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Résumé
La restauration d’images corrigées par optique adaptative est particulièrement difficile, du

fait de la méconnaissance de la réponse impulsionnelle du système optique (PSF pour point-
spread function) en plus des difficultés usuelles. Une approche efficace est de marginaliser l’objet
en dehors du problème et d’estimer la PSF et les hyper-paramètres (liés à l’objet et au bruit)
seuls avant la déconvolution. Des travaux récents ont appliqué cette déconvolution marginale,
combinée à un modèle paramétrique de PSF, à des images astronomiques et de satellites. Cette
thèse vise à proposer une extension de cette méthode. En particulier, j’utilise un algorithme
Monte-Carlo par chaînes de Markov (MCMC), afin d’inclure des incertitudes sur les paramètres
et d’étudier leur corrélation a posteriori. Je présente des résultats détaillés obtenus sur des
images astronomiques et de satellites, simulées et expérimentales. Je présente également des
premiers éléments sur l’ajout d’une contrainte de support sur l’objet.

Mots-clés : restauration d’image, optique adaptative, déconvolution, turbulence, problèmes
inverses
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Abstract
Adaptive-optics-corrected image restoration is particularly difficult, as it suffers from the

poor knowledge on the point-spread function (PSF). One efficient approach is to marginalize
the object out of the problem, and to estimate the PSF and (object and noise) hyper-parameters
only before the deconvolution. Recent works have applied this marginal deconvolution, combined
to a parametric model for the PSF, to astronomical and satellite images. This thesis aims at
extending this previous method, using Markov chain Monte Carlo (MCMC) algorithms. This
will enable us to derive uncertainties on the estimates, as well as to study posterior correlation
between the parameters. I present detailed results on simulated and experimental, astronomical
and satellite data. I also provide elements on the impact of a support constraint on the object.

Keywords: image restoration, adaptive optics, deconvolution, turbulence, inverse problems
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Résumé long en français

L’observation de l’espace depuis le sol possède de nombreuses applications, civiles comme
militaires, telles que l’astronomie ou l’observation de satellites. En effet, l’observation des satel-
lites naturels ou artificiels permet de les analyser et de suivre leur évolution depuis la Terre
au lieu d’envoyer une sonde dans l’Espace (ce qui est beaucoup plus contraignant et onéreux).
Cependant, cette observation depuis le sol est limitée à cause de la turbulence atmosphérique :
l’onde plane lumineuse provenant de l’objet est déformée par la turbulence. Cette déformation
aléatoire, qui est la manifestation d’aberrations que traverse l’onde, peut être décrite par une
carte de phase dans la pupille du télescope. Dans ce travail, la force de la turbulence est rat-
tachée au paramètre de Fried r0. Il correspond au diamètre d’un télescope qui serait uniquement
limité par la diffraction donnant la même résolution qu’un télescope infiniment grand mais limité
par la turbulence. Dans les cas que nous allons étudier dans ce travail, le paramètre de Fried
est de l’ordre d’une dizaine de centimètre, de nuit, dans le visible.

Une technique permettant de compensation les perturbations liées à la turbulence est l’optique
adaptative (OA). Cette dernière peut-être décomposée en trois parties principales : le miroir
déformable, le calculateur temps réel et l’analyseur de surface d’onde. L’analyseur de surface
d’onde mesure les aberrations résiduelles qui sont envoyées au calculateur temps réel, lequel pi-
lote le miroir déformable pour compenser ces aberrations. Le front d’onde est alors corrigé, mais
la phase (résiduelle) dans la pupille du télescope n’est pas totalement constante, se traduisant
par un flou résiduel sur l’image corrigée par OA. Ce résidu turbulent est donc celui que nous
allons chercher à traiter dans ces travaux. Dans cette thèse, ce résidu va être relié à la qualité
de correction par OA, donnée par la variance de phase résiduelle vϕ.

Le processus qui, partant de l’objet réel observé, donne l’image effectivement obtenue est
décrit par le modèle d’imagerie. Dans notre cas, nous utilisons un modèle d’imagerie assez
classique dans la littérature, considérant que l’image i résulte du produit de convolution entre
l’objet recherché o et la réponse impulsionnelle du système optique, appelée fonction d’étalement
du point (en anglais PSF pour point spread function) h, auquel s’ajoute du bruit n : i = o∗h+n.
Le fait de vouloir retrouver l’objet o à partir des données i revient à résoudre un problème dit
inverse, il s’agit plus spécifiquement ici d’un problème de déconvolution. Il s’agit d’un problème
difficile, même lorsque la PSF h est totalement connue. Dans notre cas, la PSF n’est que
partiellement connue, ce qui rend le problème encore plus difficile : il faut donc estimer l’objet
et la PSF.
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Pour cela, nous allons utiliser des modèles afin d’utiliser les connaissances physiques sur les
grandeurs recherchées pour réduire le nombre d’inconnues. Pour la PSF, les travaux de thèse
de R. Fétick ont permis de développer un modèle de PSF corrigée par OA à peu de paramètres
[Fétick, 2019a]. Dans ce modèle, la PSF est décrite à partir de la DSP de la phase résiduelle,
elle-même décrite en deux parties : une première partie en-dessous de la fréquence de coupure de
l’OA où la phase a été partiellement corrigée, et une seconde partie au-dessus de cette fréquence
de coupure où la phase est une phase purement turbulente. La première partie est principalement
décrite par la variance de phase résiduelle vϕ, et la seconde par le diamètre de Fried r0. La PSF
est donc totalement décrite à partir de ces deux paramètres. Ce modèle, qui a été testé et validé
sur plusieurs systèmes d’OA (SAXO du VLT/SPHERE, GALACSI du VLT/MUSE, ODISSEE
de l’ONERA), est le modèle que nous utiliserons tout au long de ce travail. Pour le bruit, nous
considérons essentiellement deux sources de bruit : le bruit de photon et le bruit de lecture, qui
peuvent être raisonnablement approximés comme un bruit blanc additif Gaussien, à moyenne
nulle. Le bruit est alors décrit par un unique paramètre, sa variance (ou sa précision c’est-à-dire
son inverse variance).

Les caractéristiques de la turbulence atmosphérique et donc son impact sur les images sont
données plus en détail dans le chapitre 1. On y trouve également la motivation d’utiliser l’OA,
une brève description de cette dernière ainsi qu’une description du modèle PSFAO19.

Afin d’estimer l’objet et les paramètres PSF et bruit, nous allons nous placer dans un cadre
Bayésien où les informations disponibles sur les quantités recherchées sont incorporées sous la
forme de distributions de probabilité : on parle d’a priori sur ces quantités. La formule de Bayes
permet alors de calculer la probabilité a posteriori des quantités d’intérêt (sachant les données),
à partir de leurs probabilités a priori et de la vraisemblance, c’est-à-dire la probabilité des
données sachant ces quantités, donnée par le modèle d’imagerie et le modèle de bruit (Gaussien)
dans notre cas. Pour l’objet, nous allons utiliser un a priori Gaussien, l’objet est alors décrit
par sa moyenne et sa densité spectrale de puissance (DSP). Le modèle utilisé pour la DSP objet
est le modèle de Matérn, issu de la littérature.

Une fois la probabilité a posteriori écrite, plusieurs possibilités existent afin d’estimer l’objet
et la PSF. L’approche historique (qui est également la plus simple) consiste à estimer l’objet et
la PSF conjointement, en maximisant la distribution a posteriori conjointe c’est-à-dire p(o, h|i).
Cependant, les travaux antérieurs de L. Blanco [Blanco, 2011] et de A. Levin [Levin, 2009] ont
montré que, sous les hypothèses de Gaussianité faites précédemment, la solution obtenue avec cet
estimateur conjoint Maximum A Posteriori (MAP) est dégénérée, menant systématiquement à la
PSF la plus piquée et donc l’objet le plus mou. En pratique, R. Fétick a également montré le fait
que l’estimateur ne donne pas de résultats satisfaisant même en utilisant le modèle paramétrique
et une restauration L1-L2 (ou L2 avec contrainte de positivité) [Fétick, 2020b].

Une autre approche dans la littérature consiste à estimer d’abord la PSF avant de restaurer
l’objet, en intégrant l’objet hors du problème. De ce fait, le nombre d’inconnues (les paramètres
de la PSF) est bien inférieur à la quantité de données disponibles (l’ensemble des pixels de
l’image), ce qui donne de bonnes propriétés asymptotiques à cet estimateur dit marginal. Grâce
à la marginalisation, il est alors possible d’inclure l’estimation des hyper-paramètres, à savoir
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certains des paramètres de la DSP objet θo et l’inverse variance du bruit θn, dans l’estimation
des paramètres de PSF. On maximise donc cette fois p(h, θo, θn|i), et une fois la PSF estimée,
on restore l’objet en utilisant une méthode de restoration classique en utilisant les paramètres
et hyper-paramètres estimés, par-exemple un filtre de Wiener (restauration L2). Cette méthode
marginale a été développée et implémentée dans le code AMIRAL (pour Automatic Myopic
Image Restoration ALgorithm). Cette méthode, d’abord utilisée pour l’imagerie rétinienne, a
ensuite été adaptée à l’observation astronomique en utilisant le modèle PSFAO19 [Fétick, 2019a]
dans la version Parametric-AMIRAL.

Le chapitre 2 redonne des éléments sur la déconvolution myope, et décrit les différents esti-
mateurs mentionnés plus haut.

La méthode MAP marginale fonctionne, cependant elle possède plusieurs limitations. Pre-
mièrement, elle ne donne pas d’incertitudes sur les quantités estimées. Deuxièmement, comme
dit précédemment elle ne permet d’estimer que certains des hyper-paramètres : en effet, l’un
des paramètres de la DSP objet doit être fixé en fonction de la classe d’objet observé, on parle
de mode quasi non-supervisé. Sans cela c’est-à-dire dans le mode non-supervisé, la méthode
ne donne pas de résultat satisfaisant [Fétick, 2020b], et il reste encore à déterminer pourquoi.
De plus, il serait souhaitable à terme d’estimer l’ensemble des paramètres. Troisièmement, la
méthode MAP marginale ne donne pas de résultats satisfaisants pour des cas de correction par
OA moins bonne, ou pour des restorations d’objets plus petits [Lau, 2023].

Les objectifs de ces travaux de thèse sont donc multiples. Le premier but a été de proposer
une nouvelle méthode donnant une estimation des quantités d’intérêts ainsi que leurs incertitudes
associées. Le second a été de comprendre les limitations de la méthode MAP marginale. Le
dernier a été d’améliorer les estimations dans les cas difficiles. Afin de répondre aux deux
premiers buts, nous avons exploré plus globalement la distribution a posteriori afin de calculer un
nouvel estimateur et les incertitudes associées. Quant à la réponse au troisième but, l’approche
a été d’ajouter des informations inexploitées jusqu’alors dans la méthode. Nous avons plus
spécifiquement travaillé sur l’ajout d’une contrainte de support sur l’objet.

Le chapitre 3 regroupe les différentes contributions faites à l’ancienne méthode MAP marginale
au cours de la thèse. On y décrit la modification du modèle de DSP objet que nous proposons
afin de découpler davantage ses paramètres tout en décrivant les mêmes cartes de DSP. De plus,
on y compare les deux versions de la méthode MAP marginale, à savoir AMIRAL et P-AMIRAL,
jusqu’alors utilisées séparément et donc jamais comparées.

Les chapitres 4 à 6 décrivent la nouvelle méthode visant à donner des incertitudes sur les
estimées ainsi que les corrélations a posteriori des paramètres estimés (chapitre 4), et donnent
les résultats obtenus sur des données simulées (chapitre 5) et expérimentales (chapitre 6).

Enfin, le chapitre 7 décrit l’ajout de la contrainte de support sur l’objet, en regardant son
impact sur les calculs. Il présente également des résultats à support connu, vrai et approché,
pour différents niveaux de bruit.
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Introduction

Ground-based high angular resolution imaging has both civilian and military applications,
such as astronomy and satellite observation. In particular, the observation of natural or artificial
satellites from the ground enables us to analyze them and track their evolution from Earth using
large telescopes, instead of sending a spacecraft, which is way more constraining and expensive.
These space observations can be done for different purposes: in the case of asteroids, observing
them enables astronomers to characterize their chemical composition, which has not evolved
much with time due to their relatively small size. This knowledge can then be used, for instance,
to better understand the original chemical compounds of planets, thus the first phases of the
Solar system formation. Tracking asteroids can also be useful in order to determine their orbit
and thus identify the ones that will come close to or even impact Earth. Observing artificial
satellites is also useful to follow their different life phases, from post-launch manoeuvres to
deorbiting, as well as the potential threats around them. Military applications also consist in
the identification and characterization of satellites. Finally, these observations are also important
to follow the evolution of space debris, for instance their rotation speed, as they can be a hazard
for active spacecrafts and other satellites.

However, these ground-based observations are limited due to atmospheric turbulence, which
impacts the incoming light waves by deforming the wavefront, thus impairs the observed data
by blurring the object. The observations can be corrected in real time, using an Adaptive
Optics (AO) system with the telescope. However, the AO correction is partial and residual
blurring remains, impacting mostly high spatial frequencies of the observed object. Therefore,
the observation system includes post-processing to restore the high frequencies and retrieve the
actual object, taking into account the residual turbulence and the optical limitations of the
telescope.

The residual blurring is described by the so-called system point-spread function (PSF).
Supposing that the data results from the convolution between the sought object and the PSF,
retrieving the object from the data is called a deconvolution problem. Solving this inverse
problem is already a difficult task as inverse problems are often ill-posed, but in this case
the PSF is not entirely known which complicates even more the problem, given that both
the object and the PSF have to be estimated. Such deconvolution problems, where the PSF
is unknown or partially known, are called respectively blind or myopic deconvolutions. One
possible way to solve inverse problems in general, proposed in the literature, is to do so in the
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Bayesian framework, by incorporating knowledge on the unknowns through prior probability
distributions. Retrieving the unknowns is then often done using their posterior distribution,
taking into account the data, prior information and the imaging model.

As said previously, both the object and the PSF have to be estimated. The historical way to
proceed is to estimate them jointly, for instance maximizing the joint probability density func-
tion giving the joint Maximum A Posteriori (MAP) estimator [You, 1996; Ayers, 1988; Mugnier,
2004]. However, previous works have shown that it leads to a degenerated solution [Blanco, 2011;
Levin, 2009] in the absence of strong constraints. Another efficient way to proceed is to first esti-
mate the PSF by “marginalizing” over the object, i.e. by integrating the joint probability density
function over all possible objects (with a given prior probability density function), and then to
deconvolve the image with the estimated PSF which maximizes the marginal probability density
function [Lehmann, 1998; Blanco, 2011]. First used for retinal imaging, this marginal MAP es-
timator was then adapted to astronomical and satellite observation, and was implemented in a
code named AMIRAL, standing for Automatic Myopic Image Restoration ALgorithm by Blanco
et al. [Blanco, 2011].

In this context, the PSF describes the blurring coming from the partial correction of atmo-
spheric turbulence by AO. Previous works [Fétick, 2019a] defined a sparse physical model for it,
taking into account both the turbulence and the AO correction, using a few physical parameters.
This model was then incorporated to the marginal MAP estimator, leading to another version
of the corresponding myopic image restoration method: Parametric-AMIRAL. This method
was implemented and tested on simulated and experimental astronomical data by Fétick et al.
[Fétick, 2020b].

P-AMIRAL, the previous version incorporating the AO-corrected PSF model, was not com-
pared to AMIRAL, its former version without the PSF model, and was not applied to satellite
images. Moreover, the method only gives access to one element of the posterior distribution
which is its maximizer, from which one can infer only local (and not global) information on the
posterior distribution. Finally, none of the previous methods takes into account some constraints
on the object which could improve the estimation quality.

The present work tackles the problem of AO-corrected image restoration, for astronomical
and satellite observations. It aims at extending the previous method P-AMIRAL in order to
include more information on the estimated unknowns such as uncertainties and correlation.
This is done by sampling the whole marginal posterior distribution using stochastic sampling,
which enables us to compute another Bayesian estimator, which minimizes the mean square
error (MMSE). In this work, we also aim at exploring the impact of a support constraint on
the object in order to make the estimation more robust. This manuscript is divided into seven
chapters, the two first giving the general context of the problem, as well as the description of
the tools and methods that are used in the last five chapters. The chapters are structured as
follows:

— Chapter 1 recalls some characteristics of atmospheric turbulence in order to understand its
impact on the data, and the need for Adaptive Optics. General principles on AO systems
are also given, as well as their limitations. We tackle the problem for both applications,
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astronomical and satellite observations, and discuss the differences between the first and
the second one. The introduction to turbulence and AO correction finally leads to the
description of the AO-corrected PSF model used in this work.

— Chapter 2 recalls some elements on (myopic) deconvolution and describes the estimators
used in the literature to solve this inverse problem. We describe these different estimators
given our framework and give motivations for a change of the previous marginal MAP
estimator, as well as potential options.

— Chapter 3 gives the different contributions that were made to the existing method. Firstly,
it describes the modification on the object PSD model that aims at decoupling its param-
eters. Then, the existing versions of the previous marginal MAP estimator, AMIRAL and
P-AMIRAL, are compared by means of simulations, and the conclusion on this comparison
is given at the end of the chapter.

— Chapter 4 describes the computation of the marginal MMSE estimator by giving all the
elements of the Bayesian framework (likelihood, prior and posterior distributions, hierar-
chical model). It also describes the Markov Chain Monte Carlo (MCMC) methods we are
using in this work.

— Chapter 5 provides the results using this new method, on simulated data. On the astronom-
ical case, we are discussing both the estimated parameters and the derived uncertainties,
and test the robustness of the method by running it over several noise realizations. We
also compare two different MCMC algorithms in terms of computation speed. Additionally
to the uncertainties, the new method provides information on the posterior coupling of
parameters which we discuss afterwards. Finally, the method is also tested on (simulated)
satellite data.

— Chapter 6 provides the results using the new method, on experimental data, firstly on
an asteroid image and secondly on a satellite image. For both contexts, we start by a
description of the data and the context, then proceed to a sanity check on the image PSD
before giving results on the estimated parameters as well as on the derived uncertainties,
and restored images.

— Chapter 7 paves the way for including additional information on the object, through a
support constraint. We first give some elements from the literature, before giving details
on the different options to include this support constraint, which reveals the need to com-
pute truncated covariance matrices. Different implementations of the truncated matrices
computation are given and compared. Finally, we study the impact of different known
supports on the estimated parameters on simulated data.
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Chapter 1
Observing satellites from the ground:
basic concepts and models

In this chapter, we give the basic concepts and models we are using in order to tackle
the AO-corrected image restoration problem. In Section 1, we describe the impact
of atmospheric turbulence on the image. In Section 2, the general principle of AO
is given, as well as its limitations. In Section 3, we describe the AO corrected PSF
model we are using in this work. Finally, in Section 4, we give the imaging model we
will use throughout this work as well as some elements about our application cases
and some examples of instruments which are equipped with an AO system.

Introduction
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1.1. Imaging an extended object through atmospheric turbulence

1.1 Imaging an extended object through atmospheric turbu-
lence

1.1.1 Physical characteristics of atmospheric turbulence

The atmosphere is a heterogeneous medium where different air volumes are mixed, creating
large-scale air motions which transfer kinetic energy to smaller and smaller scale air motions, in
an energy cascade. This happens until the energy transfer is dominated by viscous friction in the
medium, when the residual energy is dissipated as heat. This energy cascade from large-scale air
motions, of characteristic size L0 (also called the outer scale) around 10 m – 100 m, to small-scale
air motions, of characteristic size l0 (the inner scale) around 10−3 m – 10−2 m, is described by
Kolmogorov in [Kolmogorov, 1941].

The mixing of different air volumes having different temperatures, due to these air motions,
leads to irregular changes in the refractive index of the air. This disturbs the propagation of
light wave through the atmosphere, which undergo different and random refractions and delays,
impacting the electromagnetic wave. This is why, even though the theoretical resolving power
of an optical instrument (in our case, a telescope) is limited by the physics of diffraction, in
practice this theoretical limit can not be reached because of the optical aberrations, due to the
atmospheric turbulence. Their impact is illustrated in Figure 1.1.

The perturbation of the electromagnetic wave during its propagation through turbulence
depends on the part of the atmosphere through which the light waves went. To characterize
the temperature fluctuations, and so the refractive index fluctuations ∆n(r, h), one can define
a statistical model for these fluctuations, which can be described by their structure function
D∆n [Tatarski, 1961]:

D∆n(ρ, h) = ⟨[∆n(r, h)−∆n(r + ρ, h)]2⟩

with ρ the distance between the two points, h the altitude and ⟨.⟩ the averaging operator. In
the inertial subrange, meaning for structures of size ρ ∈]l0; L0[, this structure function depends
on the refractive index structure constant of the turbulence C2

n(h) which is defined as follows:

D∆n(ρ, h) = C2
n(h)ρ2/3

with ρ the modulus of ρ. This constant characterizes the strength of atmospheric turbulence at
a given altitude h. It has a key role in the description of turbulence and its effects, it depends on
a large number of factors (meteorology, geographical localisation, day or night observation,...)
and evolves with time.

To quantify the impact of the atmospheric turbulence on image quality, a parameter of
interest is the Fried parameter r0 [Fried, 1966], which is the integration of the refractive index
structure constant of the turbulence (characterizing the local turbulence strength), over the line
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of sight:

r0 =
[
0.423

(2π

λ

)2 1
cos γ

∫ ∞

0
C2

n(h)dh

]− 3
5

where λ is the imaging wavelength, and γ the zenith angle (the angle between the direction
of interest and the zenith). The Fried parameter, computed in meters, corresponds to the
equivalent diameter that a telescope providing the same angular resolution would have, without
optical aberrations meaning in the case of a diffraction-limited observation. This resolution limit
is also often given using the seeing parameter s = λ

r0
.

Figure 1.1 – Left: synthetic view of asteroid Vesta, built by OASIS [Jorda, 2010]. Center:
simulated diffraction-limited observation of Vesta, using a VLT-like telescope (8 m-diameter
telescope). Right: simulated observation of Vesta impaired by atmospheric turbulence, without
any correction (r0 = 0.15 m at λ = 550 nm, which is typical value at the VLT’s site, at Paranal).

In this work, we suppose that the atmosphere is a stratified medium, as the superposition
of homogeneous thin turbulence layers [Roddier, 1981]. Additionally, we suppose that we are
within the near field approximation, implying a low perturbation regime where we neglect the
scintillation effects, meaning the effects of amplitude-shifting. Within this approximation, the
phase of the electromagnetic field’s complex amplitude in the telescope aperture (which we will
name the turbulent phase) simply writes as the summation of the different phase-shifts coming
from the layers through which the wave went. In the inertial subrange, following Kolmogorov’s
turbulence statistics theoretical model, the turbulent phase power spectral density (PSD) writes:

Wϕ(f) = 0.023r
−5/3
0 f−11/3 (1.1)

with f the frequency i.e. the inverse of the position in the pupil, in m−1.

1.1.2 Impact of atmospheric turbulence on the image

As shown in Figure 1.1, the atmospheric turbulence impairs the observation by blurring the
object. We model its impact on the observed image, combined with the limitations and defects
of the optical instruments, by a point spread function (PSF) to which the original object
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is convoluted (as we will write in Section 1.3). This system (telescope and atmosphere) PSF
hinst, at imaging wavelength λ, is the squared modulus of the inverse Fourier transform of the
electromagnetic field’s complex amplitude in the telescope aperture:

hinst(ξ) = |FT−1(P (λu) exp(jΦ(λu)))|2(ξ) (1.2)

where FT−1 denotes the inverse Fourier Transform (modeling here the transformation of the
electromagnetic field by the telescope, between the pupil plane and the focal plane), (ξ) are
angles on the sky in radians, (λu) are coordinates in the pupil in meters, P (., .) is the pupil
indicatrix and Φ(., .) is the electromagnetic field’s complex amplitude. This instantaneous PSF
depends on the position we consider on the sky, as well as it depends on time. For a perfect
telescope and without turbulence, P is constant within the pupil and Φ is null, the PSF is an
Airy disk.

We can consider two different imaging regimes, thus two different types of PSF. The fact of
being within a regime or the other depends on the exposure time texp with respect to the typical
variation time of turbulence τturb, which is around 10 ms, depending on the site [Aristidi, 2020]. If
texp ≪ τturb, the PSF is a short-exposure PSF, otherwise if texp ≫ τturb it is a long-exposure
PSF. In the short-exposure case, the PSF hinst is scattered into several speckles, which keep the
information on the object (even for high angular frequencies), however due to the short exposure
time, the signal-to-noise ratio (SNR) is often low and the PSF is very complex to describe.

On the contrary, a long-exposure PSF hopt corresponds to the integration of short-exposure
PSF over time, meaning that the effects of turbulence are averaged:

hopt = ⟨hinst⟩t

with ⟨.⟩t the averaging operator over time (t). The time-averaged speckles form a wider, smoother
spot, which corresponds to a loss of resolution on the object. However, the SNR is higher due to
the integration time. Roddier [Roddier, 1981] shows that the long-exposure PSF hopt re-writes
as the convolution of two PSFs: the first one is called the “static” PSF hstat and corresponds
to the static aberrations, the second one is the “atmospheric” PSF hatm corresponding to the
impact of atmospheric turbulence:

hopt = hstat ∗ hatm (1.3)

Moreover, assuming additionally that the phase is stationary and its variance is finite, Roddier
relates the atmospheric PSF hatm to the phase PSD Wϕ through the following expression:

hatm = FT−1(exp(−Bϕ(0)−Bϕ))

= FT−1(exp(−σ2
ϕ − FT−1(Wϕ))) (1.4)

with Bϕ the phase autocorrelation, thus σ2
ϕ = Bϕ(0) the phase variance and Wϕ the phase

PSD. Throughout this manuscript, and as discussed later in Section 1.3, we will only consider
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Chapter 1. Observing satellites from the ground

long-exposure PSFs in this work.

1.2 The use of Adaptive Optics (AO)

1.2.1 General principle

In order to improve the angular resolution of the optical instruments and to compensate
the effects of atmospheric turbulence, several techniques were developed, in particular post-
processing techniques [Labeyrie, 1970; Primot, 1990]. However, most of these techniques require
to have an exposure time short enough to consider the effects of turbulence as instantaneous
(avoiding the turbulence averaging effect of long-exposure images). This implies working on
short-exposure data, for which the SNR is significantly lower (even though today the detectors
have a smaller and smaller read-on noise) and the PSF is more complex to describe (requiring
a great number of parameters to describe the turbulence-induced phase). Thus, using Adaptive
Optics (AO) enables us to bypass this problem, given that it corrects the turbulent effects before
the images are recorded.

First imagined in the 1950’s [Babcock, 1953; Rousset, 1990], AO is a technique which consists
in deforming precisely a mirror in order to compensate for light perturbation, meaning correcting
the phase in the telescope aperture. This phase in (the plane conjugated to) the aperture is
called the wavefront. Therefore, an AO system has three main elements:

— a WaveFront Sensor (WFS), which measures the incoming (turbulent) wavefront,

— a Real-Time Computer (RTC), which processes the data from the WFS in real-time,

— and finally, the RTC controls a Deformable Mirror (DM), which enables the user to im-
pose to the incoming wavefront the desired correction, which should be the complementary
of the measured aberrations (if the turbulence-induced aberrations were static).

We illustrate a simplified AO system in Figure 1.2.

1.2.2 Limitations and quality measurement

The wavefront correction using AO is partial: indeed, various processes (noisy measure-
ments, limited number of degrees of freedom for measurements and correction, fast evolution of
turbulence,...) undermine the correction level. The quality of the AO correction can be mea-
sured according to different criteria. One of them is the Strehl Ratio (SR), which gives the ratio
between the actual PSF maximum value and the maximum value of a perfect impulse response
of the instrument, without optical aberrations (for instance in the case of a circular pupil, an
Airy pattern).

Given that the AO system is correcting the incoming phase in the aperture (wavefront),
another way to characterize the quality of correction by AO is the residual phase variance
σ2

ϕ (in rad2). This residual phase variance is related to the Strehl Ratio through Maréchal’s
approximation (in the case of small variance): SR ≈ e−σ2

ϕ . It is also related to the different errors
making AO correction partial. The error budget of the AO system sums up the contributions
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Figure 1.2 – Illustration of a (simplified) adaptive optics system.

of each process, and can be written as follows [Rigaut, 1998]:

σ2
ϕ = σ2

fit + σ2
temp + σ2

alias + σ2
noise + σ2

aniso

with:

— σ2
fit the fitting error, which is related to the DM. Indeed, the DM is composed of a given

number of actuators, determining the maximum spatial frequency that the AO system can
correct. The so-called AO cutoff frequency depends on Nact the number of actuators on
the DM’s diameter and on the primary mirror diameter D: fAO ≈

Nact

2D
.

— σ2
temp the temporal error, which includes all delays (exposure time, image capture, RTC

computation time, sending of commands, and so on. The system corrects the wavefront
but with a slight temporal delay, and the faster the evolution of turbulence, the greater
the error.

— σ2
alias the aliasing error, coming from the fact that the WFS is sampling the phase spatially,

which makes possible the aliasing effect leading to a wrong estimation (thus, correction)
of frequencies close to the Nyquist frequency of the WFS.

— σ2
noise the noise propagation error, coming from the propagation of photon noise and read-

out noise.

— σ2
aniso the anisoplanetism error, which is due to the spatial decorrelation of turbulence, if

the observed object is larger than the isoplanetic patch.

The impact of AO correction of atmospheric turbulence is shown in Figure 1.3.
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Chapter 1. Observing satellites from the ground

Figure 1.3 – Left: simulated observation of Vesta impaired by atmospheric turbulence, without
any correction, given in Figure 1.3 (right). Right: simulated observation of Vesta impaired by
atmospheric turbulence, with AO correction. The simulated AO system is a VLT/SPHERE-like
system, and vϕ = 1.3 rad2 (which is a typical value for this AO system).

1.2.3 AO-corrected PSF model

Due to the partial correction of the turbulent phase by AO as described in Subsection 1.2.2,
the random fluctuations of the corrected wavefront are still impacting the image, in addition to
the different measurement noises which are propagated in the AO loop. Thus, the AO-corrected
phase is still a statistical process. However, the shape of its PSD, given by Kolmogorov statistics
in Equation 1.1, is not the same. Indeed, the low frequencies (below the AO cutoff frequency)
were corrected using AO resulting in a lower residual phase PSD at low frequencies. From the
description of the PSD of the residual phase, one can then easily have access to the PSF using
Equations 1.3 and 1.4.

Conan [Conan, 1994] indeed shows that the description of the PSF as the convolution between
a static PSF and an atmospheric PSF is still valid in the case of an AO-corrected PSF.

The static PSF sums the contributions of the telescope and the camera, and depends on the
shape of pupil, the central obstruction, the spider and optical aberrations from the telescope and
the camera. To describe this static PSF, we take into account the shape and central obstruction,
but neither the spider (which rotates and has not much impact) nor the optical aberrations which
are unknown: in the data we process in Chapter 6, we consider that the instruments have a high
instrumental Strehl ratio i.e. the optical aberrations are small.

Describing the residual phase PSD in order to describe the atmospheric PSF is the main
idea of the PSFAO19 model, which is developed in [Fétick, 2019a]. The PSFAO19 model has
been designed specifically to describe an AO-corrected long-exposure PSF with few physical
parameters.

More precisely, and as said previously, the residual phase PSD Wϕ can be separated in two
different spatial frequency zones, depending on the AO cutoff frequency: below this frequency,
the AO system partially corrects the effects of turbulence, and above it the turbulent phase PSD
follows the theoretical model of turbulence.
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Wϕ(f) =
{

ANα,β(1 + f2/α2)−β + C if f ≤ fAO

0.023r
−5/3
0 f−11/3 else.

For the corrected spatial frequencies, a Moffat model is used in order to describe the core of
the PSD [Andersen, 2006; Sánchez, 2006]. The main parameter describing the core of the PSD
is the amplitude of the Moffat function A, which is very close to the residual phase variance:
vϕ ≈ A + CAAO, with AAO the AO-corrected area in the spatial frequency domain (in the case
of a circular AO-corrected area, AAO = πf2

AO). C is a constant giving the AO-corrected phase
PSD background, which is useful to model the AO-corrected PSD near AO cutoff frequency
(where the Moffat function is close to zero). The parameters α (giving the width of the Moffat
function) and β (Moffat’s power law) do not impact the computation of the residual phase
variance, thus they have a less important impact on the PSF. Throughout this work, α, β and
C will be considered as constant, known parameters as they do not evolve significantly with
the observing conditions [Fétick, 2019a], and their value will be fixed to the values in Table 1.1.
Thus, the parameters we are seeking for are r0 and vϕ ≈ A + CAAO.

Parameter Value
Moffat width α (m−1) 0.05
Moffat power law β 1.5
AO area constant C(rad2m2) 10−10

Table 1.1 – Moffat fixed parameters

Finally, Nα,β is a normalization factor which is used to normalize the integral of the Moffat
function over the corrected area:

Nα,β ≜
β − 1
πα2

[
1−

(
1 + f2

AO

α2

)1−β]−1

which requires that β > 1.
For the high spatial frequencies, the theoretical Kolmogorov model of turbulence given in

Equation 1.1 is used, the main parameter being the Fried parameter r0 describing the turbu-
lence’s strength, taken at the imaging wavelength.

This model, which we will use throughout this work, has been validated by means of simula-
tions, as well as on experimental data, on several AO systems and on different telescopes [Fétick,
2019a; Petit, 2020].

1.3 Our problem: application cases and examples

In this work, we will consider two different application cases: the first case we will describe
is an astronomical observation (more precisely, the observation of an asteroid) using the VLT/-
SPHERE instrument, and using its AO system SAXO. The second case is the observation of a
satellite, on a different telescope and AO system.

15



Chapter 1. Observing satellites from the ground

1.3.1 Imaging model

In both application cases, we consider an incoherent extended object oc, meaning that each
point of the object emits a light wave spatially incoherent with the others. Note that this object
is a continuous distribution but that we are estimating a discrete object. We can write ic the
(continuous) image of this (continuous) object, meaning the result of the object imaging after
the turbulence and the optical instruments effects but before the discretization by the sensor
and without noise, using the superposition principle and assuming that the object is spatially
incoherent:

ic(r⃗) =
∫∫

oc(ρ⃗)hopt(r⃗, ρ⃗)dρ⃗ (1.5)

where hopt(r⃗, ρ⃗) is the PSF, namely the impulse response of the optical system, which depends
on the considered position in the image r⃗ and on the position of the object in the sky ρ⃗.

If we consider that we are within the isoplanetic domain, meaning that the impulse response
does not depend on the observed spot, then Equation 1.5 becomes:

ic(r⃗) =
∫∫

oc(ρ⃗)hopt(r⃗ − ρ⃗)dρ⃗ (1.6)

We recognize here that Equation 1.6 can be written as a convolution product between the object
and the point spread function:

ic(r⃗) = {oc ∗ hopt} (r⃗) (1.7)

The discrete (noise free) image inl, of size N pixels, is the integration of the continuous image
on each pixel of the detector. One can show that this integration on each pixel is equal to the
sampling of the convolution between 1.7 and the shape of a pixel hd:

inl = X∆ {oc ∗ hopt ∗ hd} (1.8)

with X the 2D Dirac comb operator (sampling operator), with a discretization step ∆.
We define here hc = hopt ∗hd, the point spread function taking into account both the optical

aberrations and the detector contribution. One element of the noiseless image inl(k, l) then
writes:

inl(k, l) =
∫∫

hc(k∆− x, l∆− y)oc(x, y)dxdy (1.9)

If we discretize the object using the Whittaker–Shannon interpolation formula, meaning
oc(x, y) =

∑
n

∑
m on,mbn,m(x, y) with on,m the coefficients of the discrete object and bn,m(x, y)
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the interpolation basis, the noiseless image becomes:

inl(k, l) =
∫∫

hc(k∆− x, l∆− y)
∑

n

∑
m

on,mbn,m(x, y)dxdy

=
∑

n

∑
m

∫∫
hc(k∆− x, l∆− y)bn,m(x, y)dxdyon,m

=
∑

n

∑
m

{hc ∗ bn,m} (k∆, l∆)on,m

=
∑

n

∑
m

{hc ∗ b0,0} (k∆− n∆, l∆−m∆)on,m

If we define a discrete PSF h so that h(k, l) ≜ {hc ∗ b0,0} (k∆, l∆) and a discrete object o so
that o(n, m) = on,m, then:

inl(k, l) =
∑

n

∑
m

h(k − n, l −m)o(n, m)

inl = h ∗ o (1.10)

where ∗ stands here for the discrete 2D convolution operator. If we use the sinc basis bn,m(x, y) =
1
∆sinc(π x− n∆

∆ , π
y −m∆

∆ ) as the interpolation basis, then b0,0(x, y) = 1
∆sinc(π x

∆ , π
y

∆) and
b̃0(fx, fy) = Π1/∆(fx, fy) with Π1/∆ a 1/∆-long centered door function. Therefore, hc ∗ b0,0 is
simply a low-pass filtered version of hc, and the cut-off frequency of the low-pass filtering is the
Nyquist sampling frequency 1

2∆. h is therefore the discretization of the low-pass version of hc.

The final noisy image suffers from different measurement noises n:

i = (h ∗ o) ⋄ n (1.11)

where ⋄ represents a pixel-by-pixel operation.
In our case, we are considering:

— Photon noise, which is associated to the randomness of the arrival of photons on the
detector. We consider that it follows a Poisson distribution.

— Read-out noise, which is associated to the electronics during the conversion of the charge in
each pixel into an actual signal. We consider that this noise is an additive white Gaussian
noise, which is generally the case in the literature.

We approximate noise as additive and independent from the object. In the case of strong
flux, the photon noise can be approximated as (non-stationary) Gaussian, which is a hypothesis
that has been validated in practice in [Mugnier, 2004]. Then Equation 1.11 becomes:

i = h ∗ o + n (1.12)

which is a usual imaging model [Demoment, 1989].
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Equation 1.12 can also be written under the following matrix form:

i = Ho + n (1.13)

with H the convolution matrix corresponding to the convolution of the object by h: each column
of H contains a shifted PSF.

1.3.2 Observing an asteroid on the VLT

The Very Large Telescope (VLT) consists of four telescopes, whose aperture diameter is
8.2 m, and several auxiliary telescopes. It is operated by the European Southern Observatory
(ESO), and is located on Cerro Paranal in Chile. The instrument SPHERE, which stands for
Spectro-Polarimetric High contrast Exoplanet REsearch, is attached to the VLT Unit Telescope
3 (Melipal). It includes an extreme AO system SAXO [Fusco, 2016], which parameters are given
in Table 1.2, and its original purpose is the study of exoplanets [Beuzit, 2019]. SPHERE has
several sub-systems, one of them is the Zurich IMaging POLarimeter (ZIMPOL) from which
some of the images we study here are taken.

Figure 1.4 – Photo of SPHERE (photo credit: Jean-François Sauvage, ONERA).

Parameter Value
Primary diameter (m) 8.2
Secondary diameter (m) 1.12
Sampling (-) 4.76
AO cutoff frequency (m−1) 2.5

Table 1.2 – SPHERE’s AO system parameters
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The sampling here gives the number of pixels per λ/D. If the sampling is at Shannon-Nyquist
frequency, then Sampling = 2.

Considering the long exposure time for astronomical images (around one minute), we can
assume in this application that we have indeed a long-exposure PSF as discussed in Subsec-
tion 1.1.2.

1.3.3 Observing a satellite on MéO

For the ground-based satellite observation, the images we are studying were taken at the
Côte d’Azur Observatory (OCA), where there are several telescopes among which the CNRS
telescope MéO (standing for Optical MEtrology). This telescope, whose aperture diameter is
1.54 m, is fast enough to follow low earth orbit (LEO) satellites, useful for both civilian and
military applications. ONERA has designed a prototype AO system for satellite observation,
ODISSEE [Petit, 2020], which is installed on this telescope. Its parameters are given in Table 1.3.

Figure 1.5 – Photo of the MéO telescope provided by CNRS.

Parameter Value
Primary diameter (m) 1.54
Sampling (-) 2.28
AO cutoff frequency (m−1) 2.92

Table 1.3 – ODISSEE’s parameters

In the case of MéO, the exposure time is shorter (around 100 ms – 1 s, but it can be even
shorter) than SPHERE (around a minute). Indeed, the exposure time is a compromise between
increasing the image SNR and time scale of satellite evolution (in particular when it is rotating).
ODISSEE being a prototype, the AO correction quality is very limited due to fitting, aliasing, as
well as temporal error given the fast evolution of the satellite during the observation. However,
we will still consider having a long-exposure PSF in this case.
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Chapter 2
Image restoration methods

In this chapter, we give an overview of the image restoration problem we tackle in
this manuscript. In the first section, we recall some elements about the Bayesian
framework we are working in to solve our myopic deconvolution problem. In Section
2, we describe the historical joint MAP estimator and its implementation applied
to astronomical observation. Section 3 studies the properties of the joint MAP
estimator in more depth, in the case of a Gaussian regularization on the object
without positivity constraint, showing the degeneracy of the joint MAP criterion. In
Section 4, we present the marginal MAP estimator as well as its implementations:
AMIRAL, and its parametric version P-AMIRAL. Finally, in Section 5 we give an
insight on other possible estimators, with their characteristics.
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2.1. The deconvolution problem

2.1 The deconvolution problem

2.1.1 About inverse problems

The observed image is related to the unknown true object by the imaging model given in
the previous chapter in Equation 1.12. This imaging equation is said to be forward, meaning
that it describes what happened in the causal order (causes leading to consequences). Thus,
retrieving the true object given the observed image requires to solve an inverse problem, meaning
to invert the forward model to get back to causes from the consequences. Inverse problems can
be hard to solve for several reasons: firstly, errors on the imaging model prevent one to have
access to the true object and may lead to an error in the estimation. Additionally, perfectly
knowing the imaging model does not ensure one to find back the true object. Hadamard stated
three conditions to define the well-posedness of an inverse problem [Hadamard, 1902]: the two
first conditions are the existence and the unicity of the solution meaning that there is a unique
object so that i = Ho, and the last one is the continuity of the solution meaning that the
solution changes continuously with respect to the observations (the inverse of H on Im(H) is
continuous).

Inverse problems are often ill-posed, as they often do not respect all three Hadamard condi-
tions. The existence of the solution is not ensured, especially if the imaging model is incorrect.
The unicity as well as the continuity of the solution is often lost, due to the structure of H (for
instance, if H is non-invertible). Most importantly, the stability/continuity acknowledges the
existence of noise, requiring that for a small variation of the image (due to noise), the object
only varies a little. This non-continuity problem persists even for inversions in the least square
sense [Mugnier, 2008]. In our case, because we work on a discretized problem, the problem is
well-posed however it is often unstable, meaning that small errors in the observations may lead
to large errors on the solution. In this case, the problem is said to be ill-conditioned. Here, the
conditioning term is related to the matrix H which creates the instability.

When the direct equation is the convolution between the unknown and a convolution kernel,
eventually to which noise is added, the inverse problem is said to be a deconvolution problem.
As its name says, the point spread function (the convolution kernel) describes how altered and
blurred is the unknown true object, thus the deconvolution corresponds to a “deblurring” of the
observation to retrieve the object.

2.1.2 The Bayesian framework

One possible approach to solve this problem is the Bayesian approach. It consists in using
Bayes’ theorem in order to compute the probability of the causes (the unknown object) given
the consequences (the observation) [Idier, 2008]:

p(o|i) = p(i|o)p(o)
p(i)

21



Chapter 2. Image restoration methods

Bayesian inference writes the probability of the causes given the consequences p(o|i), called
the posterior probability, as the product of several elements: a prior probability p(o) which
describes prior knowledge on the unknown, which does not depend on the current observation,
and a likelihood term p(i|o) which indicates how accurately the observation fits the imaging
model and object. The model evidence p(i) is not a function of the object o.

From the posterior probability, one can compute a Bayesian estimator: the estimated object
ô is defined not as the direct result of the inversion of the forward model, but as an optimum
solution with respect to a given criterion / loss function. For example, one possible estimator is
the Maximum A Posteriori, meaning the object maximizing the posterior probability:

ô = arg max
o

p(o|i)

Additional details concerning Bayesian estimators will be given in Section 2.5 of this chapter.

2.1.3 Blind (or myopic) deconvolution

In the astronomic or satellite observation cases, the PSF is highly variable due to variable
atmospheric turbulence and AO correction. Therefore, in addition to usual difficulties associated
to the classic inverse problem of deconvolution, here the PSF is also unknown and must be
estimated, and errors on the PSF lead to errors on the unknown object. Deconvolution with
an unknown, or poorly known, PSF is called blind, or myopic, deconvolution. In the following
sections, we will discuss specific methods in order to address this blind deconvolution problem.

2.2 Joint MAP estimator

2.2.1 Computing the joint MAP criterion

In the case where both object and PSF are unknown, one possible way to estimate them
is to do it jointly [Ayers, 1988; You, 1996]. For instance, if we use the Maximum A Posteriori
(MAP) estimator, it means that we are searching for the object and the PSF that maximize the
joint posterior distribution p(o, h|i):

(ô, ĥ) = arg max
o,h

p(o, h|i)

In our model, we suppose that the object and the PSF are a priori independent, thus using
Bayes’ theorem the joint distribution re-writes:

p(o, h|i) = p(i|o, h)p(o)p(h)
p(i) (2.1)

with p(i|o, h) the likelihood, and p(o) and p(h) prior distributions respectively for the object
and for the PSF. p(i) is a constant with respect to o and h therefore can be discarded while
searching for the MAP solution.
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Maximizing the posterior distribution is equivalent to minimizing its anti-logarithm. We can
then write JjMAP , the criterion we are minimizing in this problem, as:

JjMAP (o, h) = − ln p(o, h|i)

= − ln p(i|o, h)− ln p(o)− ln p(h) (2.2)

The first term is a data fidelity term, the second and the third ones are regularization terms on
respectively the object and the PSF.

2.2.2 Implementing the joint MAP estimator: MISTRAL

One thing that the joint MAP estimator enables is to impose some constraints on the ob-
ject, such as a positivity constraint. The joint MAP estimator, including this positivity con-
straint, was implemented in previous algorithm MISTRAL (standing for Myopic Iterative STep-
preserving Restoration ALgorithm) [Mugnier, 2004]. The minimization of the criterion is done
using VMLM-B algorithm [Thiébaut, 2002], including the positivity constraint by means of pro-
jected gradient. For the regularization on the PSF, a Gaussian prior distribution for the PSF is
defined, with a mean PSF mh and a PSF power spectral density (PSD) Sh.

In practice, the mean PSF mh and the PSD Sh are estimated by an empirical average of
PSFs recorded on a star of appropriate magnitude, shortly before and/or after observing the
object [Fusco, 2016]. These PSFs should be representative of the possible PSFs and require
to be measured on several stars, in order to not introduce an additional error through the
regularization. Thus, obtaining representative mh and Sh is hardly possible, it is time-consuming
and the difference of behaviour of the AO system between the image of a star and the actual
PSF is not taken into account: indeed the images on stars taken as PSF realizations are not
quite representative as the AO system has a different behavior between a point source and an
extended object.

2.3 Specific case: Gaussian object regularization, without posi-
tivity

2.3.1 Object prior and likelihood

In this section, we study the joint criterion for a specific regularization on the object. We first
need to fully write the object prior as well as the likelihood, in order to re-write the criterion.

In the case of a Gaussian regularization on the object, the object prior is described by its
mean mo and its covariance matrix Ro. It writes:

p(o) = det(2πRo)−1/2 exp(−1
2(o−mo)tR−1

o (o−mo)) (2.3)

Given the flux levels we are considering in astronomical and satellite imaging, we approximate
noise as Gaussian. (As said in Chapter 1, the photon noise Gaussian approximation has been
validated in practice in [Mugnier, 2004].) Additionally, noise is taken independent from the
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Chapter 2. Image restoration methods

object, and is supposed zero-mean, additive and white, which are again reasonable hypothesis
given the flux levels in our images. Therefore, noise is defined simply by its covariance matrix
Rn. Given the imaging equation 1.13, the likelihood p(i|o, h) writes:

p(i|o, h) = det(2πRn)−1/2 exp(−1
2(i−Ho)tR−1

n (i−Ho)) (2.4)

2.3.2 Re-writing the joint MAP criterion

Using the object prior and the likelihood expressions given in Equations 2.3 and 2.4, we can
re-write the joint criterion in Equation 2.2 in the specific case we are considering [Blanco, 2011].

JjMAP (o, h) = − ln p(i|o, h)− ln p(o)− ln p(h)

= 1
2 ln det(Rn) + 1

2(i−Ho)tR−1
n (i−Ho)

+ 1
2 ln det(Ro) + 1

2(o−mo)tR−1
o (o−mo)− ln p(h)

+ constant

From it, we can compute the minimizer of the criterion. To find the object which minimizes
JjMAP (o, h) for a given h, we derive it with respect to the object and nullify it.

∂JjMAP

∂o
(o, h) = −HtR−1

n i + HtR−1
n Ho + R−1

o o−R−1
o mo

∂JjMAP

∂o
(o, h) = 0⇔ ô(h) = (HtR−1

n H + R−1
o )−1(HtR−1

n i + R−1
o mo)

The matrix H being the convolution matrix by the PSF, it has a Tœplitz structure. Ad-
ditionally, we consider that the object covariance matrix Ro and noise covariance matrix Rn

are also Tœplitz, which means that (o−mo) and noise are stationary, additionally to previous
approximations.

We can approximate Tœplitz matrix as circulant matrices, which can be diagonalized in the
Fourier basis. If Λx denotes a diagonal matrix with its diagonal equal to x and x̃ denotes the
discrete Fourier transform (DFT) of x. Thus, we can write the joint criterion in the Fourier
domain, using:

Rn = F ΛSnF −1

Ro = F ΛSoF −1

H = F Λh̃F −1

with F the Fourier transform matrix, Sn the noise PSD, So the object PSD and h̃ the (dis-
cretized) OTF, which is the DFT of the PSF.

In the rest of this work, the DFT of x is denoted x̃. For the object and the image, the
DFT is normalized so as to have F as a unitary matrix F H = F −1. For the PSF, the DFT is
normalized so that h̃(0) equals the sum of the PSF on the numerical array. Moreover, this value
is set to 1 by convention, to express flux conservation.
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2.3. Specific case: Gaussian object regularization, without positivity

We did not specify any particuliar regularization for the PSF, we simply write that the term
− ln p(h) corresponds to an additional term in the Fourier domain which we will write as Jh(h̃).

We can now re-write the criterion JjMAP (o, h) in the Fourier domain:

JjMAP (o, h) = N

2 ln Sn + 1
2

∑
f

|̃i(f)− h̃(f)õ(f)|2

Sn
+ 1

2
∑

f

ln So(f)

+ 1
2

∑
f

|õ(f)− m̃o(f)|2

So(f) + Jh(h̃) (2.5)

with N the image size in pixels and
∑

f the sum on all pixels in the spatial frequency domain.
Moreover, the MAP solution for the object ô(h) writes:

ˆ̃o(h) =
h̃∗(f )̃i(f) + Sn

So(f)m̃o(f)∣∣∣h̃(f)
∣∣∣2 + Sn

So(f)

(2.6)

which corresponds to the Wiener filtering when mo = 0. The MAP solution for the object
ˆ̃o(h) given in Equation 2.6 can be re-injected in the criterion (Equation 2.5) to obtain an
expression which does not depend on the object:

JjMAP (ô(h), h) = N

2 ln Sn + 1
2

∑
f

ln So(f) + 1
2

∑
f

S2
n

|So(f)|2
∣∣∣̃i(f)− h̃(f)m̃o(f)

∣∣∣2
Sn

∣∣∣|h̃(f)|2 + Sn

So(f)

∣∣∣2
+ |h̃

∗(f)(̃i(f)− |h̃(f)|2m̃o(f))|2

So(f)
∣∣∣|h̃(f)|2 + Sn

So(f)

∣∣∣2 + Jh(h̃)

= N

2 ln Sn + 1
2

∑
f

ln So(f)

+ 1
2

∑
f

|̃i(f)− h̃(f)m̃o(f)|2(So(f)|h̃(f)|2 + Sn)∗∣∣∣So(f)|h̃(f)|2 + Sn

∣∣∣2 + Jh(h̃)

= N

2 ln Sn + 1
2

∑
f

ln So(f) + 1
2

∑
f

|̃i(f)− h̃(f)m̃o(f)|2

So(f)|h̃(f)|2 + Sn

+ Jh(h̃) (2.7)

2.3.3 The degeneracy of the joint MAP criterion

In [Blanco, 2011], the authors show in theory the degeneracy of the joint MAP criterion
in Equation 2.7, always leading to the sharpest PSF and the smoothest object (meaning, the
“less deconvolved” one). It was discussed in the case we describe previously: using a quadratic
regularization on the object and without any object constraint such as positivity or support con-
straint, and previous work in [Fétick, 2020a] also shows in practice that the positivity constraint
imposed on the object is not enough to overcome this degeneracy.
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Chapter 2. Image restoration methods

A closer look to Equation 2.7 explains why such result could be expected [Levin, 2009]. In
the last term, given that the mean object mo is taken constant, m̃o(f) is only non-zero when
f = 0, whereas h̃(0) = 1 by convention as said in Subsection 2.3.2. Therefore, the numerator
does not depend on the PSF. Minimizing the criterion with respect to the PSF only requires
maximizing the denominator of the last term:

ĥ = arg min
h

JjMAP (ô(h), h)

= arg min
h

∑
f

|̃i(f)− h̃(f)m̃o(f)|2

So(f)|h̃(f)|2 + Sn

= arg min
h

∑
f>0

|̃i(f)|2

So(f)|h̃(f)|2 + Sn

The PSF maximizing the denominator is the one maximizing |h̃|2. This can be maximized
frequency per frequency, in the absence of any structure for the PSF then for each frequency
h̃ would be equal to its maximum value meaning 1. For a given PSF structure, and more
generally, maximizing |h̃|2 corresponds to the flattest OTF (in order to maximize its value on
all frequencies), thus to the sharpest PSF.

The degeneracy of the joint MAP criterion calls for using another estimator to compute the
sought object and PSF.

2.4 Marginal MAP estimator

2.4.1 Computing the marginal likelihood

Another way to estimate the object and the PSF is to first estimate the PSF by computing
the so called marginalized posterior probability, meaning integrating the joint posterior density
written in Equation 2.1 over the object [Blanco, 2011; Fétick, 2020b]:

p(h|i) =
∫

p(o, h|i)do

= 1
p(i)

∫
p(i, o, h)do

In practice, we write the marginal posterior distribution following the Bayes’ rule as previ-
ously, from the marginal likelihood and the prior on the PSF, which is considered independent
from the object:

p(h|i) = p(h)
p(i) p(i|h)

This writing can be extended, not only to the PSF, but to any unknowns other than the object.
For the rest of this manuscript, we define vector θ used hereafter, gathering all unknown param-
eters other than the object, for instance here the PSF, noise covariance matrix and object mean
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2.4. Marginal MAP estimator

and covariance matrix. The former equation including all unknown parameters then re-writes:

p(θ|i) = p(θ)
p(i) p(i|θ)

If we consider the same case as in Section 2.3, noise n is taken Gaussian, white, homogeneous
and a priori independent from the linear image model Ho with a Gaussian object prior, the
image being a linear combination of both is also Gaussian. Therefore, the marginal likelihood
writes:

p(i|θ) = (2π)−N/2 det(Ri)−1/2 exp(−1
2(i− im)tR−1

i (i− im))

with im = Hmo et Ri = E[iit]−imit
m = HRoHt +Rn. The same way, we define the marginal

criterion as the anti-logarithm of the marginal posterior distribution:

JmMAP (θ) = 1
2 ln det(Ri) + 1

2(i− im)tR−1
i (i− im) + constant

2.4.2 Writing the marginal likelihood in the Fourier domain

Given the same circulant approximations as in Subsection 2.3.2, we can write the marginal
criterion in the Fourier domain. To develop the calculations, we rewrite separately the two main
elements of JmMAP (θ), first (i− im)tR−1

i (i− im) and then det(Ri). To begin:

(i− im)tR−1
i (i− im) = (i− im)t(HRoHt + Rn)−1(i− im)

= (i− im)tF −1(Λh̃ΛSoΛh̃∗ + ΛSn)−1F (i− im)

= (̃i− ĩm)†(Λh̃ΛSoΛh̃∗ + ΛSn)−1(̃i− ĩm)

=
∑

f

|̃i(f)− h̃(f)m̃o(f)|2

So(f)|h̃(f)|2 + Sn

Secondly:

det(Ri) = det(HRoHt + Rn)

= det(F −1(Λh̃ΛSoΛh̃∗ + ΛSn)F )

= det(Λh̃ΛSoΛh̃∗ + ΛSn)

=
∏
f

(
So(f)|h̃(f)|2 + Sn

)

Finally, the criterion JmMAP (θ) writes:

JmMAP (θ) = 1
2 ln det(Ri) + 1

2(i− im)tR−1
i (i− im)

= 1
2

∑
f

ln(So(f)|h̃(f)|2 + Sn) + 1
2

∑
f

|̃i(f)− h̃(f)m̃o(f)|2

So(f)|h̃(f)|2 + Sn
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We notice that the criterion can be written as:

JmMAP (θ) = 1
2

∑
f

ln(Si(f)) + 1
2

∑
f

|̃i(f)− m̃i(f)|2

Si(f) (2.8)

with image PSD Si and mean image im:

Si(f) = So(f)|h̃(f)|2 + Sn (2.9)

m̃i(f) = h̃(f)m̃o(f)

Minimizing the marginal criterion with respect to the image PSD can be seen as finding the
image PSD Si that best fits the empirical PSD |̃i − m̃i|2. This can be shown in a simplified
scalar case (for a single frequency), where the criterion writes:

JmMAP (θ) = 1
2 ln(Si) + 1

2
|̃i− m̃i|2

Si

To find the image PSD Si minimizing JmMAP (θ), we derive the criterion with respect to Si and
nullify the derivative:

∂JmMAP

∂Si
(θ) = 1

2
1
Si
− 1

2
|̃i− m̃i|2

S2
i

= 0

=⇒ 1
Si

= |̃i− m̃i|2

S2
i

=⇒ Si = |̃i− m̃i|2

The solution for Si is the empirical PSD |̃i− m̃i|2.

2.4.3 Implementing of the marginal MAP estimator: AMIRAL

Previous work [Blanco, 2011] has developed the marginal MAP estimation code AMIRAL
(standing for Automatic Myopic Image Restoration ALgorithm). This code was initially used
for retinal imaging before it was applied to astronomy. In this case, the estimated PSF is a
linear combination of a family of PSFs [Lafrenière, 2007] provided to the method: the algorithm
searches for weights to assign to each PSF in the family, in addition the other sought parameters.
Defining this family of PSF is quite crucial for the estimation, knowing that the family should
ideally be large enough to include the true PSF, but also small enough to have a reasonable
number of unknowns with respect to the available data and keep the interesting asymptotic
properties of the marginal estimator, which are the same properties as the Maximum Likelihood
estimator: it is consistent, meaning that it tends towards the true value when noise tends towards
0 or that the number of data tends towards infinity, and asymptotically efficient.

Another version of the algorithm, P-AMIRAL (standing for Parametric-AMIRAL), esti-
mates the PSF using the PSFAO19 [Fétick, 2019a] model, thus the unknowns are directly the
parameters of the PSF model.
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2.5. Short discussion: what about other estimators?

For both AMIRAL and P-AMIRAL, the marginal criterion is minimized using the VMLM-B
algorithm [Thiébaut, 2002], just like as in the algorithm MISTRAL. However here, the object
being marginalized, we can not impose a constraint on it as could be done in the joint estimation.

Remark. Throughout this manuscript, we will keep using the term “marginal MAP” for the
estimator computed by AMIRAL. However, what AMIRAL actually computes is the Maximum
Likelihood on the marginal distribution, given that there is no prior on the sought parameters.

2.5 Short discussion: what about other estimators?

In the previous Section, one could see that the marginal MAP estimator, given its nice
asymptotic properties, is a satisfactory option in order to avoid the degeneracy of the joint
MAP estimator. However, the MAP estimator gives, as its name implies, only one point in
the posterior distribution (its maximizer), and does not enable the user to get more global
information on the posterior distribution.

Having the whole posterior distribution would be helpful for different reasons, one being that
it would enable the user to compute uncertainties on the estimated parameters. These uncer-
tainties, which are on the estimated parameters at first, can be propagated into uncertainties
on the quantities of interest (for instance, the PSF), which are important for the final users (in
our case, the astronomers) to determine how trustworthy is the final restored image. Another
reason is that studying the posterior distribution would also enable the analysis of the posterior
correlation between the estimated parameters, in order to determine possible difficulties in the
method linked to strong correlation between parameters: convergence issues, slowness of the
method,...

Additionally, having the whole posterior distribution would enable us to compute different
estimators, for instance the MMSE (Minimum Mean Square Error) or the MMAE (Minimum
Mean Absolute Error) estimator.
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Chapter 3
Contributions to AMIRAL

In this chapter, we give an insight about the contributions made to the previous
method AMIRAL during the PhD. The first section describes the coupling between
hyperparameters using the previous object PSD model, and proposes a modification
of the model to decouple them. The second section is focused on the comparison of
the two existing versions of the previous method: (linear) AMIRAL and Parametric-
AMIRAL.
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3.1. Object PSD model modification

3.1 Object PSD model modification

As said in Chapter 2 (Subsection 2.3.1), we consider a Gaussian prior for the object, described
by its mean and PSD. For the object PSD, previous works considered Matérn’s model, which is
a circularly-symmetric parametric model [Conan, 1998; Ramani, 2008], writing the object PSD
as follows:

So(f) = K

1 + (f/f0)p

(with f = |f | the length of the radial frequency.) In this model, K sets the object PSD level in
(very) low frequencies, p is the PSD decrease rate at high frequencies, and f0 is the frequency
which divides the model into two regimes.

3.1.1 Coupling between parameters in the previous model

If we have a closer look at Matérn’s model, we can notice that in low frequencies, the model
mainly depends on K whereas in high frequencies all parameters K, f0 and p intervene:

So(f) =


K if f ≪ f0
Kfp

0
fp

if f ≫ f0
(3.1)

This coupling leads to some difficulties in the estimation of these hyperparameters in prac-
tice. For a mostly unsupervised mode, where hyperparameter p is fixed, the estimated parameter
f0 varies a lot (from 0.4 pix−1 to 1.3 pix−1), while it does not have much impact physically: it
impacts the regularization at very low frequencies, and does not have much impact in practice.
However, this strong variability in the estimation of f0 impacts the estimation of other parame-
ters, especially K, as K and f0 vary a lot together. We interpret it as the result of the mixing of
the three parameters in high frequencies: indeed, the regularization on the object, coded by the
object PSD, is particularly important to restore the high frequencies of the image, as they were
particularly attenuated to the point that the signal level is close to the noise’s one. However,
these frequencies are precisely where all three parameters intervene as seen in Equation 3.1,
which would explain the joint evolution of K and f0, even when p is fixed. This correlation can
be seen in Figure 3.1 where the criterion map with respect to K and f0 is plotted, for given
values of PSF and noise parameters: the criterion, as an extended valley, is flat in a direction
mixing both parameters.

3.1.2 Proposition of a change of parameters

We propose to slightly change the writing of this model, in order to describe the same object
PSDs but to separate more the impact of the parameters. The idea is to have less parameters
intervening in the high frequencies, which are particularly sensitive to this regularization. The
model we will use in the rest of the manuscript is the following:

So(f) = 1
γo

1
k + fp
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Here, the three parameters have similar roles to the ones in Matérn’s model: γo sets the global
PSD level (impacting all frequencies), as it gives the y-intercept of the object PSD slope in
logarithmic scale. p is still the PSD decrease rate (slope) at high frequencies. Finally k, similarly
to previous f0, gives the breakpoint between the two regimes of the model. We could write
γo = 1

Kfp
0

and k = fp
0 , thus the change of parameters is reversible. With this model, the object

PSD in low and high frequencies become:

So(f) =


1

γok
if f ≪ f0

1
γofp

if f ≫ f0

Even though now we have two out of three parameters impacting the low frequencies, they are
less sensitive to the regularization thus this expression of the model should still help decoupling
the parameters, given that there are now only two parameters which come into play in high
frequencies.

3.1.3 Results on criterion maps

In this subsection, we compute maps giving the marginal criterion value (JMAP marg(θ) given
in Equation 2.8) with respect to two out of the three hyperparameters, using both Matérn’s
model and the modified version. The true PSF (thus, the true r0 and vϕ), as well as the noise
precision γn are supposed known to compute the criterion. The coolest colors (purple, then
blue) correspond to the lowest criterion values, and iso-criterion lines are drawn above the map.

Figure 3.1 – Criterion maps (x, y) with respect to the hyperparameters x and y, using the
Matérn’s model. (True PSF and noise level are known.) Left: (1/K, ρ0) map, in log-log scale.
Center: (1/K, p) map, in log-lin scale. Right: (ρ0, p) map in lin-lin scale.

As can be seen on Figure 3.2, compared to Figure 3.1, the parameter k in the second model
(roughly corresponding to f0 in Matérn’s model) has been decoupled from the other parameters
using the new model: the iso-criterion lines are either horizontal or vertical, showing that there
is no in-determination related to k. Moreover, we can also see on Figure 3.2 that k does have
only a minor, barely noticeable impact on the criterion value.
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3.1. Object PSD model modification

Figure 3.2 – Criterion maps (x, y) with respect to the hyperparameters x and y, using the
modified model. (True PSF and noise level are known.) Left: (γo, k) map, in log-log scale.
Center: (γo, p) map, in log-lin scale. Right: (k, p) map in lin-lin scale.

3.1.4 Some elements on convergence

After checking the impact of this new parametrization on criterion maps when the true PSF
is known, we now look at the impact of this new version of the object PSD model when we
estimate all parameters as in AMIRAL. Both versions are tested on the same generated data
where we simulate the observation of asteroid Vesta (same system, same object, same PSF,
same noise realization), with the same parameters: for instance the same initialization and the
same required convergence threshold. Thus, the criterion values can be fairly compared. In
Figure 3.3, we plot the evolution of the criterion with respect to the number of iterations, with
both old and new versions. We notice that even though the new PSD parametrization requires

Figure 3.3 – Criterion evolution with respect to the number of iterations, for both versions of
the object PSD.

more iterations to converge (around 65, against around 45 with the old parametrization), the
criterion was better minimize using the new parametrization. Concerning the estimated PSF
parameters, the estimations using the old and the new parametrization are very similar, with a
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Parameter Parameters old PSD Parameters new PSD True
r0 (m) 0.15 0.14 0.15
vϕ(rad2) 1.16 1.18 1.30

Table 3.1 – Estimated values for PSF parameters r0 and vϕ using old or new object PSD
parametrization, and true values.

difference of 1 cm for r0 and of 0.02 rad2, which are what we could typically expect and what we
will discuss later in Chapter 5.

3.2 Comparison between AMIRAL and P-AMIRAL

As said in Chapter 2, the marginal MAP estimator has two different implementations. The
original version AMIRAL was developed in a retinal imaging context [Blanco, 2011] and esti-
mates a PSF as a linear combination of a family of PSFs. The second version, Parametric-
AMIRAL [Fétick, 2020b], estimates the PSF parameters directly using the PSFAO19 model.
AMIRAL was successfully applied to satellite imaging [Petit, 2020] before P-AMIRAL was de-
veloped, and P-AMIRAL has not been applied to satellite images yet. The purpose of this
section is therefore to give some comparison elements between these two versions, on a simu-
lated astronomical observation case.

3.2.1 Simulation conditions

AMIRAL and P-AMIRAL are tested on simulated data, using as the true object the synthetic
view of asteroid Vesta, built by the OASIS (standing for Optimized Astrophysical Simulator for
Imaging Systems) [Jorda, 2010], on a dark background of size N = 512× 512 pixels. This view
was built based on the observations by the NASA/Dawn spacecraft, which were used by OASIS
to simulate the surface of Vesta and build a 3D model.

We simulate its observation from a good astronomical site: The AO system is a “SPHERE-
like” AO system, and its parameters are taken identical to those used with the previous method
given in [Fétick, 2020b], for comparison purposes. These parameters are summed up in Table 3.2.

The PSF is simulated using the PSFAO19 model [Fétick, 2019a]. Here, true PSF parameters
are r0 = 0.15 m and vϕ = 1.3 rad2 at the imaging wavelength λ = 550 nm, which corresponds to
realistic turbulence and correction conditions. The total flux of the object is set to Fo = 109 ph
(photons), typical from VLT/SPHERE/Zimpol asteroid observations (ESO Large Program ID
199.C-0074). We are approaching the photon noise and the read-out as a Gaussian noise, which
variance is equal to the mean value of the object (to approach the Poisson distribution). We
consider that this Gaussian approximation is true for the flux levels we are considering, and
we are adding as a hypothesis for the simulations that noise is stationary, therefore noise is
described by a single parameter, its precision γn = N/Fo = 2.62× 10−4 ph−2.

As said previously, AMIRAL estimates a PSF as a linear combination of a PSF family,
therefore needing the choice of such a family. Here we choose a family with 9 PSFs, following
the PSFAO19 model, with 3 different values for r0 = [0.1, 0.15, 0.2] m and 3 different values for
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vϕ = [1.0, 1.3, 2.0] rad2, therefore the true PSF with r0 = 0.15 m and vϕ = 1.3 rad2 is in the
family. Thus, for these simulations we are testing a favorable case for AMIRAL: the PSF family
is relatively small and the true PSF is within the family.

Using P-AMIRAL does not require the choice of a family but implies the choice of minimum
and maximum boundaries for the PSF parameters. In this case, we choose r0 ∈ [0.1; 0.2] m
and vϕ ∈ [1.0; 2.0] rad2, thus including the true PSF as well as the PSFs in the family used for
AMIRAL.

Parameter Value
Primary diameter (m) 8.2
Secondary diameter (m) 1.12
Sampling 3
AO cutoff frequency (m−1) 1.25
Fried parameter r0 (m) 0.15
Residual phase variance vϕ (rad2) 1.3
Object total flux (photons) 109

Table 3.2 – Simulated parameters

In [Fétick, 2020b], the authors have tested three different modes of estimation using P-
AMIRAL: they could decide and change how much information the algorithm has on the object
PSD, which is quite crucial for the estimation of the PSF, and finally of the object.

— The first of them was the supervised mode, where the object PSD is fixed following the
Matérn’s model and its parameters are tuned in order to fit correctly the empirical object
periodogram meaning the “true” object PSD. This mode is useful for first simulations, but
cannot be used in practice (for instance, on experimental data).

— The second mode is the unsupervised mode, where all object PSD parameters are estimated
in addition to the PSF and noise parameters. As shown in [Fétick, 2020b], this mode does
not give satisfactory results especially on the residual phase variance vϕ. We interpret this
result as the consequence of a strong posterior correlation between one of the object PSD
parameters p and vϕ, which will be discussed in Chapter 5.

— Lastly, they have tested the mostly unsupervised mode where the hyperparameter p, cor-
responding to the slope of the object PSD in medium-high frequencies, is fixed and the
rest is estimated. Indeed, in practice p can be fixed to a reasonable value, according to
the class of object that is observed (typically p ≈ 3 for asteroids).

The authors have shown that in this mostly unsupervised mode, P-AMIRAL gives satis-
factory results on the PSF parameters (r0 = 0.142 m and vϕ = 1.13 rad2). Therefore, in the
following comparison, we also choose to use the mostly unsupervised mode and fix p to the same
value p = 3.

3.2.2 Criterion evolution

AMIRAL and P-AMIRAL are run with four different initializations of the sought PSF and
hyper-parameters, each of them correspond to a color in the following graphs. We are studying

35



Chapter 3. Contributions to AMIRAL

the evolution of different elements with respect to the convergence threshold. This convergence
threshold is a relative threshold, computing the evolution of the minimized criterion J with
respect to its mean value, between previous and current iterations:

threshold =
∣∣∣2J (i) − J (i−1)

J (i) + J (i−1)

∣∣∣
First, we plot the evolution of the criterion with respect to this threshold.

Figure 3.4 – Criterion evolution with respect to threshold, for AMIRAL (in dashed lines) and
P-AMIRAL (in solid lines), for different initializations (corresponding to the different colors).

We can notice that P-AMIRAL needs a smaller threshold than AMIRAL to converge (mean-
ing that P-AMIRAL needs a smaller threshold for the criterion not to evolve). For both methods,
the criterion does not evolve when the threshold is below 10−11. Therefore, for the following
minimizations, we will set the threshold to 10−11 for both methods, in order to ensure their
convergence.

3.2.3 RMSE on PSF evolution

For the same initializations as previously, we now plot the root mean square error (RMSE)
on the OTF, with respect to the threshold, the RMSE being computed as follows: ϵRMSE(ˆ̃h) =√
⟨||ˆ̃h− h̃||2⟩f , with h̃ the true OTF and ⟨.⟩f the averaging operator over all spatial frequencies.

As shown in Figure 3.5, P-AMIRAL’s estimated PSF is better (the RMSE is smaller), and
varies less according to the initialization. This reflects the (slightly better) robustness of P-
AMIRAL. Moreover, even though Figure 3.4 suggested that AMIRAL was converging even
with a convergence greater smaller than 10−11 (due to the fact that the criterion value stopped
evolving for thresholds below 10−10), actually it is not exactly the case when looking at the
estimated PSF itself.
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Figure 3.5 – Evolution of the RMSE on the OTF, with respect to threshold, for AMIRAL and
P-AMIRAL, for different initializations.

3.2.4 Results on estimated PSF

To have a closer look to the actual estimated shapes of the PSF and the OTF, we plot the
results obtained for one of the initializations.

Figure 3.6 – Estimated PSF (left) and OTF (right) for AMIRAL and P-AMIRAL.

As displayed in Figure 3.6 and as seen in the previous subsection, both estimations are very
satisfactory. P-AMIRAL estimates the PSF/OTF slightly better than AMIRAL. Indeed, the
RMSE on the OTF for AMIRAL is around 2.7%, and the RMSE on the OTF for P-AMIRAL
is around 1.1%.
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3.2.5 Results on restored images

Finally, we display in Figure 3.7 the restored images obtained using a Wiener filtering, using
the estimated PSF obtained with both AMIRAL and P-AMIRAL.

Figure 3.7 – From left to right: true object (synthetic view of Vesta), image (from simulation
described in Subsection 3.2.1), P-AMIRAL restored object, AMIRAL restored object.

The results on the restored object are very close for AMIRAL and P-AMIRAL, the details on
the object are well restored, coming from the fact that both AMIRAL and P-AMIRAL estimated
PSF were very close to the true one. The object restored by AMIRAL is slightly more contrasted,
coming from the fact that its estimated OTF is under the one estimated by P-AMIRAL there-
fore leading to an “over-deconvolution” of the image. Indeed, under-deconvolution means that
the object was not “deblurred enough” leading to a residual blur or a loss of details, whereas
over-deconvolution means that some frequencies are enhanced more than they should, creating
artefacts on the object especially visible on the edges.

3.2.6 Comparison on experimental data

Finally, P-AMIRAL was applied on an experimental image of Vesta [Fétick, 2019b] taken
by SPHERE/Zimpol during the Large Program (ID 199.C-0074), on June 8, 2018. The goal
of this Large Program is to observe a part of the main-belt asteroids which diameter exceeds
100 km, at high angular resolution, with the VLT/SPHERE instrument, throughout their ro-
tation, in order to derive their volume from their 3D shape. Combining this information with
the current estimations on their mass enables the characterization of the internal structure of
the asteroids, that would deepen the knowledge on their formation and evolution in the Solar
system. The observations are done in the visible domain, using the 56.7 nm-width N_R filter of
SPHERE/ZIMPOL, centered at 645.9 nm (corresponding to the sampling value in Table 1.2).
The AO system parameters are those which were given in Chapter 1, in Table 1.2.

However, using the OASIS software [Jorda, 2010] mentioned in Chapter 5, to simulate the
asteroid surface from the data, is harder for ground-based observations because of the atmo-
spheric turbulence blurring the image, even after AO correction. Deconvolving these images is
thus necessary in order to get a higher resolution on them, and retrieve useful information for
the astronomers: sharp edges (volume), craters on the surface, albedo and rotation.

For this, Vesta seems to be the perfect asteroid candidate as it is the second biggest asteroid
of the main-belt, it has a lot of cratering, topography and albedo details, and it is also much
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observed meaning that a lot of high resolutions data is available, in order to compare the details
we restore to other images.

The restored images using a Wiener filtering, which parameters where those estimated by
AMIRAL/P-AMIRAL, are shown in Figure 3.9.

Figure 3.8 – OTF estimated by respectively P-AMIRAL and AMIRAL on experimental data.

Figure 3.9 – From left to right: experimental image of Vesta, P-AMIRAL restored object,
AMIRAL restored object.

As shown in Figure 3.8, P-AMIRAL estimates a slightly “sharper” PSF / higher OTF, which
results in very close results on the restored images, slightly more contrasted for AMIRAL. This
behavior is indeed the same as what we noticed in the simulated case, and we retrieve several
details/craters on Vesta’s surface which were lost on the data but which could be seen on the
synthetic view shown in Figure 3.7. We notice that there are some artefacts on the surface
of the asteroid, and that the edges are particularly bright. These ripples are a known effect
of the quadratic regularization (Wiener filtering), and can be attenuated by using a positivity
constraint along the quadratic regularization, and also an L1-L2 norm regularization. However,
even with L2+ or L1-L2 regularizations [Fétick, 2020b], these bright edges still appear, thus we
believe that they are due to the residual error made on the PSF. Indeed, in the simulation case,
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these bright edges are obtained only if the PSF used for the deconvolution is not the true PSF.
In the same mostly unsupervised mode, with p fixed to 3, the results on PSF parameters are

the following: r0 = 0.32 m and vϕ = 2.78 rad2. r0 might be a little overestimated: indeed, for
the ZIMPOL instrument, estimated r0 values by telemetry data from SPARTA (the real-time
computer controlling the extreme AO system SAXO of the SPHERE instrument) or using the
MASS/DIMM instruments are respectively within [15; 32] cm and [9; 23] cm [Fétick, 2020a].

3.2.7 Overall discussion

While AMIRAL requires the choice of a family of PSFs, P-AMIRAL assumes a PSF model
which the sought PSF must follow. Both methods have their own drawbacks and advantages:
on the one hand, because AMIRAL requires to choose the family of PSF accordingly and to
look for as much unknowns as the number of PSFs in the family, it can also be more versatile
and could work if the PSF does not the PSFAO19 model. On the other hand, using P-AMIRAL
implies that the PSFAO19 model is adapted, but there are less unknowns to estimate, in our case
the two PSF parameters r0 and vϕ. Thus, though AMIRAL can adapted to other PSF models,
for AO-corrected astronomical long-exposure images, the PSFAO19 model gives a parsimonious
(meaning, with only a few parameters), physical description of the PSF and is thus suitable
for this application. Therefore, in this case, using P-AMIRAL is more adapted as it does not
require to choose a PSF family.

On the few tested simulated astronomical observation case, P-AMIRAL gives slightly better
results on simulated data, with less dependency with respect to the initialization, than AMIRAL,
when the chosen convergence threshold is taken small enough. Both methods give very close
results on the simulated and experimental restored images.
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Chapter 4
Development of a method to compute the
MMSE estimator

In this chapter we explicit the method we used to compute the marginal MMSE
estimator. In the first section, we describe the models we use in order to introduce the
posterior distribution we want to compute. In the second section, we give motivations
to use MCMC methods, then we describe the algorithms we have chosen to work
with and finally we also give gradient and Fisher information calculations, which can
be used for more advanced sampling methods.
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4.1 Computing the posterior distribution

4.1.1 Object prior

As in the specific case described in Chapter 2, as a prior for the object, we consider a
Gaussian model described by its mean mo and its covariance matrix Ro. As we suppose that
(o−mo) is stationary, Ro is a 2D Tœplitz-block Tœplitz matrix, which we will approximate as
circulant, therefore diagonalizable in the Fourier domain. Thus, as in Chapter 2, the object is
described hereafter by its mean mo and its PSD So which is the diagonal of the diagonalized
Ro matrix.

The mean object mo is taken constant on all pixels, and because the uncertainty on mo is
small given the number of pixels, it is estimated at the average value of the image.

For the object PSD So, as described in Chapter 3, we consider a circularly-symmetric model,
described by a few parameters:

So(f) = 1
γo

S̄o(f), with S̄o(f) = 1/(k + fp) (4.1)

In this model, γo sets the global PSD level, p is the PSD decrease rate at high frequencies, and
k gives the breakpoint between the two regimes of the model.

The object prior distribution writes as follows:

p(o|γo, k) =
( γo

2π

)N/2 ∏
f

(
S̄o(f)−1/2 exp

[
− γo

2
|õ(f)− m̃o(f)|2

S̄o(f)
])

(4.2)

In previous works [Fétick, 2020b], attempts to estimate hyperparameter p jointly with the
other sought parameters has been shown to strongly decrease PSF parameter estimation ac-
curacy. Therefore, we choose to work in a “mostly unsupervised” mode, where p is fixed to a
standard value. In the case of astronomical observations of asteroids, a well-fitting empirical
value is around p = 3, whereas for satellite observation a standard value for p would be around
2.5–2.6.

4.1.2 PSF model

As described in Chapter 1, the specificity of astronomical and satellite observation from
ground is the impact of atmospheric turbulence, which is partially corrected by AO in our case.
Given the exposure time of the images we are processing here (around 1 s, for a typical variation
time of turbulence around 10 ms), we consider having a long-exposure AO-corrected PSF. We
will use the PSFAO19 model [Fétick, 2019a], the PSF will then be described by its two main
parameters: the Fried parameter r0 and the residual phase variance vϕ. The other parameters
of the model, which have much less impact on the PSF, will be fixed to reasonable values, as
done in Chapter 3.
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4.1.3 Noise prior

Given the flux levels we are considering in astronomical and satellite imaging, as said in
Chapter 2, we approximate noise as Gaussian, zero-mean, additive and white, which are again
reasonable hypotheses given the flux levels in our images. This noise precision is thus the only
parameter we need to define fully the noise statistics, here we denote it by γn. The noise PSD
is Sn = 1/γn.

4.1.4 Likelihood

Let N be again the image size in pixels. We consider h as an array of the same size
as the image and the object, and approximate it as periodic. Given this approximation and
the imaging model of Eq. (1.12), and because noise is independent from the object, the joint
likelihood p(i|o, γn, r0, vϕ) writes:

p(i|o, γn, r0, vϕ) =
( γn

2π

)N/2 ∏
f

exp(−γn

2 |̃i(f)− h̃(f ; r0, vϕ)õ(f)|2) (4.3)

4.1.5 Marginal likelihood

Similarly to what was done in Subsection 2.4.2, given that the image is a linear combination
of Gaussian noise and a linear image model with a Gaussian object prior, the image is also
Gaussian and the marginal likelihood writes:

p(i|γn, γo, k, r0, vϕ) = (2π)−N/2 ∏
f

(
Si(f)−1/2 exp

[
− 1

2 |̃i(f)− m̃i(f)|2/Si(f)
])

(4.4)

with image PSD Si and mean image im:

Si(f) = So(f)|h̃(f)|2 + Sn = 1
γo

1
k + fp

|h̃(f)|2 + 1
γn

(4.5)

m̃i(f) = h̃(f)m̃o(f)

4.1.6 Parameter priors

We consider that each parameter γn, γo, k, r0 and vϕ, which are taken independent, can take
any value in a given range. Therefore, in the absence of more information, following the Laplace
rule (or principle of insufficient reason), we use uniform priors for each of them [Kass, 1996]. In
further works, it could be possible to use telemetry data provided by the AO system, in order
to impose more informative priors. The prior interval is taken large enough: from 0.1 to 10
times the usual value of the considered parameter for γn, γo and k, given knowledge on these
parameters. The prior intervals taken for PSF parameters are the following: for r0 we take
[5 cm; 30 cm] and for vϕ we take [0.5 rad2; 3.0 rad2], which correspond to a large range of values
taking into account the global knowledge on the AO system and the turbulence.
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4.1.7 Hierarchical model

In Figure 4.1 we provide the chosen hierarchical model which sums up the variable interde-
pendency [Bishop, 2007, Chap. 8]. Each upper node (parent) is connected with an edge to a
node below (child) and the model says that a child’s distribution, given all nodes above, only
depends on its parents.

In our model, it means for example that p(i|o, γn, γo, k, r0, vϕ) = p(i|o, γn, r0, vϕ). Therefore
p(i, γo, k|o, γn, r0, vϕ) = p(i|o, γn, r0, vϕ) × p(γo, k|o, γn, r0, vϕ), which means that the image i

and object PSD parameters γo and k are independent conditionally to the object and the other
parameters.

Additionally, the object, the noise variance and the PSF parameters are independent condi-
tionally to object PSD parameters meaning p(o|γn, γo, k, r0, vϕ) = p(o|γo, k).

Moreover, as the hierarchical model reads, all P = 5 parameters θ = {γo, k, r0, vϕ, γn} are a
priori considered independent.

o

γo k

r0 vϕ γn

i

Figure 4.1 – Hierarchical model summing up the inter-dependency between the object, the image
and all parameters.

4.1.8 Marginal posterior distribution

The posterior distribution can be easily derived from the parameter priors and marginal
likelihood given previously (in Equations 4.1, 4.2, 4.4 and 4.5):

p(γn, γo, k, r0, vϕ|i) = p(γn)p(γo)p(k)p(r0)p(vϕ)
p(i) p(i|γn, γo, k, r0, vϕ)

= 1
p(i)Uγn(γn)Uγo(γo)Uk(k)Ur0(r0)Uvϕ

(vϕ)

× (2π)−N/2 ∏
f

( 1
γo

1
k + fp

|h̃(f ; r0, vϕ)|2 + 1
γn

)−1/2

× exp
[
− 1

2
|̃i(f)− h̃(f ; r0, vϕ)m̃o(f)|2

γ−1
o (k + fp)−1|h̃(f ; r0, vϕ)|2 + γ−1

n

]
(4.6)

Here, for all parameters, there is no conjugate priors (even for γn and γo) due to the marginal-
ization.
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4.2 Markov Chain Monte Carlo (MCMC) methods

4.2.1 Why MCMC?

As previously said in Chapter 2, the MMSE estimator is known to be the mean of the
posterior distribution, whereas the MAP estimator is its mode (and the MMAE estimator is
known to be the median of the posterior distribution for each sought parameter). Given the
complexity of the posterior given in Equation 4.6, there is no known analytical way to calculate
it. Indeed, the dependency of the posterior distribution with respect to the sought parameters is
complex, and computing the normalization factor p(i), which corresponds to the integration of
the marginal likelihood and the parameters priors over the parameters: p(i) =

∫
θ p(i|θ)p(θ)dθ,

is hardly possible analytically.
A way to compute the posterior distribution (and so, the different estimators) is to do it

numerically, by drawing samples under the posterior distribution, using a Monte Carlo method.
However, drawing these samples can be difficult, especially for high-dimension problems.

The difficulty, using a Monte Carlo method, comes from the fact that these methods draw the
random samples independently. Thus, they do not take into account the graphical (hierarchical)
model related to the targeted distribution.

A solution is then to use a Markov Chain Monte Carlo (MCMC) method [Gamerman, 2006].
A Markov chain is a process which respects the Markov property, saying that the next state
of this process only depends on the current one, and not on all the previous ones. After a
while, the process reaches an equilibrium, the distribution we obtain is said to be the stationary
distribution. The idea is here to combine the Monte Carlo sampling with a judicious Markov
Chain which is built in order to finally settle on the targeted distribution.

4.2.2 Random-Walk Metropolis-Hastings and Gibbs algorithm

The posterior distribution being complex, it is not possible to sample it directly, therefore
we use a Metropolis-Hastings algorithm to bypass the problem [Robert, 2004; Villeneuve, 2012;
Orieux, 2010; Orieux, 2013]. It consists, for each iteration, in drawing samples under a chosen
proposition distribution q(θ) and accepting the samples (else, duplicating the previous value)
with a prescribed probability α. For the k-th iteration, α writes:

α = p(θ(prop)|i)
p(θ(k−1)|i)

q(θ(k−1)|θ(prop))
q(θ(prop)|θ(k−1))

(4.7)

Several versions are possible: in particular, we can either draw all the parameters simultaneously
(standard Metropolis-Hastings), or separately (Metropolis-Hastings-within-Gibbs). Drawing the
parameters together can make the acceptance probability fall (except if we use more advanced,
e.g. gradient-based algorithms such as MALA or HMC methods), [Robert, 2004; Vacar, 2016;
Duane, 1987; Girolami, 2011] whereas drawing parameters individually can slow down the algo-
rithm as it changes parameters one by one and requires more marginal likelihood computations.
We will compare both versions, Metropolis-Hastings and Metropolis-Hastings-within-Gibbs al-
gorithms, in this manuscript.
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In our case, we use a Random Walk (Metropolis-Hastings) algorithm: the proposed sample
for each parameter is drawn under a symmetric (Gaussian) distribution around the current value
of the parameter. As the chosen prior distribution is a uniform distribution over an interval, if
the proposed parameter is out of its prior interval its acceptance probability is 0, the proposition
is rejected thus the previous value is duplicated. The choice of the standard deviation of the
Gaussian distribution is based, in our case, on the empirical sensitivity of the PSF or the noise
and object PSD to the parameters. This choice only impacts the convergence time of the method,
but not its final outcome.

In a standard Gibbs algorithm, each parameter is drawn under its own conditional posterior
distribution, which is proportional to the prior of the considered parameter times the marginal
likelihood of Eq. (4.4) [Orieux, 2010; Orieux, 2013; Villeneuve, 2012]. The conditional posterior
distribution for each parameter writes:

p(θn|i, θm ̸=n) = p(θn)p(i|θ)
p(i) (4.8)

where θn is the considered parameter and θm ̸=n the four other parameters. In our case, for each
iteration, we are using a Metropolis-Hastings algorithm to target p(θn|i, θm̸=n).

For both versions, asymptotically, the samples are under the marginal posterior distribution
for all parameters, and their empirical mean tends towards the expectation of the distribu-
tion [Robert, 2004].

The parameters can be initialized to a random value, under the prior distribution of the
parameters. For the results given in Chapters 5 and 6, most parameters were initialized to
their maximum value to illustrate the convergence. Various initializations were tested, resulting
in very close estimations and showing the independence of the solution with respect to the
initialization (for a number of iterations large enough). The Random Walk Metropolis-Hastings-
within-Gibbs algorithm we use in this work is provided in Algorithm 1.

Algorithm 1 Metropolis-Hastings-within-Gibbs algorithm
Define initial θ(0)

for each iteration k do
for each parameter θn do

Propose θprop
n ∼ N (θ(k−1)

n , σθn)

Acceptance rate αn ← min
(
1,

p(θprop
n )p(i|θ(k)

m<n, θprop
n , θ

(k−1)
m>n )

p(θ(k−1)
n )p(i|θ(k)

m<n, θ
(k−1)
m≥n )

)
▷ Equation 4.7 and 4.8

Random acceptance u ∼ U([0; 1])
if u < α then

Accept the proposal θ
(k)
n ← θprop

n

else
Duplicate previous sample θ

(k)
n ← θ

(k−1)
n

end if
end for

end for
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4.2.3 Gradients and Fisher information

More advanced MCMC methods take advantage on the gradient to converge more rapidly to-
wards the solution, such as Metropolis-Adjusted Langevin Algorithms (MALA) [Roberts, 2002;
Vacar, 2016]. In these methods, the parameters’ values at the current iteration are computed
given their values at the previous iteration and a term depending on the gradient and a precon-
ditioning term.

θ(k+1) = θ(k) + τA∇ log p(θ(k)|i) +
√

2τAξ(k) (4.9)

with τ a fixed step, all ξ(k) independent draws from a multivariate standard normal distribution
on RP and A the preconditioning matrix, which must be positive-definite.

Several options are available for the preconditioning, one of them is to use the inverse Fisher
information, which makes a good approximation of the Hessian [Girolami, 2011] and is positive-
definite (unlike the Hessian, which inversion can lead to instabilities as in [Qi, 2002]). The
gradient and the Fisher information for each estimated parameter are given in Appendix A.
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Chapter 5
Results of the MMSE estimator on simulated
data

In this chapter we provide detailed results obtained using the MMSE estimator for
simulated data, on both astronomical and satellite images. The first section gives
the results obtained on an astronomical image, focusing partly on the estimated pa-
rameters as well as the associated uncertainties. In Section 2, we test the robustness
of the method by trying it on multiple noise realisations. The third section compares
two options namely two MCMC algorithms in terms of computational time. Then,
in Section 4, we discuss the a posteriori coupling between parameters, particularly
we stress on the impact of one of the object hyperparameters p. Finally, in Section
5 we present results on a satellite image, similarly to the first section.
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Chapter 5. Results of the MMSE estimator on simulated data

5.1 Results on simulated astronomical images

5.1.1 Simulation conditions

Figure 5.1 – Left: synthetic view of Vesta (true object o), of size 512 × 512. Right: simulated
image i, with true parameters r0 = 0.15 m, vϕ = 1.3 rad2 and γn = 2.62 10−4 ph−2.

The obtained results are shown for the simulated image displayed in Figure 5.1, using as the
true object the synthetic view of asteroid Vesta, built by OASIS software [Jorda, 2010], on a
dark background of size N = 512 × 512 pixels. The simulated AO system is a “SPHERE-like”
AO system, whose parameters are summed up in Chapter 3, in Table 3.2.

The PSF is simulated using the PSFAO19 model [Fétick, 2019a]. Here, true PSF parameters
are r0 = 0.15 m and vϕ = 1.3 rad2 at the imaging wavelength λ = 550 nm, which corresponds
to realistic turbulence and correction conditions. Noise is taken zero-mean, additive, white and
Gaussian with a variance equal to the mean value of the object as a first approximation of the
photon noise, just as in Chapter 3. The total flux of the object is set to Fo = 109 ph (photons),
typical from VLT/SPHERE/Zimpol asteroid observations (during ESO’s Large Program, ID
199.C-0074), therefore γn = N/Fo = 2.62× 10−4 ph−2.

The PSF and PSD parameters are estimated following the proposed marginal method, except
the mean object mo, which is taken equal to the average value of the image (because the
uncertainty on it is small given the number of pixels), and the object PSD power which is fixed
to p = 3, which corresponds to a reasonable default value of p for asteroids, as mentioned in
Chapter 4.

We are using here a Metropolis-Hastings-within-Gibbs algorithm described in Chapter 4,
for which the tuning of the standard deviation of the Gaussian proposition is chosen to be
around 0.01 times the allowed range of the prior. Precisely, the used prior interval and tuning
for each parameter are given in Table 5.1. This tuning only impacts the acceptance rate for
each parameter, which should be carefully looked at to find a balance between small frequent
changes and larger but less frequent modifications. Theoretically, a good acceptance rate for a
multi-dimensional Gaussian target distribution is around 23% [Gelman, 1997], we will then aim
to have acceptance rate around this value.
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Parameter Prior min - max Step tuning
γn (ph−2) 2.62×10−5 - 2.62×10−3 2.62×10−6

r0 (m) 0.05 - 0.5 0.001
vϕ(rad2) 0.5 - 3.0 0.01
γo (ph−2) 2.62×10−15 - 2.62×10−11 2.62×10−14

k 0.01 - 10 0.1

Table 5.1 – Prior intervals and tuning of the Gaussian standard deviation for γn, r0, vϕ, γo and
k.

The parameters which have a true value, namely noise and PSF parameters, are initialized
to their maximum value (r0 = 0.5 m, vϕ = 3.0 rad2, γn = 2.62 × 10−3 ph−2) in order to clearly
notice the convergence of the random samples. For k and γo, we initialized them to what we are
expecting typically for these parameters: k is initialized to 1, and γo to γo = N/F 2

o = 2.62×10−13.
The Gibbs sampler is run for 100 000 iterations, which corresponds to a few hours, in order to
check that the chains have indeed converged in practice.

5.1.2 Chains of random samples for the estimated parameters

In Figure 5.2, we plot the samples chains and the corresponding histograms for γn, r0 and
vϕ. The inspection of Figure 5.2 suggests that chains have a short burn-in period (around 20 000
iterations), followed by a stationary state. As expected from Markov chains, for each parameter
the samples are correlated. Moreover, the samples are concentrated in a small interval relatively
to their prior interval.

The acceptance rate for most parameters is slightly over 30% (which is a pretty correct rate),
except for γo and k whose acceptance rate is way higher (respectively 68% and 94%).

Figure 5.2 – From top to bottom: γn, r0, vϕ, γo, k. Left: chain of samples for simulated
astronomical image. Right: corresponding histogram. True values in dashed line.
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Parameter m± σ True
γn (ph−2) 2.62×10−4 ± 8.03×10−7 2.62×10−4

r0 (m) 0.142 ± 0.007 0.15
vϕ(rad2) 1.17 ± 0.03 1.30
γo (ph−2) 2.37×10−13 ± 5.41×10−14 -
k 0.768 ± 0.594 -

Table 5.2 – Empirical mean value, associated empirical standard deviation of the samples shown
in Figure 5.2 and true value, for γn, r0, vϕ, γo and k for simulated astronomical image, with
p = 3.

5.1.3 Quality of estimation of the PSF

The empirical mean values m, corresponding to our estimates, and empirical standard de-
viations σ, corresponding to our predicted uncertainties, for each parameter are displayed in
Table 5.2. Firstly, we can note that the error made on the parameters is small: the noise pre-
cision is very precisely estimated, with an error smaller than 0.2%, and PSF parameters are
also well estimated, with a 5% error on r0 and a 10% error on vϕ. Additionally, the estimated
r0 and vϕ are very close to the previous results obtained with P-AMIRAL: for the same con-
ditions [Fétick, 2020b], the estimated PSF parameters were r0 = 0.142 m and vϕ = 1.13 rad2

(compared to r0 = 0.142 m and vϕ = 1.17 rad2 in Table 5.2).

Figure 5.3 – True (in green) and estimated (in blue) OTF for simulated astronomical image,
including computed uncertainties (in blue, + and - for upper and lower uncertainty bounds).

We also compare the resulting OTF to the true OTF in Figure 5.3. The slight underestima-
tion of r0 leads to the lowering of the global OTF level and its impact can mainly be seen at
low frequencies. Concerning vϕ, its mild underestimation leads to a slower decrease of the OTF
and impacts the slope of the latter at medium-high frequencies [Fétick, 2020b]. Thus, we notice
that the errors on both parameters partially compensate. We interpret this compensation as the
result of the fact that (a) essentially, the method fits the OTF itself (fitting the image PSD), and
(b) several couples of parameters lead to close OTFs, in other words that the two parameters

are coupled. As a result, the normalized RMSE for the OTF, computed as
√∑

|mh̃−h̃|2∑
|mh̃|2 with
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5.1. Results on simulated astronomical images

true OTF h̃ and estimated OTF mh̃ is quite small (around 7%).

5.1.4 Results on the derived uncertainties

Concerning the uncertainties derived from our method, we notice in Table 5.2 that the
true value for parameter r0 is in the range [mr0 ± 2σr0 ], and the true vϕ is in the interval
[mvϕ

± 5σvϕ
], therefore the uncertainties on PSF parameters seem under-estimated. We can

also compute uncertainties directly on the sought OTF: for each sample (r0, vϕ), we compute
the corresponding OTF in order to compute its empirical mean mh̃ and standard deviation σh̃.
As shown in Figure 5.3, the true OTF is within the interval [mh̃ ± 2σh̃], for all frequencies.
Therefore, even though the uncertainties on PSF parameters are somewhat under-estimated,
our method gives a very satisfactory uncertainty estimation on the OTF itself.

Figure 5.4 – PSDs for simulated astronomical image. Model in solid line, and empirical PSD
averaged azimuthally in dashed line. Left: Image PSD. Right: Object PSD.

5.1.5 Results on object and image PSDs

In Figure 5.4 (left), we perform an important sanity check of the method to verify that
our model for the image PSD of Eq. (4.5), which combines object PSD, PSF and noise PSD,
accurately fits the empirical image PSD averaged azimuthally (cf. Eq. (4.4)). Moreover, given
the fact that the true object is not the realization of a Gaussian random field following our PSD
model, a way to check γo and k estimation accuracy is to look at the fitting of our model to the
empirical object PSD, averaged azimuthally. As displayed in Figure 5.4 (right), the object PSD
model visually fits correctly the empirical object PSD, the slight overestimation of the object
PSD being consistent with the slight underestimation of the OTF.

5.1.6 Results on restored image

Finally, Figure 5.5 shows the image in Figure 5.1 restored with the estimated OTF. Many
details of the Vesta surface can be seen, that were not visible on the data. Particularly, with our
method we retrieve sharp edges of the asteroid from which one can estimate the object volume
and sphericity, as well as main crater and albedo features.
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Figure 5.5 – Left and center: true object and image for simulated asteroid observation, 256×256
cropped from Figure 5.1. Right: restored object from the estimated PSF and PSD parameters
(using a L2-norm regularization, with positivity constraint), also cropped.

5.1.7 Comparison between MMSE, MMAE and MAP estimators

As mentioned in Chapter 2 and 4, using our method we can compute the MMSE and the
MMAE estimator, corresponding to respectively the posterior mean and the posterior median.
In practice, we compute the average and the median of our samples after discarding the boiling
time. Additionally, we can have an approximation of the MAP by taking the sample maximizing
the marginal likelihood among our samples (also discarding the boiling time, when we have
not converged towards the posterior distribution). The results using these 3 estimators are
showed in Table 5.3. We notice that all 3 results are very close, especially the MMAE and the

Parameter MMSE MMAE MAP True
γn (ph−2) 2.62×10−4 2.62×10−4 2.62×10−4 2.62×10−4

r0 (m) 0.142 0.142 0.140 0.15
vϕ(rad2) 1.17 1.17 1.17 1.30
γo (ph−2) 2.37×10−13 2.32×10−13 2.16×10−13 -
k 0.768 0.624 0.422 -

Table 5.3 – Empirical mean and median values, as well as value maximizing the likelihood
among the samples shown in Figure 5.2 and true value, for γn, r0, vϕ, γo and k for simulated
astronomical image, with p = 3.

MMSE results. This is not very surprising, given that the parameters have a pretty narrow and
symmetric marginal posterior as displayed in the histograms in Figure 5.2.

5.1.8 Results with a more realistic noise

We now simulate the observation of Vesta using the same conditions than in Subsection 5.1.1,
except that we now simulate a more realistic noise, using a Poisson distribution to simulate the
photon noise, and a stationary Gaussian noise for the read-out noise with a standard deviation
of 20 photo-electrons. The results are summed up in Table 5.4. Even if the simulated noise
does not exactly match the stationary noise model, all estimated parameters are still very close
to the previous estimations. The PSF parameters are still well estimated, with an error around
3% for r0 and around 8% for vϕ. Their associated uncertainties are also still satisfactory for r0

and, similarly, slightly underestimated for vϕ as discussed previously. Thus the violation of the
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Parameter m± σ True
γn (ph−2) 2.57×10−4 ± 7.71×10−7 -
r0 (m) 0.145 ± 0.007 0.15
vϕ(rad2) 1.20 ± 0.03 1.30
γo (ph−2) 2.49×10−13 ± 5.57×10−14 -
k 0.717 ± 0.524 -

Table 5.4 – Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k
for simulated astronomical image with a more realistic noise (Poisson + Gaussian noise), with
p = 3 and mo = mi.

stationary noise hypothesis does not impair the results with our method, given our simulation
conditions.

5.2 Tests on several noise realisations

5.2.1 Results on the quality of estimation and derived uncertainties for pa-
rameters

To test the robustness of our method to noise, we ran the algorithm for ten different noise
realisations, in the simulation conditions described in Section 5.1, with p = 3. We compute the
bias and standard deviation of the estimated parameters on these ten noise realisations, as well
as the maximum error. We also compute the minimum and maximum predicted uncertainty (i.e.
the standard deviation of the posterior distribution). These values are summarized in Table 5.5.

Parameter True Max. error Empirical
bias

Empirical
std. dev. Predicted uncertainty

γn (ph−2) 2.62×10−4 2.3×10−6 9.5×10−8 9.0×10−7 ∈ [7.8×10−7, 8.0×10−7]
r0 (m) 0.150 0.012 0.006 0.005 ∈ [0.006, 0.009]
vϕ(rad2) 1.30 0.14 0.12 0.01 ∈ [0.02, 0.03]
γo (ph−2) - - - 4.1×10−14 ∈ [4.5×10−14, 8.9×10−14]
k - - - 0.1 ∈ [0.4, 0.7]

Table 5.5 – Summary of results on ten noise realisations: true value, maximum error and bias
(if available), standard deviation of estimates for γn, r0, vϕ, γo and k, and minimum/maximum
predicted uncertainty, with p = 3.

In these ten cases, we notice very little variations on the estimates: the computed standard
deviations (fifth column in Table 5.5) are small with respect to the true values (second column).
Moreover, the estimates are satisfactory: first, the errors on the estimated parameters are quite
small (third column), particularly on the noise precision (error is less than 1%). For the PSF
parameters, the error is always smaller than 11%.

Concerning parameter r0, the predicted uncertainty is very satisfactory: the true value is
always within the interval [mr0 ± 2σr0 ]. For parameter vϕ, we notice that the error is here
dominated by the bias, which is more than ten times greater than the standard deviation (which
is not the case for the other parameters). Our interpretation is that this bias is due to the choice
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Chapter 5. Results of the MMSE estimator on simulated data

of p, as supported by the discussion in Subsection 5.4.3.

5.2.2 Results on derived uncertainties for the OTF

Figure 5.6 – Results on OTF uncertainties for ten realisations of a noisy simulated astronomical
image: true OTF (in black) and predicted range [mh̃ ± 2σh̃] (+ and - for upper and lower
uncertainty bounds, each color corresponds to a noise realisation).

Finally, even though the uncertainties are under-estimated for vϕ with the default p, concern-
ing the OTF itself the uncertainties are always well estimated. To compute these uncertainties,
for one noise realisation, for each sample of the PSF parameters chains, we computed the cor-
responding OTF and squared OTF. These OTFs and squared OTFs are averaged for a given
frequency length, and this is done for each noise realization. Additionally, with the averaged
OTFs mh̃ and squared OTFs mh̃2 , we computed the posterior standard deviation on OTF:
σ2

h̃
= mh̃2 −m2

h̃
. As shown in Figure 5.6, for all ten cases, the true OTF is within the interval

[mh̃ ± 2σh̃].
We also had a look on the root mean square error on the OTF. With these 10 averaged OTFs

mh̃ and the true OTF h̃, we computed the corresponding square error for all noise realizations:
ϵ = |mh̃− h̃|2. This error was then averaged on all noise realizations ⟨ϵ⟩n, as well as the posterior
variance on OTF ⟨σ2

h̃
⟩n.

In Figure 5.7, we plot the root mean squared error on the OTF
√
⟨ϵ⟩n for all frequencies. We

notice that
√
⟨ϵ⟩n is smaller than 1.3 times the posterior standard deviation on OTF averaged

on noise realisations
√
⟨σ2

h̃
⟩n, for all frequencies, which gives us confidence that the uncertainties

which we derive from the method are reasonable.

56
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Figure 5.7 – Root mean square error on OTF, averaged on noise realisations, averaged az-
imuthally (in green) and 1.3 times the estimated variance on OTF on each frequency, averaged
on noise realisations, averaged azimuthally (in blue).

5.3 Comparison between Metropolis-Hastings algorithms, within
and without Gibbs

5.3.1 Results using the Metropolis-Hastings (without Gibbs) algorithm

Section 5.1 describes results obtained using the Random Walk Metropolis-Hastings-within-
Gibbs algorithm. We will here discuss the results for the Random Walk Metropolis-Hastings
algorithm. We run this algorithm in the same conditions as mentioned earlier, with the same
fixed parameters. The only difference is that the exploration step, namely the standard deviation
for the Gaussian proposition, is adjusted in this case to have a similar exploration range as in
the Gibbs case. Because we have five parameters to estimate, the standard deviation for each
parameter is divided by

√
5. This is done in order to tune the exploration of the posterior

distribution to the same “distance” as in the previous case, in order to have an acceptance rate
which is close to the optimal one [Gelman, 1997]. As we will see in the following results, this
tuning clearly impacts the acceptance rate. The algorithm is also run for 100 000 iterations, to
verify convergence.

The computed mean values and standard deviations are reported in Table 5.6. As expected,
both are very close to the results obtained with the Metropolis-Hastings-within-Gibbs algo-
rithm given in Table 5.2. Therefore we can state that, for a reasonable tuning of the Gaussian
proposition for the Random Walk and a sufficient number of iterations, both algorithm converge
towards the same solution.
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Parameter m± σ True
γn (ph−2) 2.61×10−4 ± 7.90×10−7 2.62×10−4

r0 (m) 0.144 ± 0.007 0.15
vϕ(rad2) 1.18 ± 0.03 1.30
γo (ph−2) 2.47×10−13 ± 5.64×10−14 -
k 0.619 ± 0.411 -

Table 5.6 – Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k
for the same conditions as previously, using a Random Walk Metropolis-Hastings algorithm.

5.3.2 Discussion on the computational time for both algorithms

The main difference between both algorithms is then the required time to generate the sam-
ples, also related to the number of iterations which are necessary to reach convergence and the ac-
ceptance rate for the parameters. Concerning computational time, computing 100 000 iterations
requires 1 hour using the Metropolis-Hastings algorithm, 4 hours using the Metropolis-Hastings-
within-Gibbs algorithm (the number of hours corresponds to user and system CPU time). The
ratio is indeed around 5, because the computational cost is dominated by the computation of the
marginal likelihood, which is computed once for a Metropolis-Hasting iteration, and 5 times for
a Metropolis-Hastings-within-Gibbs iteration (once per parameter). Additionally, this ratio is
less than 5, because the Metropolis-Hastings-within-Gibbs versions carefully computes only the
necessary modifications for each parameters and re-uses what remains unchanged (for instance,
if a PSF parameter is being modified, the object PSD is not computed redundantly).

In the following Figures 5.8-5.11, we compute the cumulative mean values (meaning, for each
iteration the cumulative sum of values, divided by the current number of iterations) Σiter/iter of
PSF parameters r0 and vϕ. We discard the first 20 000 iterations, which we consider belonging
to the burn-in period (boiling time): thus, the first point on the graph at iter = 20000 is the
value of the considered parameter at this iteration, the second point is the average value between
iter = 20000 and iter = 20001 and so on. We also plot the mean value m in dashed green line, as
well as lower and upper bounds corresponding to a fraction of the standard deviation σ for these
parameters (here, half the standard deviation: [m ± 0.5σ]). The aim is here to determine the
number of iterations that are necessary to reach a certain precision on the estimates, meaning
the number of iterations iterc above which the mean value is within a small (enough) interval:
Σiter/iter ∈ [m± 0.5σ] for iter ≤ iterc.

We notice that the Metropolis-Hastings-within-Gibbs algorithm converges more quickly than
the Metropolis-Hastings algorithm, needing less than iterc = 30000 iterations to reach the
desired precision level for both parameters, whereas the Metropolis-Hastings algorithm needs
more than iterc = 50000 iterations. Finally, in a similar spirit, the acceptance rate for all
parameters is slightly under 20% thanks to the change of the standard deviation of the Gaussian
proposition (which is divided by

√
5 for all parameters). This acceptance rate is below the one

obtained with the Metropolis-Hastings-within-Gibbs algorithm. Without this change of step,
the acceptance rate falls to 5%.

As a conclusion, given that the Metropolis-Hastings algorithm needs around 50 000 iterations,

58



5.3. Comparison between Metropolis-Hastings algorithms, within and without Gibbs

Figure 5.8 – Cumulative mean for r0 (without boiling time = 20 000 iterations), using Metropolis-
Hastings algorithm.

Figure 5.9 – Cumulative mean for r0 (without boiling time = 20 000 iterations), using Metropolis-
Hastings-within-Gibbs algorithm.

Figure 5.10 – Cumulative mean for vϕ (without boiling time = 20 000 iterations), using
Metropolis-Hastings algorithm.

each iteration costing around 4 times less than an iteration using the Metropolis-Hastings-
within-Gibbs algorithm. It would then be “equivalent” to around 12 000 iterations using the
Metropolis-Hastings-within-Gibbs algorithm, whereas using it we effectively need around 30 000
iterations. Therefore, the Metropolis-Hastings algorithm seems more efficient and adapted in
our case.
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Figure 5.11 – Cumulative mean for vϕ (without boiling time = 20 000 iterations), using
Metropolis-Hastings-within-Gibbs algorithm.

5.4 Posterior coupling between parameters and impact of hy-
perparameter p

5.4.1 Marginal posterior scatter plots of the parameters

Sampling the whole posterior distribution, instead of computing a single point of it (for
example, the maximum), enables us to study the a posteriori coupling of the parameters. In
Figures 5.12 and 5.13, we display the scatter graph of the samples, after boiling time, for two
different couples of parameters: r0 and vϕ and r0 and γo. Most couples of parameters have a
scatter graph similar to Figure 5.12, where the 2D-histogram is rather elliptical and along the
axis suggesting that most parameters are not correlated a posteriori.

Figure 5.12 – Scatter graph of the samples for r0 and vϕ after boiling time.

The only couple of parameters who does not have an elliptical-like scatter graph, but instead
show a strong a posteriori correlation, is r0 and γo. We explain this correlation by the fact that
as shown in [Fétick, 2020b], r0 impacts the global level of the OTF wheras γo gives the global
level of regularization in the object PSD. Therefore, both r0 and γo have a impact on the global
level of the image PSD, which is fitted by our method, that explains their strong correlation.
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Figure 5.13 – Scatter graph of the samples for r0 and γo after boiling time.

Remark. The posterior coupling between parameters can also be shown using corner plots.

5.4.2 Attempt to estimate p

As said in Chapter 4, attempts in previous works [Fétick, 2020b] to estimate hyperparameter
p jointly with the other parameters, in an “unsupervised” mode, has been shown to strongly
decrease PSF parameter estimation accuracy. In these works, p was then fixed to a well-fitting
empirical value, according to the class of object that was observed (either asteroids, or artificial
satellites).

Trying again to estimate p using our new method indeed confirmed this result. We have
tested our method in the unsupervised mode, in the exact same conditions than those given in
Subection 5.1 (good astronomical site, SPHERE-like AO system, observing Vesta asteroid, with
realistic flux and PSF).

We are using here again a Metropolis-Hastings-within-Gibbs algorithm, the tuning of the
standard deviation of the Gaussian proposition is taken identical to the previous one given in
Table 5.1. The parameters are also initialized the same way as above in Subsection 5.1. The
Gibbs sampler is run for 1 000 000 iterations.

For hyperparameter p, it is initialized to p = 3, as it is a empirical reasonable value for
asteroids. The standard deviation is tuned to 0.1, and the prior interval given was [2.0 − 4.0],
which is a pretty large interval for p. The standard deviation tuning corresponds to how sensitive
we are on this parameter in magnitude, in practice: as we will see further in Subsection 5.4.3,
a change of 0.1 on p has an impact on the results for other parameters, but changing p of 0.01
does not.

In Figure 5.14, we plot the samples chains and the corresponding histograms for all param-
eters. As one can see, and as said in Subsection 5.4.1, the chains of γo and r0 are strongly
correlated, evolving together in a symmetric way, which is consistent with the marginal scatter
graph of γo and r0 given in Figure 5.13. Additionally, the chains of p and vϕ are also strongly
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Figure 5.14 – From top to bottom: γn, γo, k, vϕ, r0, and p. Left: chain of samples for simulated
astronomical image. Right: corresponding histogram. True values in dashed line, if available.

correlated, evolving in an anti-symmetric way. The scatter graph of these two parameters is
given in Figure 5.15.

Figure 5.15 – Scatter graph of the samples for vϕ and p, after boiling time.

As we can see on the chains as well as on the scatter graph, due to the correlation between the
residual phase variance vϕ and hyperparameter p, including the estimation of p leads to a strong
under-estimation of vϕ together with a over-estimation of p (the yellow spot on Figure 5.15).

Similarly to the correlation between r0 and γo that was highlighted in Subsection 5.4.1, we
interpret these results as another strong correlation between vϕ and the fixed hyperparameter p

due to the similar impact they have on the image PSD. Indeed, as shown in [Fétick, 2020b], vϕ

impacts the slope of the OTF in medium-high frequencies whereas p corresponds to the slope of
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the object PSD in medium-high frequencies. Therefore, both vϕ and p tune the decrease of the
image PSD in medium-high frequencies, which can explain their strong posterior correlation.

5.4.3 Changing the tuning of p

Given that the estimation of p is not satisfactory due to the fact that p and vϕ have a similar
impact on Si, the goal was then to know how sensitive the tuning of p was. In [Yan, 2022], we
have tested our method in the exact same conditions than in Subsection 5.1 for another value for
hyperparameter p, tuned slightly differently, towards the “best” value found in [Fétick, 2020b]
in the supervised mode p = 2.91. Both p = 2.9 and p = 2.91 were tested with our method,
giving the same results.

Parameter m± σ True
γn (ph−2) 2.62×10−4 ± 7.98×10−7 2.62×10−4

r0 (m) 0.141 ± 0.006 0.15
vϕ(rad2) 1.33 ± 0.02 1.30
γo (ph−2) 2.65×10−13 ± 5.39×10−14 -
k 0.619 ± 0.469 -

Table 5.7 – Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k
for simulated astronomical image, with p = 2.9.

The posterior mean and standard deviation for each parameter, as well as true values if
available, are displayed in Table 5.7. Here again, noise precision γn is correctly estimated, to
the same precision than in Subsection 5.1 (ϵ ≤ 0.2%). For PSF parameters, we notice that with
p = 2.9 the true values are with the interval [m ± 2σ], saying that the estimated uncertainties
are then satisfactory. Moreover, errors on PSF parameters are now small on both parameters:
similarly to the previous case for r0 (ϵ ≈ 6%, against ≈ 5% for p = 3.0) and much smaller for
vϕ (ϵ ≈ 2%, against ≈ 10% for p = 3.0).

Here again, the correlation between vϕ and p explains the need of a fine tuning of p in
the mostly unsupervised mode, and mostly explains the error (which is mainly a bias) on vϕ.
However the differences on the restored image, as displayed in Figures 5.16 and 5.17, are quite
small, at most around ten times smaller than the global image level.
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Figure 5.16 – Left: restored image, fixing p = 3. Center: restored image, fixing p = 2.9. Right:
Ten times the absolute difference between the two first images.

Figure 5.17 – Horizontal sectional plot of the restored images (at N/2), fixing p = 3 and p = 2.9,
and their difference.

5.5 Results on simulated satellite data

5.5.1 Simulation conditions

We now show results for a simulated satellite image, using as the true object a synthetic
view of the SPOT satellite on a dark background of size 512 × 512 pixels [Mugnier, 2001]. We
simulate its observation using the ODISSEE AO system at OCA [Petit, 2020], and with true
PSF parameters r0 = 0.10 m and vϕ = 1.85 rad2, at the imaging wavelength λ = 850 nm, which
corresponds to a stronger turbulence, and to a more modest correction than for the astronomical
simulation because of a less complex AO system. The noise is taken as zero-mean, additive, white
and Gaussian, and its variance is taken equal to the mean value of the object. Here, the mean
flux is 104 photons per image pixel, corresponding to a somewhat optimistic value. The pixel
sampling is close to the Shannon-Nyquist criterion, with slightly more than 2 pixels per λ/D.

The object PSD power p is fixed to an empirical standard value for satellites p = 2.6, to fit
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Figure 5.18 – Left: Synthetic view of SPOT (true object), of size 512 × 512. Right: simulated
image, with true parameters r0 = 0.10 m, vϕ = 1.85 rad2 and γn = 1.00 10−4 ph−2.

the empirical object PSD. The Gibbs sampler is run for 100 000 iterations. In Figure 5.19, we
plot the sample chains and the corresponding histograms for γn, r0 and vϕ. Their true values
are also represented.

5.5.2 Chains of random samples for the estimated parameters

Figure 5.19 – From top to bottom: γn, r0, vϕ, γo, k. Left: chains of samples for simulated
satellite image. Right: corresponding histogram. True values in dashed line.

Similarly to the previous simulations, the empirical mean values m and standard deviations
σ of the posterior distribution for each parameter are displayed in Table 5.8. The noise precision
γn as well as PSF parameters r0 and vϕ are relatively well estimated, with an error of respectively
2%, 14% and 17%. These results are very close to those obtained with P-AMIRAL: for similar
conditions, the estimated PSF parameters are r0 = 0.112 m and vϕ = 2.16 rad2.
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Parameter m± σ True
γn (ph−2) 1.02 ×10−4 ± 3.63×10−7 1.00 ×10−4

r0 (m) 0.114 ± 0.008 0.10
vϕ(rad2) 2.16 ± 0.01 1.85
γo (ph−2) 1.90 ×10−14 ± 2.37 ×10−15 -
k 3.14 ± 1.45 -

Table 5.8 – Mean value, associated standard deviation and true value, for γn, r0, vϕ, γo and k,
for simulated satellite image.

5.5.3 Quality of estimation of the PSF

We notice that the error on PSF parameters is greater for the satellite observation than for
the astronomical observation. Our interpretation of these results is that it is due to the spectrum
of the satellite object which is less isotropic than Vesta, and therefore does not fit our isotropic
power spectral density model as well. This interpretation was checked by complementary sim-
ulations: indeed, if we simulate the observation of Vesta instead of SPOT, in the exact same
conditions as for satellite observation except that hyperparameter p is re-adjusted to a standard
value for asteroids p = 3, the errors on PSF parameters are very close to the results obtained
in Subsection 5.1, suggesting that the greater error on the PSF comes from the object and not
from the simulated AO system or PSF.

We also compare the resulting estimated OTF to the true OTF in Figure 5.20. Here again,
as discussed previously, we notice that the errors on both parameters partially compensate, as
a result the normalized RMSE for the OTF is quite low (around 8%).

5.5.4 Results on the derived uncertainties

Concerning uncertainties on the PSF parameters, similarly to previous asteroid case, the
posterior standard deviation for r0 is a good uncertainty prediction for this parameter as the
true value is within the interval [mr0 ± 2σr0 ]. On the contrary, σvϕ

is small, giving an under-
estimated uncertainty. The reasons for this under-estimation are being investigated, though it
should be linked to the more difficult observation conditions simulated here. Additionally, the
previous discussion about the correlation between parameters p and vϕ in Subsection 5.4.3 is
still valid and further work on tuning hyperparameter p for satellite observation should be done.

Concerning the uncertainties on the OTF, we notice again that even though the uncer-
tainties on PSF parameters are under-estimated, the uncertainties on the OTF itself are quite
satisfactory as the true OTF is within the interval [mh̃ ± 3σh̃].

5.5.5 Results on object and image PSDs

Additionally, the estimations result in a good image PSD fitting, averaged azimuthally, as
shown in Figure 5.21. Moreover, as displayed in Figure 5.21, the object PSD model visually fits
well the empirical object PSD, averaged azimuthally.
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5.5. Results on simulated satellite data

Figure 5.20 – True (in green) and estimated (in blue) OTF for simulated satellite image, including
computed uncertainties (in blue, + and - for upper and lower uncertainty bounds).

Figure 5.21 – PSDs for simulated satellite image. Model in solid line, and empirical PSD averaged
azimuthally in dashed line. Left: image PSD. Right: object PSD.

5.5.6 Results on restored image

Figure 5.22 – Left and center: True object and image for simulated satellite observation, 256×256
cropped from 512× 512 (Figure 5.18). Right: restored object from the estimated PSF and PSD
parameters (using a L2-norm regularization, with positivity constraint), also cropped.

Finally, Figure 5.22 shows results from the restoration of the image in Figure 5.18 (right)
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using the estimated OTF. We notice that details of the satellite surface are restored, especially
on its main part and its connection with the panel.
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Chapter 6
Results of the MMSE estimator on
experimental data

In this chapter we provide the results obtained using the MMSE estimator for exper-
imental data, for which we remind some elements of the application context, before
discussing both the estimated parameters and the restored images. The first section
gives these elements on a astronomical image, and the second section on a satellite
image.
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Chapter 6. Results of the MMSE estimator on experimental data

6.1 Results on experimental astronomical data

6.1.1 Description of the setup and the data

After testing our method on both astronomical and satellite simulated data, therefore for
different turbulence conditions and AO systems, we apply it to experimental images.

Here we process the experimental image of Vesta [Fétick, 2019b] taken by SPHERE/Zimpol
during the Large Program (ID 199.C-0074), described in Chapter 3.

As estimation method, we are using the MMSE estimator using the Metropolis-Hastings-
within-Gibbs algorithm, as described in Chapter 4. As discussed previously, this method is used
in a mostly unsupervised mode and hyperparameter p is again fixed to p = 3, a reasonable value
for asteroids. We run the Gibbs sampler for 500 000 iterations, to verify convergence of the
random sample chains.

6.1.2 Results on image PSD, for experimental astronomical image

A good sanity check before looking at the results on the parameters as well as on the restored
image is to check that the image PSD model and the empirical image PSD for Vesta fit correctly.
We plot both image PSDs (model and empirical ones) in Figure 6.1.

Figure 6.1 – PSD model and Vesta empirical image PSD averaged azimuthally, in dashed line.

As displayed, the image PSD model and the empirical image PSD fit correctly, especially
at low and medium frequencies, where signal dominates noise. For high frequencies, where the
noise is dominant, we see that the noise floor is not flat (whereas we model the noise as white),
and believe it may be due to the data reduction by SPHERE/ZIMPOL’s pipeline. This pipeline
is known for being bugged, to the point that some researchers have developed an alternative
pipeline, which we could not use for the moment.
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6.1.3 Results on parameters, for experimental astronomical image

Now that the image PSD fitting was checked, we can look at the parameters’ sample chains
and corresponding histograms. These are displayed in Figure 6.2. Additionally, results obtained
for the five estimated parameters (mean ± standard deviation, as well as acceptance rate τacc)
are summed up in Table 6.1.

Figure 6.2 – From top to bottom: γn, γo, k, vϕ and r0. Left: chain of samples for experimental
astronomical image. Right: corresponding histogram.

Parameter m± σ τacc

γn (ph−2) 4.36 ± 6.43×10−3 48%
r0 (m) 0.254 ± 0.054 83%
vϕ(rad2) 2.62 ± 0.01 43%
γo (ph−2) 7.51×10−11 ± 1.07×10−11 27%
k 1.33 ± 0.87 96%

Table 6.1 – Mean value and associated standard deviation for γn, r0, vϕ, γo and k for experimental
Vesta image, with p = 3.

Concerning the chains, we notice that the convergence seems reached quickly for most pa-
rameters. However, the uncertainties on the parameters is also larger, especially for r0 which has
a rather wide, multimodal histogram. If we focus on the PSF parameters, we notice that the esti-
mated residual phase variance vϕ is close to the value obtained with P-AMIRAL: vϕ = 2.62 rad2

instead of 2.78 rad2 with P-AMIRAL [Fétick, 2020b] for the same conditions. However, the esti-
mated r0 is slightly under the one estimated by P-AMIRAL: r0 = 0.254 m instead of 0.32 m with
P-AMIRAL [Fétick, 2020b]. Besides, one can note that the value estimated by P-AMIRAL cor-
responds to one of the local maxima of the histogram on Figure 6.2. After a check on the known
statistics on r0 for the ZIMPOL instrument [Fétick, 2019a], the newly estimated r0 seems more
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likely than the one estimated by P-AMIRAL according to them. Indeed, as said in Chapter 3,
for the ZIMPOL instrument, estimated r0 values by telemetry data from SPARTA or using the
MASS/DIMM instruments are respectively within [15; 32] cm and [9; 23] cm [Fétick, 2020a]. Ad-
ditionally, as one can notice on Figure 6.2 that there is another (smaller) peak in the histogram
corresponding to r0 around r0 = 0.32 m, which may thus correspond to a local minimum of the
criterion.

If we look now at the hyperparameters, γn has a higher value than what we expected for it.
Indeed, in Chapter 5, given the considered flux levels we approximated the noise as Gaussian
with its variance equal to the mean of the image, which we believe is close to the mean of the
object (again due to the small uncertainty on the mean object as said in Chapter 4). Therefore,
we were expecting γn to be close to 1

mi
= 0.014 ph−2, whereas we have γn = 4.36 ph−2.

Additionally, as γo gives the global object PSD level, we were expecting it to be close to the
sum of the object, taking into account the normalization factor for the Fourier transform with
respect to the Parseval’s theorem. It means that, in practice here, we were expecting γo to be
close to 1

m2
i N

= 1.79 × 10−10 ph−2, with N the image size in pixels, and we have a relatively

close value γo = 7.77 × 10−11 ph−2. Then, the ratio µ = γo/γn was expected to be close to
1

miN
= 1.31 × 10−8, whereas we have µ = 2.12 × 10−11. However, this value for µ is close to

the one obtained with P-AMIRAL: 1.75× 10−11 [Fétick, 2020b] and these parameters result in
a good image PSD fitting as seen in Figure 6.1. Thus we believe that the instrument gain we
took into account was incorrect/partial, and these values deserve further investigation for the
moment.

Concerning the acceptance rate τacc, it seems slightly higher than the optimum value [Gel-
man, 1997] for γn, vϕ and γo, not surprisingly high for k as it was already the case in simulated
results, but quite high for r0 which may require a slightly finer tuning.

Finally, concerning the uncertainties on the PSF parameters we derive from the samples,
we notice that the uncertainty on vϕ stays to the same level than for simulated images around
0.01 rad2, whereas the uncertainty on r0 has strongly increased (from 1 cm on simulated data
to 5 cm here), which is probably partly due to the potential local minima mentioned above,
whereas fixing p still pretty much sets vϕ due to their correlation discussed in Chapter 5.

6.1.4 Results on restored image, for experimental astronomical image

Data and restored object are shown in Figure 6.3. We recognize the same surface features
as from the synthetic view of Vesta (built by OASIS after NASA’s Dawn spacecraft data) in
Figure 5.1. In this experimental case, the bright edge corona starts to appear (on the left side),
and the image is slightly granular. This may be due to a slight over-deconvolution i.e. to a
slight under-estimation of the OTF. This bright edge also appears on the image restored by
P-AMIRAL, and is a typical feature we observe on images which are over-deconvolved.
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Figure 6.3 – Left: Vesta observed by SPHERE/Zimpol on the European Very Large Telescope
(VLT) in Chile [Fétick, 2019b]. Right: restored object with the estimated PSF.

6.2 Results on experimental satellite data

6.2.1 Description of the setup and the data

Finally, we test our method on an experimental image of the ENVISAT satellite. ENVISAT
is a large satellite (26 m-long) evolving at around 800 km, it was launched in 2002 and is no
more controlled since 2012, which makes it the largest space debris in orbit today.

Figure 6.4 – CAD image of ENVISAT provided by ESA

The image we are processing here was taken at the Observatoire de la Côte d’Azur, using
the 1.5 m MéO telescope with ONERA’s ODISSEE AO system [Petit, 2020], which parameters
are given in Chapter 1, in Table 1.3.

With these parameters, one can compute ENVISAT’s size in arcsec and compare it to a
resolution element λ/D: ENVISAT is approximately 26 m/800 km × 3600× 180/π ≈ 6.7 rad at
the zenith, and λ/D = 850 nm/1.5 m × 3600 × 180/π ≈ 0.12 rad. ENVISAT is, at the zenith,
approximately 6.7/0.12λ/D ≈ 127 pix.

For this study, we fix hyperparameter p to a reasonable value for satellites (p = 2.5), and
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run here again the Gibbs sampler for 500 000 iterations.

6.2.2 Results on image PSD, for experimental satellite image

Figure 6.5 – PSD model and Envisat empirical image PSD averaged azimuthally, in dashed line.

As in the experimental astronomical case, we start by comparing the empirical image PSD to
our model in Figure 6.5. We have a globally good image PSD fitting of the image PSD model to
the empirical Envisat image PSD. The oscillations of the empirical image PSD are likely to come
from oscillations of the OTF, which are consistent with the exposure time (≈ 500 ms) which is
short with respect to turbulence residuals averaging, and constitutes a deviation to the infinite
exposure assumption of our AO-corrected PSF model (but as explained in Chapter 1, this small
duration is constrained by the time scale of evolution of satellite attitude and rotation). These
oscillations might also come partly from the spectrum of the object itself, showing one limitation
of our current method. Indeed, the current object PSD model being azimuthally symmetric, it
is not adapted for elliptical or elongated objects (meaning, with an asymmetric PSD).

6.2.3 Results on parameters, for experimental satellite image

Parameter m± σ τacc

γn (ph−2) 8.21×10−3 ± 3.16×10−5 22%
r0 (m) 0.08 ± 0.011 20%
vϕ(rad2) 0.89 ± 0.01 45%
γo (ph−2) 2.21×10−11 ± 8.90×10−12 47%
k 9.00 ± 0.94 96%

Table 6.2 – Mean value and associated standard deviation for γn, r0, vϕ, γo and k for experimental
ENVISAT image, with p = 2.5.

After the sanity check on the image PSD, we now have a look at the estimated parameters
and the derived uncertainties. Our results on the estimated parameters, the uncertainties and
the acceptation rates are given in Table 6.2.
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Figure 6.6 – From top to bottom: γn, γo, k, vϕ and r0. Left: chain of samples for experimental
satellite image. Right: corresponding histogram.

Results obtained on PSF parameters are slightly different from the results obtained with
P-AMIRAL which we ran for the same conditions: r0 = 0.08 m here instead of 0.06 m and
vϕ = 0.88 rad2 here instead of 0.93 rad2. Concerning the chains, just as in the experimental
astronomical case, we notice that the convergence of the parameters are satisfactory except for
r0 which seems to require way more iterations to converge in the experimental case, compared
to simulations in Chapter 5. Finally, determining which method is the closest to the “truth”
would require to study furthermore additional data giving information over r0 and/or vϕ such
as telemetry data.

The acceptance rate here seems correct for all parameters except k, close to the ones obtained
in the simulated case, giving us confidence in the parameters’ step tuning. Finally, the derived
uncertainties on PSF parameters also seem to be in a reasonable range: uncertainties on vϕ are
small again due to the p and vϕ correlation, and we are expecting a precision close to 1 cm for
r0.

6.2.4 Results on restored image, for experimental satellite image

Finally, concerning the restored image, as shown in Figure 6.7, we retrieve some elements of
the satellite, and as we can check on the CAD model of Envisat in Figure 6.4, the bright spots
we obtain on the restored image indeed correspond to instruments and antennas on its surface.
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Figure 6.7 – Left: Envisat observed by ODISSEE at the OCA [Petit, 2020]. Right: restored
object.
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Chapter 7
Adding prior information on the object:
support constraint

In this chapter, we study the impact of a support constraint as an additional prior
information on the object. In the first section, we discuss the different possibilities
to model this information. However, any option chosen in Section 1 requires the
computation of truncated matrices TAT t which we develop in Section 2. Finally,
Section 3 gives results brought by adding a known support, comparatively to the
classic marginal MAP estimation done by P-AMIRAL, on the estimated parameters.
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Adding information on the object, by means of constraints on it, can be particularly relevant
and helpful for its estimation. In our case, we could add for instance a positivity constraint (the
sought object only having positive-valued pixels) or a support constraint (the object is on a dark
background, where pixels are equal to zero). Concerning the latter constraint, this support can
be provided elsewhere (from additional information on the object, or based on another object
restoration prior to the one we are performing), or can also be estimated along with the other
parameters. In this chapter, we focus on the impact of a support constraint when the support
is given, and describe several options in order to incorporate the estimation of the support to
our framework.

7.1 Modelling the support constraint

7.1.1 Rewriting the imaging model

We still consider the same imaging model given in Equation 1.13, reminded here:

i = Ho + n

We consider that our true object o comes from the truncation of a “full” object which is
then put on a dark background. The “full” object which has the same number of pixels N as
o, is named hereafter oF , and its truncated version which only has M pixels (corresponding to
the number of pixels in the support) is named ō. We can also write the rectangular truncation
M × N matrix T , naturally giving T t the zero-padding matrix. The size of this matrix, and
more globally the number of pixels in the estimated support M depends on the labels, named
ℓ hereafter. The labels correspond to a categorization of the pixels, in our case there are two
different categories: either in the support, or out of it. They are either known or estimated with
the other parameters, by the method. We can then write that:

i = HT t
ℓ ō + n (7.1)

i = HT t
ℓ TℓoF + n (7.2)

7.1.2 Marginal approach

One possible approach to take into account the support is to adapt the marginal approach
described in Chapter 2 and used throughout the manuscript, but this time using Equation 7.2.
The full object oF is still the Gaussian field considered previously (from which we are “cutting”
a piece in the middle, corresponding to the truncated object ō).

Remark. If Y is an affine transformation of X ∼ N (µ, Σ): Y = c + BX, then Y has a
multivariate normal distribution with mean expected value c + Bµ and covariance BΣBt.

Given that the full object is Gaussian, o = HT tT oF is also Gaussian. Noise being Gaussian,
and taken independent from the object, the support and the PSF, i = HT tT oF +n is Gaussian,
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therefore the marginal likelihood writes:

p(i|γn, r0, vϕ, γo, k; ℓ) = (2π)−N/2 det(Ri)−1/2 exp(−1
2(i−mi)tR−1

i (i−mi)) (7.3)

with mi = HT tT moF and Ri = HT tT RoF T tT Ht + Rn.
One can notice that marginalizing over the full object oF , or the truncated object ō gives

the same marginalized likelihood, so leads to the same approach.
For the hyperparameters and PSF parameters, given that we do not have additional knowl-

edge on them, we choose to take uniform priors for γn, γo, k, r0 and vϕ.
The posterior distribution in the marginal case for any unknown parameter writes, using the

marginal likelihood and the corresponding prior, as:

f(θ|i, θ ̸=θ; ℓ) ∝ f(θ) det(Ri)−1/2 exp(−1
2(i−mi)tR−1

i (i−mi)) (7.4)

Unlike in previous chapters, here the marginal likelihood can not be computed simply using
FFTs and requires to manipulate the determinant and the inverse of a N ×N matrix Ri, which
is something we want to avoid. Thus, we are using the Woodbury matrix identity, to rewrite
R−1

i while only inverting smaller (M ×M) matrices:

R−1
i = (HT tT RoF T tT Ht + γ−1

n IN )−1

= γnIN − γ2
nHT t((T RoF T t)−1 + γnT HtHT t)−1T Ht (7.5)

Moreover, we can also rewrite det(Ri) using the matrix determinant lemma, in order to
compute only determinants of M ×M matrices:

det(Ri) = det(HT tT RoF T tT Ht + γ−1
n IN )

= γ−N
n det(γnHT tT RoF T tT Ht + IN )

= γ−N
n det(γnT RoF T tT HtHT t + IM ) (7.6)

7.2 Computing TAT t matrices: different implementations

As shown in the previous section, we need to compute M ×M matrices resulting from the
truncation of a N × N matrix A: T AT t. Indeed, the computation of T AT t matrices, either
T HtHT t or T RoF T t, is particularly crucial as they have to be computed and updated of-
ten (either with the PSF parameters update, the object PSD parameters update or the labels
update), in order to draw the samples of the parameters. This section describes the imple-
mentations of the T AT t-form computation, aiming at gaining time over this crucial element.
They are provided in Python in the following section, but can be easily adapted to any other
programming language.
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7.2.1 Naive versions, in the spatial and the Fourier domain

The naive implementation of such a matrix is to compute it element-wise. This is done
by looping twice over the pixels in the support: we compute for each elements p and q in the
support, the corresponding element of the matrix 1t

pT AT t1q. This can be done in both spatial
and Fourier domain.

However, in the spatial domain, it implies to have access to A which is a big matrix (N ×N)
which is not always possible. In the case when A can be splitted into two matrices, for instance
for A = HtH, computing 1t

pT HtHT t1q is feasible: 1t
pT Ht corresponds then to the PSF,

shifted so that it is centered now on the pixel p, therefore 1t
pT HtHT t1q computes the (p,q)

element of the autocorrelation of the PSF.

1 import numpy as np
2

3 def compute_TATt_spatial (psf ,M, sup_coord ):
4 # computes the autocorrelation element -wise from the PSF
5 # INPUTS : PSF , M= number of pixels in the support , sup_coord =(x,y) coordinates

of pixels within the support
6 # REMARK : M can also be computed from sup_coord as M = len( sup_coord [0]).
7 # OUTPUT : TATt
8

9 tatt = np.zeros ((M,M))
10 for p in range(M):
11 xp = sup_coord [0][p]
12 yp = sup_coord [1][p]
13 psfp = np.roll(np.roll(psf ,yp ,axis =0) ,xp ,axis =1)
14 for q in range(M):
15 xq = sup_coord [0][q]
16 yq = sup_coord [1][q]
17 psfq = np.roll(np.roll(psf ,yq ,axis =0) ,xq ,axis =1)
18 tatt[p,q] = np.sum(psfp*psfq)
19 return tatt

Listing 7.1 – Python implementation of TATt computation in the spatial domain

To switch from the spatial to the Fourier domain, one can rewrite the computed element as
1t

pT F tF HtHF tF T t1q. This spatial shifting 1q corresponds to a phase shifting in the Fourier
domain F T t1q, and F HtHF t is the squared norm of the OTF. Computing 1t

pT HtHT t1q

thus only requires to do a scalar product between the phase shifts and |h̃|2.

1 def dirac2D (x,y,N):
2 d = np.zeros ((N,N))
3 d[y,x] = 1
4 return d
5

6 def myfft2 ( spatial ):
7 return np.fft.fft2( spatial )/ spatial .shape [0] # normalized to respect Parseval

’s theorem
8

9 def compute_TATt_Fourier (psd ,M, sup_coord ):
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10 # computes each (p,q) element of TATt = (1p)tTATt (1q)
11 # INPUTS : psd =| OTF |^2 or object PSD , M= number of pixels in the support ,

sup_coord =(x,y) coordinates of pixels within the support
12 # OUTPUT : TATt
13

14 Npix = psd.shape [0]
15 k,l = np. meshgrid (np. linspace (0,Npix -1, Npix), np. linspace (0,Npix -1, Npix))
16 tatt = np.zeros ((M,M))
17 for p in range(M):
18 xp = sup_coord [0][p]
19 yp = sup_coord [1][p]
20 dp = dirac2D (xp ,yp ,Npix)
21 tf_dp = myfft2 (dp)
22 for q in range(M):
23 xq = sup_coord [0][q]
24 yq = sup_coord [1][q]
25 dq = dirac2D (xq ,yq ,Npix)
26 tf_dq = myfft2 (dq)
27 tatt[p,q] = np.real(np.sum(tf_dp.conj ()*psd*tf_dq))
28 return tatt

Listing 7.2 – Python implementation of TATt computation in the Fourier domain

7.2.2 Faster versions using the autocorrelation

As said previously, computing the T HtHT t corresponds to computing the autocorrelation
of the PSF, only for the elements in the support. Then, instead of computing the autocorrelation
element-wise, we can compute it once for all by computing the inverse Fourier transform: of the
object PSD in the case where we want T RoF T t, and of the squared norm of the OTF to compute
T HtHT t. Then, the corresponding 1t

pT AT t1q element is taken from the pre-computed inverse
Fourier transform.

1 def compute_TATt_autocorr (psd ,M, sup_coord ):
2 # computes TATt using the inverse Fourier transform of the PSD (

autocorrelation )
3 # INPUTS : psd =| OTF |^2 or object PSD , M= number of pixels in the support ,

sup_coord =(x,y) coordinates of pixels within the support
4 # OUTPUT : TATt
5

6 tatt = np.zeros ((M,M))
7 autocorr = np.real(np.fft.ifft2(psd))
8 for i in range(M):
9 for j in range(M):

10 xi = sup_coord [0][i]
11 xj = sup_coord [0][j]
12 yi = sup_coord [1][i]
13 yj = sup_coord [1][j]
14 tatt[i,j] = autocorr [xi -xj ,yi -yj]
15 return tatt

Listing 7.3 – Python implementation of TATt computation using autocorrelation
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To go twice faster, one can also notice that T AT t is symmetric, only requiring then to built
half of the matrix and then easily get the other half (which is true in all methods).

The autocorrelation, computed as the inverse Fourier transform of either the squared OTF
or the object PSD, is a vector with the N different elements which are necessary to compute
the N ×N matrix A. These elements, correctly ordered, correspond to a line (or a column) of
A. Therefore, it is possible to build directly a line (or a column) of T AT t by carefully shifting
the autocorrelation vector, and only keeping the M elements within the support.

1 def compute_TATt_autocorrline (psd ,M,sup_coord , sup_coord_flat ):
2 # computes TATt line by line , using the inverse Fourier transform of the PSD

( autocorrelation )
3 # INPUTS : psd =| OTF |^2 or object PSD , M= number of pixels in the support ,

sup_coord =(x,y) coordinates of pixels within the support , sup_coord_flat =1D
coordinate of pixels within the support (over [0,N-1], N the number of
pixels in the image)

4 # OUTPUT : TATt
5

6 tatt = np.zeros ((M,M))
7 autocorr = np.real(np.fft.ifft2(psd))
8 for i in range(M):
9 # shifting autocorr

10 xi = sup_coord [0][i]
11 yi = sup_coord [1][i]
12 autocorr_roll = np.roll(np.roll(autocorr ,xi ,axis =0) ,yi ,axis =1)
13 # (1D) line reshape
14 line = autocorr_roll .ravel ()
15 # only keeping elements within the support
16 tatt[i ,:] = line[ sup_coord_flat ]
17 return tatt

Listing 7.4 – Python implementation of TATt computation using autocorrelation (line by line)

7.2.3 Comparison of computational time

In order to compare the runtime taken by each version, we run the cProfile profiler for each
implementation. We place ourselves in a realistic work frame, and simulate the observation of
a small asteroid on a 128× 128 image (for this, we undersample the 512× 512 Vesta synthetic
object given in Figure 5.1), using the same observation conditions as in previous chapters. We
also build the corresponding 128 × 128 PSF. T AT t is a M ×M matrix, and the number of
pixels in the support is M = 1442. The Python functions receive as an input either this PSF,
or the squared OTF, as well as M and the coordinates of the pixels within the support.

The results are the following: the naive implementation in the Fourier domain given in
Listing 7.2 is the slowest, computing the matrix in 1187 s, due to the multiples (costly) Fourier
transforms that are done. The naive implementation in the spatial domain in Listing 7.1 takes
131 s, it is much faster than the first one (≈9 times less than the previous method) given that
it does not require to do Fourier transforms, however computing the autocorrelation for each
pixel is costly. The implementation using the (firstly computed) autocorrelation, but computing
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the matrix element-wise, in Listing 7.3 takes 2 s, here again it is way faster than the previous
one (≈70 times less than with Listing 7.1) due to the fact that the costly computation of the
autocorrelation is done once for all. Finally, the implementation computing the matrix line by
line in Listing 7.4 enables us to gain even more time, and takes less than 0.1 s (≈20 times less
than the previous method). All four methods give the same result for T AT t (to the machine
precision).

7.3 Tests with a known support

7.3.1 Marginal MAP estimator including the support constraint

Now that the issue of T AT t matrices computation was tackled, we are ready to study the
impact of a known support on the estimated parameters. We choose to use the marginal ap-
proach described in Subsection 7.1.2 for this study, moreover we choose to use the marginal
MAP estimator, meaning that we are aiming at finding the parameters θ = {γo, k, r0, vϕ, γn}
maximizing the marginal likelihood given in Equation 7.3, for given labels ℓ. This means adapt-
ing P-AMIRAL in order to take into account the modifications induced by the labels, in the
case where they are known.

Given that we are using a marginal MAP estimator, as said in Chapter 2, maximizing the
marginal likelihood is equivalent to minimizing its anti-logarithm. Therefore, using Equation 7.3,
we can write the minimized criterion as:

JmMAPℓ
(θ) = 1

2 ln det(Ri) + 1
2(i−mi)T R−1

i (i−mi)

with mean image mi and image covariance matrix Ri. We then need the inverse of Ri as well
as its determinant, computed as follows:

R−1
i = (HT tT RoF T tT Ht + γ−1

n IN )−1

= γnIN − γ2
nHT t((T RoF T t)−1 + γnT HtHT t)−1T Ht

and det(Ri) = det(HT tT RoF T tT Ht + γ−1
n IN )

= γ−N
n det(γnHT tT RoF T tT Ht + IN )

= γ−N
n det(γnT RoF T tT HtHT t + IM )

following the Weinstein–Aronszajn identity. We then have to invert an M ×M matrix twice,
instead of inverting a (way bigger) N ×N matrix.

7.3.2 Simulation conditions

Given previous expressions, in order to compute the criterion JmMAPℓ
(θ) we need to ma-

nipulate and store M ×M matrices. In order to be able to compute them in practice, we need
M , the number of pixels within support, to be small enough. To have only small supports to
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compute, we decide for these simulations to look at smaller objects: for this, we undersample
the synthetic view of Vesta we show in Figure 1.1 (left), which is originally an image of 512×512
pixels, to finally have a 128× 128 pixels image. The resulting object is given in Figure 7.1.

Figure 7.1 – Left: undersampled synthetic view of Vesta (cropped from 128×128pixels). Right:
simulated AO-corrected observation of the left object using a VLT/SPHERE-like system, with
true parameters: r0 = 0.15 m, vϕ = 1.3 rad2 and γn = 10−4 ph−2.

Apart from the chosen object, the simulation conditions remain the same as in the previous
chapters. The simulated AO system is a “SPHERE-like” AO system, whose parameters are
summed up in Table 3.2. The PSF is again simulated using the PSFAO19 model [Fétick, 2019a].
As done in previous chapters, we take as true PSF parameters are r0 = 0.15 m and vϕ = 1.3 rad2

at the imaging wavelength λ = 550 nm, and noise is taken zero-mean, additive, white and
Gaussian with a variance equal to the mean value of the object. We simulate several noise levels,
meaning several mean fluxes of the object Fo/N = 1/γn = [102, 103, 104] ph (photons), which
correspond respectively to slightly pessimistic/low, reasonable and slightly optimistic/high flux
levels.

As in previous chapters, all PSF and PSD parameters are estimated following the marginal
method except the object PSD power which is fixed to p = 3 here also.

The object PSD parameters are initialized to the typical values we are excepting for these
parameters: k is initialized to 1, γo to γo = N/F 2

o . γn is initialized to its true value N/Fo.
The PSF parameters are initialized to their extrema values giving the sharpest PSF (leading to
the most under-deconvolved image): thus, r0 is initialized to its maximum value (the weakest
turbulence) 1.50 m and vϕ is initialized to its minimum value (the smallest variance meaning
the best AO correction) 0.5 rad2. The aim of such an initialization is to clearly see the impact
of adding the support constraint on PSF parameters, putting aside the additional difficulties
brought by the hyperparameters.

7.3.3 Results using the true support

To begin with, we compare the results we obtain with and without the support constraint,
using as known support the true one, with the highest mean flux 104 ph (photons), to start by
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a favorable situation where the noise impact is the smallest. The results on the parameters are
given in Table 7.1.

Parameter True Estimated without support Estimated with support
γn (ph−2) 1.00× 10−4 1.02× 10−4 9.94× 10−5

r0 (m) 0.15 1.50 0.15
vϕ(rad2) 1.30 1.25 1.29
γo (ph−2) - 5.16× 10−12 1.27× 10−13

k - 0.34 0.21

Table 7.1 – True (if available) and estimated values for γn, r0, vϕ, γo and k, without and with
the support constraint (using the true support), for Fo/N = 104 ph.

To begin with, we notice that γn and vϕ are well estimated in both cases, with an error
below 4% on vϕ and equal to 2% on γn without the support constraint (with P-AMIRAL), and
an error below 1% on vϕ and equal to 6% on γn with the support constraint. On the contrary,
the estimated r0 without the support constraint hits the upper bound which is ten times higher
than the true value. P-AMIRAL, which was working on 512× 512 pixels images, seems to have
trouble working on smaller objects, as also discussed in [Lau, 2023]. However, using the support
constraint, the estimation of r0 is then very satisfactory as it exactly gives the true value. Thus,
adding the support highly improves the PSF estimation, and enables one to have a satisfactory
PSF estimation even for smaller objects.

7.3.4 Results using approached supports (under/over estimated)

However, in practice it is quite unlikely to get the true support, which highly motivates
to pursue the study for several supports, underestimated or overestimated. Therefore, in this
subsection we run the same marginal MAP method incorporating the support constraint, but
using an eroded as well as a dilated version of the true support. Using a dilated support means
that some pixels in the background (close to the edge of the object) are said to be in the object,
whereas using an eroded support means on the contrary that some pixels on the edge of the
object are said to be in the background. Both the erosion and the dilation kernel are of size
7 × 7 meaning a square of size 7 = 1 + 2 × samp = 1 + 2 × λ/D, with λ/D corresponding to
the Full Width at Half Max (FWHM) of the Airy disk, making a good approximation of the
uncertainty we have around the support.

As previously, the results on the parameters are given in Table 7.2.

Parameter True Dilated support Eroded support
γn (ph−2) 1.00× 10−4 1.00× 10−4 1.00× 10−5

r0 (m) 0.15 0.15 0.16
vϕ(rad2) 1.30 1.30 3.00
γo (ph−2) - 3.78× 10−14 6.10× 10−16

k - 400 0.0002

Table 7.2 – True (if available) and estimated values for γn, r0, vϕ, γo and k, with the support
constraint, using a dilated and an eroded version of the true support, for Fo/N = 104 ph.
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Figure 7.2 – Left: Eroded support using a 7 × 7 kernel, meaning an erosion of λ/D, M = 955.
Center: True support, M = 1442. Right: Dilated support using a 7× 7 kernel, M = 2001.

We notice, just as in the previous subsection with the true support, that r0 estimation is very
satisfactory: very close even equal to the true value. Concerning the noise level and the other
PSF parameter, they are very well estimated when using the dilated support. However, using
the eroded support, the estimated vϕ and γn are far from the true value: the residual phase
variance hits the upper bound and the noise precision is estimated ten times below the true
value, whereas they were until now very well estimated even without the support constraint.
We explain this as the consequence of assigning the background label to bright pixels in the
object. Under our hypotheses, this background “brightness” can then only be modeled by a
higher noise level (higher variance, lower precision γn), getting closer to the signal level. Thus,
in order to compensate for this higher noise level and to still fit the image PSD (which is done
in our method, as explained in Chapter 2), the object PSD slope p being fixed, the OTF slope is
flattered: thus, the OTF is higher on medium-high frequencies, meaning that the AO correction
level is better, leading to a smaller variance vϕ.

7.3.5 Tests with different noise levels

In the previous subsection, we simulated the observation of Vesta with a rather high mean
flux level Fo/N = 104 pix. We now do the same simulations but here imposing a smaller mean
flux: Fo/N = 103 pix and Fo/N = 102 pix, to look at the impact of noise on the results. The
results obtained with Fo/N = 103 pix are very similar to those obtained with Fo/N = 104 pix,
thus we only display here the results on parameters for Fo/N = 102 pix in Table 7.3.

Here again, we notice that γn and vϕ are quite well estimated, without and with the constraint
support with either the true or the dilated support. However, with this higher noise level, the
differences between the marginal MAP estimation with or without the support constraint are
also more visible. Indeed, the error on γn without the constraint support is around 8% whereas
it is closer to 13%-14% with the support constraint (true or dilated support). Concerning the
error on vϕ, it is around 5%-6% with the support constraint (true or dilated support), whereas
it is twice higher (11%) without. For the eroded support, here again the estimated γn is way
lower than the true value and the estimated vϕ hits the upper bound. Finally, concerning r0,
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Parameter True Without Sup. True Sup. Dilated Sup. Eroded Sup.
γn (ph−2) 1.00× 10−2 9.92× 10−3 9.86× 10−3 9.87× 10−3 6.08× 10−3

r0 (m) 0.15 1.50 0.15 0.15 0.15
vϕ(rad2) 1.30 1.44 1.23 1.38 3.00
γo (ph−2) - 4.25× 10−8 3.95× 10−9 7.83× 10−10 6.10× 10−12

k - 0.5 0.07 0.8 0.006

Table 7.3 – True (if available) and estimated values for γn, r0, vϕ, γo and k, without and
with the support constraint, using the true support, a dilated and an eroded version of it, for
Fo/N = 102 ph.

the estimated value without the support constraint hits the upper bound here again. Using the
support constraint, the estimation of r0 is very satisfactory as it exactly gives the true value,
for the true and both approached supports.

Overall, this shows that the support can be known approximately, and still give very sat-
isfactory results on the Fried parameter r0 which is the one P-AMIRAL could not estimate
correctly. This study also shows that slightly overestimating the support (including some back-
ground pixels in the true support) leads to better results than underestimating it (removing
some pixels from the true support, into the background), due to the fact that the latter leads
to an overestimation of noise level and thus of the AO correction level in order to fit the image
PSD in global.

7.3.6 Estimating p

As said previously, one motivation for including the support constraint is to differentiate
better the object contribution from the PSF contribution. This strong information on the object
would enable the estimation of even more parameters. For instance, while we had to work
in a mostly unsupervised mode using the previous method, we could think about estimating
hyperparameter p using the support constraint.

Using the same simulations with the smallest mean flux Fo/N = 102 pix, we now look at the
results in the fully unsupervised mode displayed in Table 7.4.

Parameter True Without Sup. True Sup. Dilated Sup. Eroded Sup.
γn (ph−2) 1.00× 10−2 9.94× 10−3 9.91× 10−3 9.94× 10−3 6.84× 10−3

r0 (m) 0.15 1.50 0.15 0.15 0.16
vϕ(rad2) 1.30 0.5 1.23 1.36 2.94
γo (ph−2) - 2.73× 10−8 1.27× 10−9 8.53× 10−10 6.10× 10−12

k - 1.30 3.80 1.33 0.002
p - 3.59 3.49 2.93 2.00

Table 7.4 – True (if available) and estimated values for γn, r0, vϕ, γo, k and p, without and
with the support constraint, using the true support, a dilated and an eroded version of it, for
Fo/N = 102 ph.

As expected, the results without the constraint support are not satisfactory for both PSF
parameters, the r0 hits the maximum bound as before, and we find the same tendency as in
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Chapter 5 for vϕ and p in the fully unsupervised mode due to their correlation. Using the support
constraint, the estimation of r0 is very satisfactory as it gives almost exactly the true value, for
the true and both approached supports. Moreover, as in the previous case, the estimation of
vϕ is also very satisfactory using the true and the dilated support. Indeed, if the support is
under-estimated, the method tries to compensate with a wider PSF thus a lower AO correction
level (higher vϕ) and a higher noise variance (lower γn) in order to fit the image. Finally, the
estimated p using the dilated support is very close to the reasonable p = 3 for asteroids, and
even closer to the optimal value p = 2.91 found in the fully supervised mode [Fétick, 2020b].
We believe that the value of p found using the true support corresponds to the PSD decrease of
the object texture meaning the PSD decrease that the full object would have: indeed, inside the
object there are no sharp edges thus the PSD decrease is faster (corresponding to a bigger p).

As a conclusion, adding the support constraint highly improves the PSF estimation, and
enables one to have a satisfactory PSF estimation even for smaller objects and in the fully un-
supervised mode which was not possible with the previous method P-AMIRAL. Similar results
have been observed for different noise levels and using different known supports, suggesting that
the support constraint impacts greatly the PSF estimation (towards the true PSF) even in the
case of stronger noise or approximated support. Again, slightly overestimating the support (in-
cluding some background pixels in the true support) leads to better results than underestimating
it (removing some pixels from the true support, into the background), due to the image fitting
done by the method.

7.4 Including the labels’ estimation: some elements

Given the improvement brought by the support information shown in the previous result sec-
tion, one of the next step would then be to estimate the support along with the other parameters.
This section gives some elements in order to include the estimation of the labels.

7.4.1 Label priors

In Section 7.1, we re-used the marginal framework developed in previous chapters and
adapted it to incorporate the support. One option to estimate the support would then be
to add the estimation of the labels to this marginal approach. For the labels, one of the most
commonly used model in the probabilistic approaches is the Potts model [Geman, 1984; Ayasso,
2010; Altmann, 2013]: the object is described as a series of homogeneous regions, where the
pixels have the same label. As said previously, the N pixels in the object can belong to two
different classes, either in or out of the support. The Potts prior writes as follows:

f(ℓ|βℓ) = C(βℓ)−1 exp(βℓν(ℓ)) (7.7)
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βℓ is a “correlation” parameter, it is tuning the typical size of a region. ν(ℓ) counts the number
of identical neighbors:

ν(ℓ) =
∑
p∼q

δ(ℓp; ℓq) (7.8)

where δ is the Kronecker function, and ∼ defines a neighborhood relation, here we take the
four nearest neighbors into account. Finally, C(βℓ) is a normalization constant, which can be
pre-computed numerically:

C(βℓ) =
∑

ℓ

exp(βℓν(ℓ)) (7.9)

7.4.2 Joint approach, with full object

Another possible approach to estimate the support is to return to a joint estimation frame-
work as in Chapter 2, where the object is explicitly estimated with the PSF, but this time using
Equation 7.2. The object we consider can either be the full object oF or the truncated object
ō, leading to different expressions for the posterior distributions.

7.4.2.1 Object prior

As said previously, the full object oF is still the Gaussian field considered previously. There-
fore we can use the same Gaussian prior for the full object as in Equation 4.2:

p(oF |γo, k) = (2π)−N/2 det(RoF )−1/2 exp(−1
2(oF −moF )tR−1

oF
(oF −moF ))

=
( γo

2π

)N/2 ∏
f

(
S̄o(f)−1/2 exp

[
− γo

2 S̄o(f)−1|õF (f)− m̃o(f)|2
])

(7.10)

7.4.2.2 Parameters priors

For the hyperparameters and PSF parameters, several options are possible. If we do not
have additional knowledge on them, one possibility is to take uniform priors which are not
very informative priors, just as done previously. Another option is to choose wisely the prior
distribution in order to have a posterior distribution which is easy to compute at the end. In our
case, one can notice that, specifically in the joint approach, using a Gamma law for γn and γo

priors results in having a Gamma law for their posterior distribution, and the posterior Gamma
law parameters can be easily written from the parameters of the prior. Such priors which are
in the same family as their associated posteriors (given the likelihood) are called conjugated
priors [Kass, 1996].

Therefore, we choose to take uniform priors for k, r0 and vϕ, and Gamma priors for γn and
γo : f(γn) = G

αprior
n ,βprior

n
(γn) and f(γo) = G

αprior
o ,βprior

o
(γo). A Gamma prior probability density

function writes as follows:
f(γ) = β

Γ(α)γα−1 exp(−βγ)1+(γ)
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with Γ the Gamma function, and 1+(γ) the indicator function. The Gamma distribution be-
comes uninformative when α→ 0 and β → 0: in this case it becomes a Jeffreys law f(γ) = 1/γ.

7.4.2.3 Likelihood

Knowing the labels, the PSF, and the object, given the noise precision, the likelihood is still
Gaussian and writes, as previously in Equation 4.3:

p(i|oF , ℓ, γn, r0, vϕ) =
( γn

2π

)N/2
exp(−γn

2 ||i−Ho||2)

=
( γn

2π

)N/2
exp(−γn

2 ||i−HT t
ℓ TℓoF ||2) (7.11)

We sum up the prior dependencies of the different parameters in the following hierarchical
model:

oF

γo k

r0 vϕ γn ℓ

i

Figure 7.3 – Hierarchical model summing up the inter-dependency between the full object, the
image, the labels and all parameters.

7.4.2.4 Conditional posterior distributions

Given the likelihood and the prior distribution, we can write the posterior distributions using
the Bayes rule.

For any PSF parameter θh, only the prior of the considered parameter and the likelihood
depend on it, so its posterior writes:

f(θh|i, oF , ℓ, θ ̸=θh
) ∝ f(θh) exp(−γn

2 ||i−HT t
ℓ TℓoF ||2) (7.12)

with θ ̸=x all parameters except the considered parameter x.
For the labels, similarly to the previous computation, the posterior writes:

f(ℓ|i, oF , θ) ∝ C(βℓ)−1 exp(βℓν(ℓ)) exp(−γn

2 ||i−HT t
ℓ TℓoF ||2) (7.13)

For any object parameter θo except γo (for instance here, k and p if estimated), only the
prior of θo and the object prior depend on it, so the posterior writes:

f(θo|i, oF , ℓ, θ ̸=θo) ∝ f(θo)
∏
f

(
S̄o(f)−1/2 exp

[
− γo

2 S̄o(f)−1|õF (f)− m̃o(f)|2
])

(7.14)
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For γo and γn, as said in their prior sections, their posterior is also a Gamma law, and its
parameters α and β change as follows:

f(γn|i, oF , ℓ, θ ̸=γn) ∝ γαn−1
n exp(−βnγn)1+(γn) (7.15)

with αn = N/2 + αprior
n and βn = ||i−HT t

ℓ TℓoF ||2

2 + βprior
n , and

f(γo|i, oF , ℓ, θ ̸=γo) ∝ γαo−1
o exp(−βoγo)1+(γo) (7.16)

with αo = N/2 + αprior
o and βo =

∑
f

S̄o(f)−1|õF (f)− m̃o(f)|2

2 + βprior
o .

Finally, for the full object, its prior and the likelihood being Gaussian, its posterior is also
Gaussian and writes as follows:

p(oF |i, ℓ, θ) ∝ det(ΣoF )−1/2 exp(−1
2(oF − µoF )tΣ−1

oF
(oF − µoF )) (7.17)

with Σ−1
oF

= γnT t
ℓ TℓH

tHT t
ℓ Tℓ + R−1

oF
and µoF = ΣoF (γnT t

ℓ TℓH
ti + R−1

oF
moF ).

Σ−1
oF

is a N×N matrix, so unless the considered image is small enough, computing its inverse
is tricky even hardly possible, thus we want to avoid these computations as much as possible.
Therefore, we are using the Woodbury matrix identity to write ΣoF in a more convenient way:

ΣoF = (γnT t
ℓ TℓH

tHT t
ℓ Tℓ + R−1

oF
)−1

= RoF − γnRoF T t
ℓ ((TℓH

tHT t
ℓ )−1 + γnTℓRoF T t

ℓ )−1TℓRoF

Then, in order to sample this high-dimensional Gaussian object, one possibility is to use a
Perturbation-Optimization algorithm as in [Orieux, 2012; Gilavert, 2013].

7.4.3 Joint approach, with truncated object

As said previously, one could also return to the joint estimation framework but considering
the truncated object ō. As ō is a linear transformation of the full object oF (for which we took
a Gaussian prior in Subsection 7.4.2, then the prior for ō is also Gaussian given the remark in
Subsection 7.1.2.

The prior on the truncated object writes:

p(ō|γo, k, ℓ) = (2π)−Mℓ/2 det(Rō)−1/2 exp(−1
2(ō−mō)tR−1

ō (ō−mō)) (7.18)

with Rō = TℓRoF T t
ℓ and mō = TℓmoF .

We choose the same priors for labels as well as parameters and hyperparameters, except for
γo for which we decide to use a uniform prior just like the other object PSD parameters, for
simplicity. The likelihood given the truncated object is slightly modified from Equation 7.11:

p(i|ō, ℓ, γn, r0, vϕ) =
( γn

2π

)N/2
exp(−γn

2 ||i−HT t
ℓ ō||2) (7.19)
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Chapter 7. Adding prior information on the object: support constraint

The posterior distributions are also slightly modified. For any PSF parameter θh, only the
prior of the considered parameter and the likelihood depend on it, so its posterior writes:

f(θh|i, ō, ℓ, θ ̸=θh
) ∝ f(θh) exp(−γn

2 ||i−HT t
ℓ ō||2)

For any object parameter θo (γo included), similarly again, only the prior of θo and the object
prior depend on it, so the posterior writes:

f(θo|i, ō, ℓ, θ ̸=θh
) ∝ f(θo) det(Rō)−1/2 exp(−1

2(ō−mō)tR−1
ō (ō−mō))

For γn, as said previously, its posterior is also a Gamma law, and its parameters α and β

change as follows:
f(γn|i, ō, ℓ, θ ̸=γn) ∝ γαn−1

n exp(−βnγn)1+(γn)

with αn = N/2 + αprior
n and βn = ||i−HT t

ℓ ō||2

2 + βprior
n .

Finally, for the truncated object, its prior and the likelihood being Gaussian, its posterior is
also Gaussian and writes as follows:

p(ō|i, ℓ, θ) ∝ det(Σō)−1/2 exp(−1
2(ō− µō)tΣ−1

ō (ō− µō)) (7.20)

with Σ−1
ō = γnTℓH

tHT t
ℓ + R−1

ō and µō = Σō(γnTℓH
ti + R−1

ō mō).
The biggest difference with the full object case is the posterior distribution for the labels. In

this case, the posterior writes:

f(ℓ|i, ō, θ) ∝ C(βℓ)−1 exp(βℓν(ℓ)) exp(−γn

2 |i−HT t
ℓ ōℓ|2)(2π)−Mℓ/2

× det(TℓRoF T t
ℓ )−1/2 exp(−1

2(ō− TℓmoF )t(TℓRoF T t
ℓ )−1(ō− TℓmoF ))

As one can notice, the labels intervene way more often, and particularly they change the
number of pixels M we are considering (because they change the support).

The hierarchical model in the truncated object case also illustrates this not common depen-
dency.

ō

kγo ℓ

r0 vϕ γn

i

Figure 7.4 – Hierarchical model summing up the inter-dependency between the object, the image
and all parameters.
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7.4. Including the labels’ estimation: some elements

7.4.4 Short discussion

Even though the joint estimator was abandoned in favour of the marginal estimator, due
to the joint estimator’s degeneracy in the absence of constraints, adding the support informa-
tion changes the situation. Indeed, introducing this constraint complicates the expression of
the posterior distributions using the marginal estimator, given in Equation 7.4. The posterior
expressions using the joint estimator, given in Equations 7.12–7.17, especially considering the
full object, are way simpler. For the easiest cases, one can even use conjugated priors as said
in Subsection 7.4.2.2. However, using the joint estimator also implies to sample the object ad-
ditionally to all the estimated parameters, which may be done by a Perturbation-Optimization
algorithm. Further investigation has to be done in order to be able to choose the most efficient
approach between the joint and the marginal ones.
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Work summary

The presented work in this thesis was done in the context of adaptive-optics-corrected image
restoration, for astronomical and satellite observations. Indeed, restoring AO-corrected images
is particularly difficult, as it often suffers from the lack of precise knowledge on the point spread
function, in addition to usual difficulties. An efficient approach is to marginalize the object
out of the problem and to estimate the PSF and (object and noise) hyperparameters only, be-
fore deconvolving the image using these estimates. Recent works [Blanco, 2011; Fétick, 2020b]
have implemented such a marginal blind deconvolution method: AMIRAL, based on the MAP
estimator, which maximizes the (marginal) posterior distribution. This estimator was also com-
bined with a parametric model of the PSF [Fétick, 2019a], leading to the parametric version of
AMIRAL (P-AMIRAL).

However, these two versions (AMIRAL and P-AMIRAL) were used in different contexts
and were not compared to each other so far. Additionally, the marginal MAP method only
gives access to the maximizer of the marginalized distribution, and does not enable one to infer
global information on the posterior distribution. Finally, this previous method does not take
into account some constraints on the object, such as a support constraint, which could improve
the estimation quality. In this thesis, we extended the previous method P-AMIRAL, in order to
derive more information on the estimations.

Firstly, in Chapter 1, we gave a statistical description of the atmospheric turbulence impair-
ing the observations, and defined the Fried parameter r0 describing the turbulence strength. We
also described the principle of AO, partially correcting the turbulent wavefront: the AO cor-
rection is limited by several processes introducing (fitting, temporal, aliasing,...) errors and the
contributions of these errors are summed up by the residual phase variance vϕ, which measures
the quality of AO correction. vϕ and r0 are the two main parameters of the AO-corrected PSF
model we used throughout this work. Finally, we gave the imaging model as well as the main
characteristics of the application cases we study in the rest of the manuscript.

Chapter 2 recalled some elements on image restoration problems. It described the Bayesian
framework we work in as well as two different methods in order to solve the myopic deconvolution
problem: the historical joint MAP method and the marginal MAP method. To finish, it pre-
sented other possible estimators: the MMSE and MMAE estimators, corresponding respectively
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to the posterior mean and median.
In Chapter 3, we presented our contributions to previous method P-AMIRAL: we proposed

a modification of the object PSD model, in order to decouple the parameters in high frequencies:
using the modified model, one of the three parameters is decoupled from the two others, and even
only has a minor impact on the criterion. We also compared the different versions of the previous
method (AMIRAL and P-AMIRAL) on astronomical images, showing that P-AMIRAL gives
slightly better results on simulated data, with less dependency with respect to the initialization,
than AMIRAL: P-AMIRAL under-estimates less the OTF, meaning that the restored object is
less contrasted but has less artefacts. On experimental data, we notice that both versions give
similar results, showing the same tendencies with P-AMIRAL estimating a slightly higher OTF
than AMIRAL.

A significant part of the work was dedicated to the application of a new marginal blind
deconvolution method using MCMC algorithms, extending previous works. Chapter 4 gave the
different priors as well as the likelihood derived from the models we used in this thesis, in order
to compute the marginal posterior distribution. Its expression being complex, its computation
requires the use of numerical methods, thus we used MCMC methods to sample the posterior
distribution. In this chapter, we described the two algorithms we used for this work: the
Random-Walk Metropolis-Hastings algorithm, and the Gibbs algorithm. Finally, we gave some
computational elements to have access to the gradient and the Fisher information, which can
be used in faster MCMC methods.

Using the MCMC methods described previously, we sampled the marginal posterior distribu-
tion and computed the optimal estimator minimizing the mean square error (MMSE estimator).
In Chapter 5, we validated this new estimator on simulated images, for both asteroid and satellite
observation contexts. The new method gives accurate estimations of noise and object hyper-
parameters, as well as satisfactory estimates and derived uncertainties on the OTF, in realistic
conditions of simulation and in both contexts, suggesting the broad applicability of the method.
For the simulated asteroid images, we computed our estimations for several noise realisations,
to check the robustness of our method to noise, both for estimated parameter values and pre-
dicted uncertainties. Additionally, we compared the use of a Random-Walk Metropolis-Hastings
algorithm within or without a Gibbs algorithm, showing that even though the latter needs less
iterations to converge, one iteration being four times more costly than a classical Random-Walk
Metropolis-Hastings iteration, it is preferable to use a Random-Walk Metropolis-Hastings algo-
rithm considering the computational time. Finally, we studied the posterior correlation between
parameters, which enabled us to better understand the difficulties behind the estimation of
hyperparameter p which codes for the decrease of the object PSD. Indeed, as we verified by
changing its value, by trying to estimate it and by plotting the correlation between p and one
of the PSF parameters, we noticed that the PSF estimation quality is sensitive to the choice of
p, which has to be tuned carefully, according to the observed object.

In Chapter 6, we applied the new MMSE estimator to experimental images, in both astro-
nomical and satellite contexts as well: the method is applied to an experimental image of Vesta
taken on VLT/SPHERE, and to an experimental image of Envisat observed using ONERA’s
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AO bench on the 1.54 m-telescope MéO, at OCA. We first checked that for both contexts, the
empirical image PSD fits the image PSD model we use in the method. Contrary to the simulated
case, the convergence of the estimates is way slower and particularly difficult for r0, which may
require to study additional information (coming for instance from telemetry data) in order to
have a more adapted prior distribution for r0. The restored images however show several details
on the surface of the asteroid (craters, albedo) / satellite (bright spots, antennas), which we can
recognize from the synthetic images we have of Vesta and Envisat.

Concerning the posterior correlation between parameters discussed in the results on simu-
lated data, we interpreted it as a difficulty to distinguish the contributions of the object and of
the PSF to the image, the object PSD and the PSF having correlated parameters which impact
the image PSD in the same way. In order to better separate these contributions, we studied
the impact of adding a support constraint on the object, which should help getting rid of the
indeterminacy. In Chapter 7, we discussed different options to model the support constraint,
and gave different computational elements in order to perform the likelihood computation taking
into account the labels. To finish, we tested the impact of several (known) supports, the true
one and reasonable approximations of the support (over and under-estimated), with different
noise levels, on a 128× 128 image. These tests show the great improvement brought by the sup-
port knowledge, even approximate, on the estimated parameters: more particularly, r0, which
was precisely the one that P-AMIRAL could not estimate on the smaller object, is estimated
extremely closely to its true value using the known, true or even approximate, support. Finally,
the support knowledge enables us to estimate the hyperparameter p (that had to be given for
the previous methods) without degrading the estimation of the PSF parameters.

Future outlook

The current results naturally lead to various questions related to the limitations of the
method, thus to possible advances. Some of the prospects, foreseen or ongoing, are given in this
section.

To begin with, we currently sample our parameters using either a Metropolis-Hastings-
within-Gibbs or a Metropolis-Hastings algorithm, but these algorithms are not the fastest ex-
isting in the literature due to the fact that they do not take advantage of the gradient. To
accelerate the convergence, a possible development is to use gradient-based methods, such as a
Metropolis-adjusted Langevin algorithm [Robert, 2004; Vacar, 2011; Vacar, 2016]. We already
provided gradient and Fisher information computation elements in this work, which could be
used to switch from the current to faster methods. Additionally, the sampling methods applied
in Chapters 4 to 6 can also be used in the support constraint framework developed in Chapter 7.
Moreover, for broader results, it would be very meaningful to test our methods on more cases
(namely try more data, different simulation conditions and more initializations).

Secondly, in this work, we supposed that the object PSD was circularly symmetric. How-
ever, some objects (especially satellites) can be far from isotropic and thus it would be worth
considering an anisotropic, 2D PSD model and combining it to the marginal MMSE estimator.
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For instance, an elliptical model was developed in [Lau, 2023] and tested on astronomical im-
ages. In this model, the hyperparameter p, coding for the object PSD decrease in log scale in
medium-high frequencies, has been fixed to 3. In our work, p was fixed to a reasonable value
according to the class of the object (either around 3 for asteroids, or around 2.5 satellites). We
are currently working on an extension of this model, which would include a parameter similar
to the previous p, that could be tuned according to the object class.

Indeed, the PSF estimation is sensitive to the choice of p, likely coming from the difficulty
to separate both object and PSF contributions to the image, as discussed in this work. In order
to enable the estimation of p, as well as of richer prior models for the object (implying the
estimation of even more parameters), adding constraints on the object (namely, support and/or
positivity constraints) seems necessary. Thus, one of the first perspectives would then be to
adapt and use the our current MCMC method in order to estimate the support, that enables
the estimation of p as shown in Chapter 7. Another complementary option would also be to add
prior information on the PSF or on its parameters, using for instance data coming from the AO
system itself (telemetry data).

Lastly, as starting assumptions in this work, we supposed that the PSF was a circularly
symmetric, long-exposure PSF, meaning that the exposure time was bigger than the variation
time of turbulence. These assumptions are somehow questionable in the case of the observation
of low earth orbit satellites. Indeed, the PSF is likely asymmetric due to the fast evolution of
these satellites (possibly fast rotation, short time of appearance) with a strong and directional
wind. Additionally, for these observations it is interesting even necessary to reduce the exposure
time, in order to have a “static” object in the image series and to exploit temporal redundancy
in the series to improve the estimations. The exposure time then becomes closer to or even
falls below the typical variation time of turbulence. Therefore, it would be crucial to adopt an
asymmetric, short(er)-exposure PSF model for these applications. More globally, it could be
key in this case to jointly re-design the system and the post-processing of the images, in order to
work with short-exposure images and restore image (temporal) series, taking into account the
temporal evolution of parameters, or the redundant information, to improve the estimations.
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Appendix A: Gradients and Fisher
information computation

In order to compute the gradient and the Fisher information for each estimated parameter,
we first derive the criterion JmMAP given in Equation 2.8 with respect to the image PSD:

∂JmMAP

∂Si(f) = −1
2( 1

Si(f) −
|h̃(f)õm(f)− ĩ(f)|2

(Si(f))2 )

The gradient with respect γn, γo and k according to the chain rule, is quite easy to write:

∂JmMAP

∂γn
=

∑
f

∂JmMAP

∂Si(f)
∂Si(f)

∂γn
= −1

2
∑

f

( 1
Si(f) −

|h̃(f)õm(f)− ĩ(f)|2

(Si(f))2 ) 1
γ2

n

∂JmMAP

∂γo
= −1

2
∑

f

( 1
Si(f) −

|h̃(f)õm(f)− ĩ(f)|2

(Si(f))2 ) |h̃(f)|2

γ2
o(k + fp)

∂JmMAP

∂k
= −1

2
∑

f

( 1
Si(f) −

|h̃(f)õm(f)− ĩ(f)|2

(Si(f))2 ) |h̃(f)|2

γo(k + fp)2

We also use the chain rule to write the gradient for any PSF parameter:

∂JmMAP

∂θP SF
= ∂

∂θP SF
[−1

2
∑

f

(ln Si(f) + |h̃(f)õm(f)− ĩ(f)|2

Si(f) )]

= −1
2

∑
f

( 1
Si(f)

∂Si(f)
∂θP SF

+ 1
Si(f)

∂|h̃(f)õm(f)− ĩ(f)|2

∂θP SF
− |h̃(f)õm(f)− ĩ(f)|2

Si(f)2
∂Si(f)
∂θP SF

)]

= −1
2

∑
f

( 1
Si(f)(γo(k + fp))

∂|h̃(f)|2

∂θP SF
+ 1

Si(f)
∂|h̃(f)õm(f)− ĩ(f)|2

∂θP SF

− |h̃(f)õm(f)− ĩ(f)|2

(Si(f))2(γo(k + fp))
∂|h̃(f)|2

∂θP SF
)

We now have to compute partial derivatives in the form ∂|ah̃(f) + b|2

∂θP SF
, with a ∈ R and b ∈ R.
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∂|ah̃(f) + b|2

∂θP SF
= ∂

∂θP SF
[ℜ(ah̃(f) + b)2] + ∂

∂θP SF
[ℑ(ah̃(f) + b)2]

= 2ℜ(ah̃(f) + b) ∂

∂θP SF
[ℜ(ah̃(f) + b)] + 2ℑ(ah̃(f) + b) ∂

∂θP SF
[ℑ(ah̃(f) + b)]

= 2ℜ(ah̃(f) + b)× a
∂ℜ(h̃(f))

∂θP SF
+ 2ℑ(ah̃(f) + b)× a

∂ℑ(h̃(f))
∂θP SF

= 2ℜ
{
(ℜ(ah̃(f) + b) + iℑ(ah̃(f) + b))× a(∂ℜ(h̃(f))

∂θP SF
− i

∂ℑ(h̃(f))
∂θP SF

)
}

= 2ℜ
[
(ah̃(f) + b)× a

∂h̃(f)∗

∂θP SF

]

In [Fétick, 2020a], the computation of ∂h̃(f)
∂θP SF

is explicited.

In [Vacar, 2014], the Fisher information is computed in the case where the mean object
om = 0. In this case, given that the OTF (therefore, the PSF parameters) does not appear in
the quadratic term anymore |h̃(f)õm(f)− ĩ(f)|2 = |̃i(f)|2, the first and the second derivative of
the criterion with respect to any parameter θp writes:

∂JmMAP

∂θp
= ∂JmMAP

∂Si

∂Si

∂θp

= −1
2

∑
f

( 1
Si(f) −

|̃i(f)|2

Si(f)2 )∂Si(f)
∂θp

∂2JmMAP

∂θp∂θq
= −1

2
∑

f

∂

∂θq

[
( 1
Si(f) −

|̃i(f)|2

Si(f)2 )∂Si(f)
∂θp

]

= −1
2

∑
f

(
( 1
Si(f) −

|̃i(f)|2

Si(f)2 )∂2Si(f)
∂θp∂θq

+ ∂Si(f)
∂θp

∂Si(f)
∂θq

(
− 1

Si(f)2 + 2 |̃i(f)|2

Si(f)3
))

In our case, we consider a constant mean image, meaning that õm(f) = 0, ∀f ̸= 0. Addition-
ally, we also supposed that h̃(0) = 1 in Chapter 1, meaning that |h̃(f)õm(f) − ĩ(f)|2 does not
depend on the PSF parameters, therefore these expressions of the first and second derivatives
are also valid for any parameter, in the case of a constant om.

Given that the Fisher information writes I(θp, θq) = −Ei|θ
[∂2JmMAP

∂θp∂θq

]
and that Ei|θ[|̃i(f)|2] =

Si(f), the Fisher information is simply:

I(θp, θq) = 1
2

∑
f

1
Si(f)2

∂Si(f)
∂θp

∂Si(f)
∂θq

and can be computed given the derivatives computed previously.
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Appendix B: Calendar and tips for
final-year PhD students

Dear colleague,
Here is a recap of things you must/should do, in chronological order, during the final year of

your PhD. I am writing this recap trying to prevent you from unpleasant, last-minute surprises.
However, this recap is ONERA-related, ED127-related, and non-exhaustive given that it is based
on my personal experience. I hope deep down that the PhD students who will read this will also
modify some items / add more relevant or missing information, maybe even create an online
wiki about it, and that the information will be shared throughout the years. Finally, I would
like to thank my friends who co-wrote/proofread this appendix!

Remark: The given chronology is a backwards chronology starting from the defense date.
Following the rules, the defense date is before the end of your contract (given that you are not
paid afterwards). One often thinks about a thesis extension at least 6 months before the end of
contract = the expected defense date. If you are willing to extend your PhD, I would strongly
recommend to start discussing it early, as it is a long and not necessarily successful process,
especially at ONERA, even if your funding might be coming from external sources. ONERA
has the final word on thesis extensions, no matter the funding.

AT LEAST 7 MONTHS BEFORE: Plan, manuscript language

1) Think about the writing plan with your supervisors, make a detailed plan. It is really
important to think about your writing plan in advance and to start “on time”. This plan must
include buffer time that will be used for: delays (that will occur for sure), reading time for
your supervisors, time to take into account your supervisors’ comments, simulations/lab work
to do or re-do, your vacation (absolutely make sure to plan some! you will need it), your
supervisors’ vacations (they will not stop themselves from taking it and you better know in
beforehand when they are not around to proofread), as well as potential sick leave (we do not
choose when we get sick). Then, the rapporteurs need at least 6 weeks to write their report.
Finally, the doctoral school asks for 1 month between the reports and the defense, in which also
the defense preparation will be done. This means that you should keep about 10 weeks between
your manuscript deadline and your defense date. It is much better to overestimate the buffer
time than to underestimate it.

2) Think about the manuscript language. For instance, you may consider writing in English,
especially if one of your potential reviewers is a non-French speaker, or if you want to ensure
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a broader availability of your manuscript. To write your manuscript in English, you need to
send a request to the doctoral school before you start writing. Additionally, if you write your
manuscript in English, another summary (longer than the abstract) in French is necessary.

4-5 MONTHS BEFORE: Defense committee members

3) Discuss the composition of the defense committee with your supervisors. Be careful of
the constraints to meet (as of 2023): there must be between 4 and 8 committee members, there
should be at least 50% of “rang A”, at least 50% of external people and at least 25% of women.
Afterwards, you need to:

— Contact your doctoral school in order to validate the defense committee,

— Then contact all committee members (with your advisors),

— Once your committee is all set and validated by the doctoral school, make a poll (with all
half-days of your defense month), and send it to your committee,

— Set a defense date with your committee and search for a defense room (you can ask your
supervisors or the doctoral school for ideas).

3-4 MONTHS BEFORE: ADUM form, finalizing the manuscript

4) Fill in the ADUM form for the defense (typically, for contracts that started before October
1st, do this before the summer break). Official deadline, 3 months before the defense date.

5) Contact the rapporteurs regarding the exact manuscript shipping date. Ask if they need
a paper version: if so, get in touch as soon as possible with your supervisors and the secretariat
so that the lab can take care of shipping.
Tip: For postal shipping, give yourself at least 10 days (send it via email to imprimerie@onera.fr),
then take the paper version to the postal service (before the postal collection at 9:00 am).

1-2 MONTHS PRIOR: Preparing the defense presentation

6) Now that you have handed in your manuscript, talk to your supervisors about any sort
of handover (for example code, documentation, ...) that you need to deal with before the end
of your work contract.

7) Fill in the CADO form and upload the first version of your manuscript to it.
8) On ADUM, sign the thesis charter (“charte de thèse”) and the conformity certificate

(“certificat de conformité”), then send it to the doctoral school. Upload the thesis summaries
in English and in French.

9) Start preparing your defense presentation, ask your supervisors how they expect you to
prepare it.
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1 MONTH PRIOR (after receiving the reports): Organizing the
defense

10) On ADUM, check with your supervisors that all the data is correct: defense date and
place, correct spelling for the names and first names of your committee, no abbreviations, exact
rank, etc. This matters because every document that gets out will come from this data in
ADUM, including the diploma.

11) In case some committee members wish to join the defense remotely: ask your doctoral
school if it is possible and check the corresponding options on ADUM. The doctoral school will
then send you documents on the video conference, that you need to sign.

12) Check that the secretariat is booking train/plane tickets for your committee to come
to your defense or at least refunding part of their journey (or ask your supervisors). Your
supervisors will likely organize a formal lunch with your committee on the same day like your
defense.

13) Apart from the official organization, you will likely have other things to take care of too:
Coordinating friends and family coming in for your defense from out of town, the “pot de thèse”
(the official reception right after the deliberation of the committee, including food and drinks
with the defense committee and your guests), your defense party. Ask far enough in advance
whether your lab financially supports the pot de thèse or even organizes it for you. You can
also ask your lab/doctoral school (according to where you booked your defense room) either if
there is a room for the pot de thèse, available the day of your defense and rather close to your
defense room. For all of this, do not hesitate to designate a dedicated buddy or two who can
take care of food and drink organization with/for you, as well as help you find a place for your
defense party. It will be a stressful time, and it can be very helpful to have some of that taken
out of your hands.

2 WEEKS BEFORE: Live stream and final checks

14) If there is a live stream of your defense (and/or if there are committee members remotely),
prepare it in advance and check that it is working. Again, do not hesitate to designate a dedicated
buddy or two who can take care of the stream during your defense.

15) Send invitations to your defense, including the live stream link.
16) Send to the doctoral school / lab secretariat your defense guests list (according to where

you booked your defense room), check that the security has all the required information for your
guests to enter.

17) Check that everything is ready for your defense: paper versions of the manuscript and
water bottles (at least 1 per committee member and 1 for you), computer hardware (microphone,
camera, sound system, laser pointer,...).
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AFTER THE DEFENSE

Congratulations doctor! It is very likely that the defense committee has given you some
comments on your manuscript that you can improve before submitting its final version on
ADUM. You will receive your diploma only:

— after you submit the final version of the manuscript on ADUM,

— after you sign the online release authorization (“autorisation de mise en ligne”),

— after you and your director sign the conformity certificate (“certificat de conformité”) of
the final version of the manuscript. Official deadline, 3 months after the defense date.

AFTER THE END OF CONTRACT

Oftentimes, you will be attributed the “visiteur privilégié” status at ONERA. This means
that you retain access to your ONERA email, ONERA internal systems and your laptop. It can
be helpful if you do not have a personal laptop to do the manuscript edits on. However, bear
in mind that you will be unemployed and unpaid by ONERA, so my recommendation is to get
any technical work (including code handover and documentation) done before. As envisaged by
ONERA organization, the “visiteur privilégié” status is destined to allow the PhD students to
finalize their manuscripts exclusively.
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MOTS CLÉS

restauration d’image, optique adaptative, déconvolution, turbulence, problèmes inverses

RÉSUMÉ

La restauration d’images corrigées par optique adaptative est particulièrement difficile, du fait de la méconnaissance de

la réponse impulsionnelle du système optique (PSF pour point-spread function) en plus des difficultés usuelles. Une

approche efficace est de marginaliser l’objet en dehors du problème et d’estimer la PSF et les hyper-paramètres (liés

à l’objet et au bruit) seuls avant la déconvolution. Des travaux récents ont appliqué cette déconvolution marginale,

combinée à un modèle paramétrique de PSF, à des images astronomiques et de satellites. Cette thèse vise à proposer

une extension de cette méthode. En particulier, j’utilise un algorithme Monte-Carlo par chaînes de Markov (MCMC), afin

d’inclure des incertitudes sur les paramètres et d’étudier leur corrélation a posteriori. Je présente des résultats détaillés

obtenus sur des images astronomiques et de satellites, simulées et expérimentales. Je présente également des premiers

éléments sur l’ajout d’une contrainte de support sur l’objet.

ABSTRACT

Adaptive-optics-corrected image restoration is particularly difficult, as it suffers from the poor knowledge on the point-

spread function (PSF). One efficient approach is to marginalize the object out of the problem, and to estimate the PSF

and (object and noise) hyper-parameters only before the deconvolution. Recent works have applied this marginal decon-

volution, combined to a parametric model for the PSF, to astronomical and satellite images. This thesis aims at extending

this previous method, using Markov chain Monte Carlo (MCMC) algorithms. This will enable us to derive uncertainties on

the estimates, as well as to study posterior correlation between the parameters. I present detailed results on simulated

and experimental, astronomical and satellite data. I also provide elements on the impact of a support constraint on the

object.

KEYWORDS

image restoration, adaptive optics, deconvolution, turbulence, inverse problems
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