \ell) = \|y - Hx\|^2 + \mu \|Dx\|^2 + \ell^t\bar{T}x \]

Iterative algorithm

\[
\begin{cases}
 x^{[k+1]} = \arg \min_x L(x, \ell^{[k]}) = (H^tH + \mu D^tD)^{-1}(H^ty - \bullet) \\
 \ell^{[k+1]} = \ell^{[k]} + \tau_k \bar{T}x^{[k+1]}
\end{cases}
\]
Equality: practical algorithm via Lagrangian

- Original (unconstrained) criterion
 \[\mathcal{J}_{\text{PLS}}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2 \]

- Equality constraints:
 \[\bar{T}x = 0 \]

- Lagrangian
 \[\mathcal{L}(x, \ell) = \|y - Hx\|^2 + \mu \|Dx\|^2 + \ell^t \bar{T}x \]

- Iterative algorithm
 \[
 \begin{align*}
 x^{[k+1]} &= \arg \min_x \mathcal{L}(x, \ell^{[k]}) = (H^t H + \mu D^t D)^{-1} (H^t y - \bar{T}^t \ell^{[k]}/2) \\
 \ell^{[k+1]} &= \ell^{[k]} + \tau_k \bar{T}x^{[k+1]}
 \end{align*}
 \]
Equality: algorithm via augmented Lagrangian

- Original (unconstrained) criterion
 \[J_{\text{PLS}}^+(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| \bar{T}x \|^2 \]

- Equality constraints:
 \[\bar{T}x = 0 \]

- Lagrangian
 \[\mathcal{L}_\rho(x, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| \bar{T}x \|^2 + \ell^t \bar{T}x \]

- Iterative algorithm
 \[
 \begin{align*}
 x^{[k+1]} &= (H^t H + \mu D^t D + \cdot)^{-1}(H^t y - \bar{T}^t \ell^{[k]} / 2) \\
 \ell^{[k+1]} &= \ell^{[k]} + 2\rho \bar{T}x^{[k+1]}
 \end{align*}
 \]
Original (unconstrained) criterion

\[J_{\text{PLS}}^+(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| \bar{T}x \|^2 \]

Equality constraints:

\[\bar{T}x = 0 \]

Lagrangian

\[\mathcal{L}_\rho(x, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| \bar{T}x \|^2 + \ell^T \bar{T}x \]

Iterative algorithm

\[
\begin{align*}
 x^{[k+1]} &= (H^t H + \mu D^t D + \rho T^t T)^{-1} (H^t y - \bar{T}^t \ell^{[k]} / 2) \\
 \ell^{[k+1]} &= \ell^{[k]} + 2\rho \bar{T}x^{[k+1]}
\end{align*}
\]
Equality: via augmented Lagrangian and slack variables

- Original (unconstrained) criterion

\[J_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 \]

- Constraint \(\oplus \) auxiliary (slack) variables

\[x_p = 0 \text{ for } p \in \bar{S} \quad \implies \quad \begin{cases} x_p = s_p & \text{for } p \in M \\ s_p = 0 & \text{for } p \in \bar{S} \end{cases} \]

- Augmented Lagrangian \(\oplus \) slack variables

\[\mathcal{L}_\rho(x, s, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| x - s \|^2 + \ell^t(x - s) \]

- Iterative algorithm

\[
\begin{align*}
 x^{[k+1]} &= (H^tH + \mu D^tD + \rho I)^{-1}(H^ty - \ell^{[k]}/2 + \bullet) \\
 s_p^{[k+1]} &= \begin{cases}
 \bullet & \text{for } p \in S \\
 0 & \text{for } p \in \bar{S}
 \end{cases} \\
 \ell^{[k+1]} &= \ell^{[k]} + 2\rho \left(x^{[k+1]} - s^{[k+1]} \right)
\end{align*}
\]
Equality: via augmented Lagrangian and slack variables

- **Original (unconstrained) criterion**
 \[
 J_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2
 \]

- **Constraint + auxiliary (slack) variables**
 \[
 x_p = 0 \quad \text{for } p \in \bar{S} \quad \implies \quad \begin{cases}
 x_p = s_p & \text{for } p \in M \\
 s_p = 0 & \text{for } p \in \bar{S}
 \end{cases}
 \]

- **Augmented Lagrangian + slack variables**
 \[
 L_\rho(x, s, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| x - s \|^2 + \ell^t (x - s)
 \]

- **Iterative algorithm**
 \[
 \begin{aligned}
 &x^{[k+1]} = (H^t H + \mu D^t D + \rho I)^{-1} (H^t y - \ell^{[k]}/2 + \rho s^{[k]}) \\
 &s_p^{[k+1]} = \begin{cases}
 \bullet & \text{for } p \in S \\
 0 & \text{for } p \in \bar{S}
 \end{cases} \\
 &\ell^{[k+1]} = \ell^{[k]} + 2\rho \left(x^{[k+1]} - s^{[k+1]} \right)
 \end{aligned}
 \]
Equality: via augmented Lagrangian and slack variables

- Original (unconstrained) criterion
 \[J_{\text{PLS}}(x) = \|y - Hx\|^2 + \mu \|Dx\|^2 \]

- Constraint ⊕ auxiliary (slack) variables
 \[x_p = 0 \text{ for } p \in \bar{S} \quad \leadsto \quad \begin{cases} x_p = s_p & \text{for } p \in M \\ s_p = 0 & \text{for } p \in \bar{S} \end{cases} \]

- Augmented Lagrangian ⊕ slack variables
 \[L_\rho(x, s, \ell) = \|y - Hx\|^2 + \mu \|Dx\|^2 + \rho \|x - s\|^2 + \ell^t(x - s) \]

- Iterative algorithm
 \[
 \begin{align*}
 x^{[k+1]} &= (H^t H + \mu D^t D + \rho I)^{-1}(H^t y - \ell^{[k]}/2 + \rho s^{[k]}) \\
 s_p^{[k+1]} &= \begin{cases}
 x_p^{[k+1]} + \ell_p^{[k]}/(2\rho) & \text{for } p \in S \\
 0 & \text{for } p \in \bar{S}
 \end{cases} \\
 \ell^{[k+1]} &= \ell^{[k]} + 2\rho \left(x^{[k+1]} - s^{[k+1]} \right)
 \end{align*}
 \]
Equality and inequality constraints: problem

- Original (unconstrained) criterion
 \[\mathcal{J}_{\text{PLS}}(x) = \| y - Hx \|^2 + \mu \| Dx \|^2 \]

- Equality and inequality constraints
 \[
 \begin{align*}
 x_p &= 0 \quad \text{for } p \in \bar{S} \\
 x_p &\geq 0 \quad \text{for } p \in M
 \end{align*}
 \]

- Equality and inequality constraints \(\oplus \) slack variables
 \[
 \begin{align*}
 x_p &= s_p \quad \text{for } p \in M \\
 s_p &= 0 \quad \text{for } p \in \bar{S} \\
 s_p &\geq 0 \quad \text{for } p \in M
 \end{align*}
 \]

- Augmented Lagrangian \(\oplus \) slack variables
 \[
 \mathcal{L}_\rho(x, s, \ell) = \| y - Hx \|^2 + \mu \| Dx \|^2 + \rho \| x - s \|^2 + \ell^t(x - s)
 \]
Iterative algorithm: ADMM

\[\mathcal{L}(x, s, \ell) = \|y - Hx\|^2 + \mu \|Dx\|^2 + \rho \|x - s\|^2 + \ell^t(x - s) \]

- Iterate three steps

1. Unconstrained minimisation w.r.t. \(x \)
 \[\tilde{x} = (H^tH + \mu D^tD + \rho I)^{-1} (H^ty + [\rho s - \ell/2]) \quad (\equiv \text{FFT}) \]

2. Constrained minimisation w.r.t. \(s \) (s.t. \(s_p \geq 0 \) or \(s_p = 0 \))
 \[\tilde{s}_p = \begin{cases}
 \max(0, x_p + \ell_p/(2\rho)) & \text{for } p \in S \\
 0 & \text{for } p \in \bar{S}
 \end{cases} \]

3. Update \(\ell \)
 \[\tilde{\ell}_p = \ell_p + 2\rho(x_p - s_p) \]
Object update: other possibilities

Various options and many relationship...

- Direct calculus, closed-form expression, matrix inversion
- Algorithm for linear systems
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation, ...
- Numerical optimisation
 - Gradient descent. . . and modified versions
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions)
Constrained solution
Conclusions

Synthesis

- Image deconvolution
- Taking constraints into account
 - Positivity and support
 - Quadratic penalty
- Numerical computations: augmented Lagrangian and ADMM
 - Iterative: quadratic ⊕ separable
 - Circulant case (diagonalization) \(\leadsto\) FFT only
 - (or numerical optimisation, system solvers, . . .)
 - Parallel (separable and explicit)

Extensions (not developed)

- Also available for
 - non-invariant linear direct model
 - colour images, multispectral and hyperspectral
 - also signal, 3D and more, video, 3D+t . . .
- Including both Huber penalty and constraints
- Hyperparameters estimation, instrument parameter estimation, . . .