Image restoration
— Convex approaches: penalties and constraints —

An example in astronomy

Jean-François Giovannelli
Groupe Signal – Image
Laboratoire de l’Intégration du Matériaux au Système
Univ. Bordeaux – CNRS – BINP
Summary

- Direct model and inverse problem
 - Interpolation-extrapolation / deconvolution / Fourier synthesis
 - Indetermination, non-inversibility

- Prior information and regularized solution
 - Positivity and possible support
 - Point sources onto smooth background and double model

- Algorithmic aspects and numerical optimisation

- Data processing results
 - Simulated Data
 - NRH Data

- Conclusions et extensions
Interferometry: principles of measurement

Physical principle [Thompson, Moran, Swenson, 2001]

- Antenna array \(\leadsto\) large aperture
- Frequency band, e.g., 164 MHz
- Couple of antennas interference \(\leadsto\) one measure in the Fourier plane

Picture site (NRH)

Knowledge of the sun, magnetic activity, eruptions, sunspots, ...
Forecast of sun events and their impact, ...
Interferometer: example of measurements

\[x \quad Fx \quad TFx \quad y = TFx + \varepsilon \]
Truncated and noisy Fourier transform

\[y = TFx + \varepsilon \]

- \(x \in \mathbb{R}^N \): unknown image
- \(y, \varepsilon \in \mathbb{C}^M \): measurements, errors
- \(F \): Fourier matrix \((N \times N)\)
- \(T \): truncation matrix \((M \times N)\), e.g., \(T = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \)

Difficulties: \(M \ll N \), noise
Different formulations

- Fourier synthesis (original formulation)
 \[y = TFx + \varepsilon \]

- Interpolation – extrapolation: change of variable \(\tilde{x} = Fx \)
 \[y = T\tilde{x} + \varepsilon \]

- Deconvolution: transformation of data
 - \(\tilde{y} = F^\dagger T^t y \)
 - \(H = F^\dagger T^t TF \)
 \[\tilde{y} = Hx + \tilde{\varepsilon} \]

- A few simple properties
 - \(F^\dagger F = FF^\dagger = I \): orthonormality
 - \(T^t \): zero-padding matrix, \(M \leadsto N \) (\(T^t \) extends)
 - \(T^tT \): (diagonal) projection matrix, \(N \leadsto N \) (\(T^tT \) nullifies)
 - \(TT^t = I_M \)
Interferometry: illustration

True map ES

True map PS

Dirty beam

Dirty map ES

Dirty map PS

Dirty map PS + ES
Data based inversion and ill-posed character

- Deficient rank, missing data
 - FT, T, H: 1 singular value order M and 0 order $N - M$

- Infinity of Least-Squares solution
 - $J_{LS}(x) = \| y - TFx \|^2$

- Other solutions: minimum norm solution, TSVD, (quasi) Wiener . . .
 - $J_{LS}(\hat{y}) = 0$
 - $J_{LS}\left(\hat{y} + [u - F^\dagger T^tTFu]\right) = 0$, for all map u

- Necessity of other information
Taking constraints into account: positivity and support

- **Notation**
 - \mathcal{M}: index set of the image pixels
 - $S, D \subseteq \mathcal{M}$: index set of a part of the image pixels

- **Investigated constraints here**
 - **Positivity**
 $$C_p : \forall p \in \mathcal{M}, \quad x_p \geq 0$$
 - **Support**
 $$C_s : \forall p \in \bar{S}, \quad x_p = 0$$

- **Extensions (non investigated here)**
 - **Template**
 $$\forall p \in \mathcal{M}, \quad t_p^- \leq x_p \leq t_p^+$$
 - **Partially known map**
 $$\forall p \in D, \quad x_p = m_p$$
Point sources + extended source

- **Double-model** [Ciuciu02, Samson03] et [Magain98, Pirzkal00]
 - \(x = x_e + x_p \)
 - Direct model \(y = TF(x_e + x_p) + \varepsilon \)
 - New indeterminations

- **Appropriate regularisation**
 - \(P_e(x_e) = \sum_{p \sim q} [x_e(p) - x_e(q)]^2 \)
 - \(P_p(x_p) = \)
Point sources + extended source

- **Double-model** [Ciuciu02, Samson03] et [Magain98, Pirzkal00]
 - $x = x_e + x_p$
 - Direct model $y = TF(x_e + x_p) + \epsilon$
 - New indeterminations

- **Appropriate regularisation**
 - $P_e(x_e) = \sum_{p \sim q} [x_e(p) - x_e(q)]^2$
 - $P_p(x_p) = \sum |x_p(n)| = $
Double-model [Ciuciu02, Samson03] et [Magain98, Pirzkal00]

- \(x = x_e + x_p \)
- Direct model \(y = TF(x_e + x_p) + \varepsilon \)
- New indeterminations

Appropriate regularisation

- \(P_e(x_e) = \sum_{p \sim q} [x_e(p) - x_e(q)]^2 \)
- \(P_p(x_p) = \sum |x_p(n)| = \sum x_p(n) \)
Frequential analysis

Reduced frequency
Regularized criterion y regularized solution

Criterion: penalized, quadratic, strictly convex

\[J(x_e, x_p) = \|y - T_F(x_e + x_p)\|^2 + \lambda_e \sum_{p \sim q} [x_e(p) - x_e(q)]^2 + \lambda_p \sum x_p(n) + \varepsilon_e \sum x_e(n)^2 + \varepsilon_p \sum x_p(n)^2 \]

Solution: unique constrained minimizer \(x = [x_e; x_p] \)

\[
(\hat{x}_e, \hat{x}_p) = \begin{cases}
\arg \min J(x_e, x_p) \\
\text{s.t. } (C')
\end{cases}
= \begin{cases}
\arg \min \frac{1}{2} x^T Q x + q^T x \\
\text{s.t. } \begin{cases}
x_p = 0 & \text{for } p \in \bar{S} \\
x_p \geq 0 & \text{for } p \in M
\end{cases}
\end{cases}
\]
Positivity: one variable

- One variable: \(\alpha(t - \bar{t})^2 + \gamma \)

Non-constrained solution: \(\hat{t} = \bar{t} \)

Constrained solution: \(\hat{t} = \max[0, \bar{t}] \)

Active and inactive constraints
Two variables:
\[\alpha_1 (t_1 - \bar{t}_1)^2 + \alpha_2 (t_2 - \bar{t}_2)^2 + \beta (t_2 - t_1)^2 + \gamma \]

Sometimes / often difficult to deduce the constrained minimiser from the non-constrained one
Positivity: two variables (2)

- Two variables: \(\alpha_1(t_1 - \bar{t}_1)^2 + \alpha_2(t_2 - \bar{t}_2)^2 + \beta(t_2 - t_1)^2 + \gamma \)

- Constrained solution = Non-constrained solution (1)
- Constrained solution \(\neq \) Non-constrained solution (2)

 ... so active constraints
Two variables: \(\alpha_1(t_1 - \bar{t}_1)^2 + \alpha_2(t_2 - \bar{t}_2)^2 + \beta(t_2 - t_1)^2 + \gamma \)

Constrained solution \(\neq \) Non-constrained solution (2)
... so active constraints

- Constrained solution \(\neq \) Projected non-constrained solution (2a)
 \[(\hat{t}_1; \hat{t}_2) \neq (\max [0, \bar{t}_1]; \max [0, \bar{t}_2]) \]

- Constrained solution = Projected non-constrained solution (2b)
 \[(\hat{t}_1; \hat{t}_2) = (\max [0, \bar{t}_1]; \max [0, \bar{t}_2]) \]
Numerical optimisation: state of the art

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Quadratic optimisation with linear constraints</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Difficulties</th>
</tr>
</thead>
<tbody>
<tr>
<td>- $N \sim 1,000,000$</td>
</tr>
<tr>
<td>- Constraints \oplus non-separable variables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Existing algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Existing tools with guaranteed convergence</td>
</tr>
<tr>
<td>- [Bertsekas 95,99; Nocedal 00,08; Boyd 04,11]</td>
</tr>
<tr>
<td>- Gradient projection methods, constrained gradient method</td>
</tr>
<tr>
<td>- Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory</td>
</tr>
<tr>
<td>- Interior points and barrier</td>
</tr>
<tr>
<td>- Pixel-wise descent</td>
</tr>
<tr>
<td>- Augmented Lagrangian, ADMM</td>
</tr>
<tr>
<td>- Constrained but separated $+$ non-separated but non-constrained</td>
</tr>
<tr>
<td>- Partial solutions still through FFT</td>
</tr>
</tbody>
</table>
Lagrangians und penalisation

- Equality constraint: \(x_p = 0 \)

\[- \sum_{p \in \bar{S}} \ell_p x_p + \frac{1}{2} c \sum_{p \in \bar{S}} x_p^2 \]

- Inequality constraint: \((x_p \geq 0) \Leftrightarrow (s_p - x_p = 0 ; s_p \geq 0)\)

\[- \sum_{p \in S} \ell_p (x_p - s_p) + \frac{1}{2} c \sum_{p \in S} (x_p - s_p)^2 \]

- Globally

\[\mathcal{L}(x, s, \ell) = \frac{1}{2} x^t Q x + q^t x - \ell^t (x - s) + \frac{1}{2} c (x - s)^t (x - s)\]
Iterative algorithm

\[\mathcal{L}(\bm{x}, s, \ell) = \frac{1}{2} \bm{x}^t \bm{Q} \bm{x} + \bm{q}^t \bm{x} - \ell^t (\bm{x} - s) + \frac{1}{2} \bm{c} (\bm{x} - s)^t (\bm{x} - s) \]

- Iterate three steps
 1. Unconstrained minimization of \(\mathcal{L} \) w.r.t. \(\bm{x} \)
 \[\tilde{\bm{x}} = - (\bm{Q} + \bm{cI})^{-1} (\bm{q} + [\ell + \bm{c}s]) \quad (\equiv \text{FFT}) \]
 2. Minimization of \(\mathcal{L} \) w.r.t. \(s \), s.t. \(s_p \geq 0 \),
 \[\tilde{s}_p = \begin{cases} \max (0, cx_p - \ell_p)/c & \text{for } p \in S \\ 0 & \text{for } p \in \bar{S} \end{cases} \]
 3. Update \(\ell \)
 \[\tilde{\ell}_p = \begin{cases} \max (0, \ell_p - cx_p) & \text{for } p \in S \\ \ell_p - cx_p & \text{for } p \in \bar{S} \end{cases} \]
Details about Q and q

- $q \rightsquigarrow$ dirty map:

\[
q = \left. \frac{\partial J}{\partial x} \right|_{x_e, x_p=0} = \begin{bmatrix}
\frac{\partial J}{\partial x_e} \\
\frac{\partial J}{\partial x_p}
\end{bmatrix} = -2 \begin{bmatrix}
\overset{\circ}{y} \\
\overset{\circ}{y} + \lambda_c \frac{1}{2}
\end{bmatrix}
\]

- $Q \rightsquigarrow$ dirty beam:

\[
Q = \frac{\partial^2 J}{\partial x^2} = \begin{bmatrix}
\frac{\partial^2 J}{\partial x_e^2} & \frac{\partial^2 J}{\partial x_e \partial x_p} \\
\frac{\partial^2 J}{\partial x_p \partial x_e} & \frac{\partial^2 J}{\partial x_p^2}
\end{bmatrix} = \begin{bmatrix}
H + \lambda_s D^t D & H \\
H & H + \varepsilon_s I
\end{bmatrix}
\]
Simulated data results

True extended object x_e^*

Estimated extended object \hat{x}_e

Dirty map

True point object x_p^*

Estimated point object \hat{x}_p
Simulated data results

True extended object x^*_e

Estimated extended object \hat{x}_e

True point object x^*_p

Estimated point object \hat{x}_p
Real data: first results

Dirty map

Estimated extended object \hat{x}_e

Estimated point object \hat{x}_p
Real data: first results

Dirty map

Estimated extended object $\hat{\mathbf{x}}_e$

Estimated point object $\hat{\mathbf{x}}_p$
Conclusions

Synthesis

- Direct model and inverse problem
 - Interpolation-extrapolation/deconvolution/Fourier synthesis
 - Double-model and appropriate regularisation: point/background
 - Positivity and support
- Optimisation: lagrangians
- Simulations et real data: interferometry in radio-astronomy

Perspectives

- Quantitative assessment
- Case of a single map: an extended source / a set of point sources
- Non quadratic penalty \leadsto background resolution enhancement
- Data and/or sources “out grid”
- Hyperparameter estimation