
Master internship and thesis offer

Neural network prior and full Bayesian sampling
for inverse problems

Scientific context: Inverse problem, deconvolution, deep learning, Bayesian strategy.

Signal-image-vision issues: Prior learning, posterior sampling, conditional generators,. . .

Involved tools: Invertible networks, normalizing flow, stochastic sampling, MCMC, Langevin/Hamilton.

Possible application fields: Imaging in physics, astronomy, medicine, remote sensing, industry,. . .

Computing environment: Matlab, PC.

Location: Groupe Signal – Image, IMS, Talence, France.

Duration internship: Five or six months starting in January or February 2022.

Supervisors: J.-F. Giovannelli and G. Bourmaud, Groupe Signal – Image, IMS, Talence and collab-
oration with F. Champagnat, DTIM / Unité Image, Vision, Apprentissage, ONÉRA, Palaiseau.

Doctoral study: The internship will open to a PhD thesis on the subject.

Contact: J.-F. Giovannelli (Giova@IMS-Bordeaux.fr).

The fast development of neural networks and deep learning methodologies [1] opens the way to
new solutions for large scale inverse problems [2–4]. In particular, in the Bayesian framework [5, 6],
the prior distribution can be learned from a bunch of examples characteristic of the considered field of
interest. This contrasts with the standard methods based on general all-purpose priors (see figure) usu-
ally designed within restricted parametric distribution families [3, 4, 7]. Whatever the approach, stan-
dard or neural network, the Bayesian strategy provides a tool of choice for uncertainty quantification
and statistical analysis, in particular via posterior sampling of the unknowns given the measurements.
See [8, 9] for the neural network approach or [5, 6] for a more general view.

The designed prior will be next combined to the distribution of the measurements (likelihood) to
provide the posterior, the latter being sampled by means of an MCMC algorithm, for instance in the
AGEM framework [10]. On the methological side, this framework is presently tied to a particular
class of networks (the denoising autoencoders) and we plan to generalize to invertible network archi-
tectures [9, 11] that enable explicit manipulation of sample likelihood, a potential asset for sampling
algorithms, such as Langevin or Hamilton MCMC samplers.

A first instance of this methodology (learning, sampling, imaging including uncertainties) will be
developed in the context of the internship: select a simple network architecture, gather a first learning
database (already available), learn and test the model. The objective of the thesis is to proceed on the
design, implementation and assessment of such approaches on cases of increasing complexity.

In addition, the AGEM framework presents another essential interest in practice: it affords adap-
tive tuning to operating conditions not met during the learning phase. In particular, it enables to
consider different extensions toward hyperparameter estimation. Besides, AGEM exploits a Monte
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Figure 1: Typical sample of prior. On the left: four samples of “all purpose” prior with various Gibbs
energy (from [8]) and on the right: a typical image of gas distribution (from [13]).

Carlo EM approach for hyperparameter estimation, and it is potentially more efficient to develop fully
Bayesian approaches where hyperparameters themselves are attributed a prior [7, 12].

Such tools for image reconstruction and uncertainty quantification are of major interest in a wide
range of modalities for various fields: physics, astronomy, medicine, remote sensing, industry,. . . A
focus could be put on the domain of aerospace and the field of fluid mechanics, more specifically
turbulent flows, for example tomography of gas density for aerodynamics and propulsion [13, 14] or
particle image velocimetry [15]. In the latter, the methodology could be demonstrated on experimental
data gathered from various experimental facilities developed at ONÉRA, e.g., multiview holographic
bench [14] or particle image velocimetry [15]. In such cases, the realism of the bunch of examples
can be ensured by numerical simulations thanks to exactly-controlled physical models. In order to
improve the generalization capability of our networks to experimental data, the bunch of example
could be enriched with high resolution measurements for complex flows and constrained observation
conditions (turbulent flows, scarcer measurements).
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