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Exercice I — Circulant Matrices. This exercise is devoted to studying the properties of circulant matrices,
more specifically the ones that allow them to be easily diagonalised. This is an important aspect with a great
impact on the practical implementation of various processing methods, the likes of which one finds in spectral
analysis or signal and image deconvolution.

We consider the matrices to be of real elements and of size N × N . First, we will look at circular shift
matrices, and afterwards we will look at the circulant matrices.

Notice — The aim of this exercise is to practice your skills in manipulating matrices and vectors, to remind you
of certain results in linear algebra one should already be acquainted with,. . . and to introduce some properties of
circulant matrices that are useful for the rest of the course. It is not strictly speaking a “math exercice” devoted
to derive or prove the mentioned properties and results.

— Circular Shift Matrices —

We shall start by analysing the circular shift matrix P , defined by the general element pnm (n is the row
index and m is the column index):

pnm =


pnm = 1 if m = n+ 1, for n = 1, 2, . . . , N − 1

pnm = 1 if n = N and m = 1

pnm = 0 otherwise

We denote by λ1, λ2, . . . , λN the eigenvalues of P and we also denote Λ = diag
[
λ1, λ2, . . . , λN

]
the diagonal

matrix containing the eigenvalues of P on its diagonal. We impose λ1 = 1.

1. A quick insight on several properties of P illustrated for the case N = 4.

1a. Write out P .

1b. Write out the result of Pu, where u is a vector belonging to RN .

1c. Write out the powers of P . Explain why PN = I .

1d. Prove that P tP = PP t = I and also determine P−1.

2. Now, we focus on determining the eigenvalues of P . Consider an eigenvector f together with its
associated eigenvalue λ: Pf = λf . By examining this relation on a per component basis, determine
the eigenvalues of P .

3. As opposed to the previous question, here we will focus on determining the eigenvectors of P .

3a. Consider the eigenspace associated to the eigenvalues λ1 = 1, i.e. the space of vectors which
are circular shift invariant. We denote by f1 the associated unitary eigenvector.

3b. Furthermore, for an eigenvalue λn and its associated eigenvector fn, determine the individ-
ual components fn(2), fn(3), . . . , fn(N) of the vector fn as a function of λn and the first
component fn(1). Determine thus, the set of unitary eigenvectors fn, for n = 1, 2, . . . , N .

4. Matrix of eigenvector, change of basis.
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4a. The matrix F is used to collect all eigenvectors. Give an explicit formula for the individual
entries of the matrix F and write out the productX = Fx for a vector x ∈ RN .

4b. Prove that F is an orthonormal matrix: F †F = FF † = I .

5. Find the diagonalisation formula (in a matrix form) between the matrices P , F and Λ.

— Circulant Matrices —

A circulant matrix C of size N × N is defined starting from a set of N scalar values c1, c2, . . . , cN as
follows:

C =
N∑

n=1

cn P
n−1 (1)

involving the successive powers of matrix P .

6. Write out the matrix C for the case N = 4.

7. Diagonalising the matrix C.

7a. Starting from the answer at point 5, find the matrix relation which expresses the diagonalisa-
tion of the matrix C.

7b. Specify which are the eigenvalues and also make a connection with the Fourier transformation
of the sequence of coefficients cn.

8. Show how can one compute the circular convolutions y = Cx and v = C−1u by exploiting the
diagonal form of C.

In conclusion, for a circulant matrix one can use the discrete Fourier transform (DFT) to marke it diagonal
as well as to compute its eigenvalues. By taking advantage of the FFT algorithm to compute the DFT, one
can perform the aforementioned operations in a very efficient manner. These results allow us to replace the
inversion of a full matrix having a circulant structure with the inversion of a diagonal matrix, with the added
cost of computing several FFT, thus enabling one to have fast computations of certain deconvolution methods.

Exercice II — Quadratic Functions. This exercise is devoted to the study of certain properties of quadratic
functions of several variables, to the derivation of their gradient and Hessian matrix, and to finding their min-
imimum value together with the minimiser. This sort of calculations arise in the development of estimators as
minimisers of quadratic criteria and in the development of numerical optimisation algorithms. The aforemen-
tioned developments make their way in a series of different data processing methods, for instance in signal and
image deconvolution.

Notice — The aim of this exercise is to remind you of certain results one should already be acquainted with,
to practice your skills of manipulating such functions,. . . It is not strictly speaking a “math exercice” devoted to
derive or prove the above mentioned properties and results.

Let ϕ be a function, ϕ : RN → R, which takes as input a vector x ∈ RN and produces as output the
following scalar quantity

ϕ(x) = xtQx+ qtx+ q0

where q0 is a scalar, q is a vector of size N and Q is a square symmetric matrix of size N × N strictly
positive-definite. By default, the vectors are column vectors.
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1. Let’s start with two particular scenarios for the general form of the ϕ function

1a. In the first one, q = 0. Specify, without actually doing any calculations, the minimiser and
the minimum value of ϕ

1b. In the second one, Q is a diagonal matrix. We shall denote by ρn, n = 1, . . . , N , the N
elements on the diagonal of Q. Find the minimiser of ϕ. Analyse also the case when Q is
proportional to the identity matrix: Q = ρI .

2. We shall now focus our attention to determining the gradient and Hessian matrix of ϕ.

2a. Given a point x0 ∈ RN and a displacement ε ∈ RN , write the resulting function ϕ(x0 + ε)
such that three distinctive terms with respect to ε appear: a constant one, a linear one and a
quadratic one.

2b. From the result of the previous sub-question, determine the gradient g(x0) and the Hessian
matrixH(x0) of ϕ at the point x0. The former is a vector of sizeN while the latter is a matrix
of size N ×N .

3. After finding out the gradient and Hessian matrix we shall now determine the minimiser of ϕ.

3a. Determine the minimiser x̄ of ϕ utilising the results from the previous question. Explicit the
obtained minimiser for the two particular cases from question 1.

3b. Rewrite ϕ under a canonical form

ϕ(x) = (x− x0)
tM(x− x0) +m0 (2)

by identifying x0, M and m0. One can use several approaches: trial and error, identifica-
tion,. . .

3c. Give a graphical representation for the cases N = 1 and N = 2.

4. Directional study. Being given a point y0 ∈ RN and a non-null direction δ ∈ RN , we shall consider
a displacement from y0 in the direction δ of amplitude η ∈ R. We can construct a new function ψ
defined on R taking values in R defined by ψ(η) = ϕ(y0 + ηδ).

4a. Perform a thorough analysis of ψ, paying special attention to its derivatives.

4b. Specify the minimiser η̄. Under what circumstances do we have η̄ = 0 ? What about η̄ > 0 ?
And η̄ < 0 ?

4c. We shall finish by analysing the case when the displacement is performed in the direction
opposite to the gradient: δ = −g(y0). Determine the optimal step size η̄. We denote ȳ0 =
y0 + η̄δ.

• Prove that the gradient at ȳ0 and at y0 are orthogonal.

• Analyse what happens to ȳ0 in the special case when Q is proportional to the identity
matrixQ = ρI .
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Exercice III — Signal Interpolation.

Matrix first order Taylor expansion — Let A be a square matrix of size N × N and IN the
identity matrix of size N , then the following is assumed to be true

(IN + εA)−1 ∼
ε=0

IN − εA ,

which generalises the classical scalar result (1 + ε)−1 ∼
ε=0

1− ε.

We shall analyse a physical phenomenon described by a signal x(t): temperature, pressure, voltage, cur-
rent,. . . For this purpose we sample the signal with the sampling period Ts: xn = x(nTs), for n = 0, . . . , N −1
whereN is an even number. Unfortunately, the measurement system at hand is not able to perfectly perform the
required sampling, as its sampling period is less than Ts, meaning that it is able to measure one sample out of
two. Apart from the previous problem, the measured samples are also affected by noise. Thus, the measurement
system will provide us only with M noise corrupted samples ym modelled by the following equation:

ym = x2m + em for m = 0, 1, . . . ,M − 1 and N = 2M , (3)

where the terms em represent the measurement errors or noise. In what follows, we shall model the errors as
realisations of zero-mean independent random variables, all having the same variance re.

The underlying physical phenomenon is assumed to be slowly varying with respect to the sampling period:
xn varies slowly whereas en can vary fast.

— Rewriting —

We shall group the values of the signal xn, the measurements ym and the error components em into three
vectors x = [x0, . . . , xN−1]

t, y = [y0, . . . , yM−1]
t and e = [e0, . . . , eM−1]

t. The problem we have to solve
is to determine the components of the signal x, all of them, starting from the available measurements y and
without knowing the individual realisations of the error e.

By rewriting equation (3) for m = 0, . . . ,M − 1 using the vector notations previously introduced, one
arrives at having to solve a problem of the form y = Hx+e, where the matrixH has a specific structure. For
example, for the case N = 6 and M = 3:

H =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 .
1. Calculate HtH and HHt, for the case N = 6,M = 3 and in the general case. Are they in-

versible? CalculateHty and comment on its form.

— Empirical Estimation —

2. Propose one, or two, empirical estimator(s) x̂E for x. One can choose to work in the time domain
or in the frequency domain (or both).
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— Least Squares Estimation Method —

We shall first try to solve the posed problem using the least squares method. We have thus the following
criterion:

JLS(x) =
M−1∑
m=0

(ym − x2m)2 = (y −Hx)t(y −Hx) = ‖y −Hx‖2

and we shall define the least squares estimator as the minimiser of the above criterion, i.e. the value of x which
minimises the above criterion.

3. Show that the above criterion does not have a unique minimiser. Give the set of minimisers of it
and provide appropriate remarks.

— Penalised Least Squares Estimation Method I —

We shall look now at estimating x through the use of a regularised least squares approach. We modify the
previously defined criterion by introducing a penalisation term on the quadratic norm of x (squared Euclidean
norm)

R0(x) =
N∑

n=0

x2n = xtx = ‖x‖2 ,

thus obtaining the following penalised least squares criterion:

J 0
PLS(x) = JLS(x) + µ0R0(x)

and we define the penalised least squares estimator as its minimiser:

x̂0 = arg min
x

J 0
PLS(x) .

The regularisation parameter µ0 (positive) allows us to tune the criterion.

4. Discuss the choice of J 0
PLS. What is the role of µ0?

5. Calculate x̂0. Give an explicit writing of it by separating the even components from the odd ones.
Analyse what happens when µ0 = 0 and when µ0 →∞.

6. Calculate the bias and the variance of the components of x̂0, separating again the even and odd
components. Comment on the specificity of the obtained results. Analyse once more the results
with respect to the two particular cases: µ0 = 0 and µ0 →∞.

— Penalised Least Squares Estimation Method II —

We shall look now at the results based on a different penalty. The building blocks of this new term are the
differences between the successive samples of x:

R1(x) =

N−1∑
n=1

(xn − xn−1)2 = xtDtDx = ‖Dx‖2 .

7. Write out the matrixD. State some of its properties and particularities. CalculateDtD.
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Thus, we obtain the new penalised least squares criterion:

J 1
PLS(x) = JLS(x) + µ1R1(x)

and we define the new estimate as:
x̂1 = arg min

x
J 1

PLS(x) .

8. Provide appropriate remarks with respect to the choice of J 1
PLS and the estimate x̂1. What is the

purpose of µ1?

9. Calculate x̂1.

10. Analyse the estimator x̂1 for the case when µ1 → 0 and when µ1 → +∞ and comment on the
specific form in both cases.

11. Calculate the bias and the covariance matrix of x̂1 and provide appropriate remarks with respect to
the obtained results.

12. Provide an illustration of the various solutions, for various values of the regularisation parameter.

Exercice IV — Fourier Synthesis.

Preliminary remarks : complex matrices. If M is a matrix having complex elements, then
by M † we denote its conjugate transpose : M † = (M t)∗ = (M∗)t. We say M is Hermitian
symmetric ifM = M †. IfM has real elements : M † = M t.

Preliminary results : gradient and Hessian. LetM be a Hermitian symmetric square matrix of
size N ×N and m a vector of size N . The mappings ϕ and ψ from CN to R, which to a vector
u ∈ CN associate :

ϕ(u) = u†Mu and ψ(u) = m†u+ u†m

are twice differentiable. Their respective gradient is:

∂

∂u
ϕ(u) = 2Mu and

∂

∂u
ψ(u) = 2m

and their respective Hessian matrix is :

∂2

∂u2
ϕ(u) = 2M and

∂2

∂u2
ψ(u) = 0 .

The MRI is a modern medical imaging technique which provides high resolution images. From the point
of view of the data processing involved in the image reconstruction, the problem falls in the class of « Fourier
synthesis » (FS) problems: the observed data set represents an incomplete (and noise corrupted) set of Fourier
transform coefficients of the unknown object.

1. Provide a short explanation of why the MRI image reconstruction problem is an ill-posed one.
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Generally speaking, the Fourier coefficients that are observed are those corresponding to low frequencies.
The coefficients corresponding to high frequencies are usually not observed.

2. How does this uneven observation of frequencies manifest itself in the reconstructed image ?

In practice the problem of FS is posed on a 2D or 3D domain. However, we tackle it on a 1D domain.
Mathematically, we can formulate the problem as follows

y = TFx+ e , (4)

where

• y ∈ CM is the vector containing the M observed data, x ∈ CN is the vector containing the N unknowns
and e ∈ CM is the vector containing the associated M measurement errors

• F is the normalised DFT (Discrete Fourier Transform) matrix : F †F = FF † = I , where I is the identity
matrix of size N . Furthermore, it is a symmetric matrix F t = F

• T is the truncation matrix : it extracts from Fx the Fourier coefficients that do get observed and discards
the ones that do not. For example, if N = 8, M = 3 and the system only observes the first, the second
and the fourth coefficient, we have :

T =

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

 .
3. Preliminary remarks and results, for a general value of N and M .

3a. What is the expression of the matrix T if all the coefficients are observed ? How about when
only one out of two coefficients are observed ?

3b. Give the matrices T tT , TT t and the vector ȳ = T ty.

3c. Let x0 ∈ CN be some vector and let x = F †(I − T tT )Fx0. For this object x, what is the
expression of the vector y containing the observed data ? Discuss the result.

4. Fourier Synthesis, “inter-extra-polation” and convolution.

4a. With the aid of the change of variable ◦
x = Fx, show that the FS (4) problem can be cast as

an “inter-extra-polation” problem. Give a concise argument supporting this claim.

4b. Let x̃ = F †ȳ. Give the relationship between x̃ and x. Deduce that the FS problem (4) can be
cast as a deconvolution problem as well. Give an argument supporting this new claim.

The remainder of this problem is devoted to the development of estimators x̂ for the unknwon object x.

— Empirical estimation —

5. Propose an empirical estimator x̂E of x.

6. Determine the expression of
◦
x̂E = F x̂E and discuss the characteristics of x̂E from a resolution point

of view.
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— Least squares estimation method —

We seek to estimate x using the LS method. We introduce a criterion JLS obtained from equation (4) :

JLS(x) = (y − TFx)†(y − TFx) = ‖y − TFx‖2 .

7. Show that JLS does not have a unique minimiser. What does this imply for the least squares estima-
tion method ?

8. Give and discuss JLS(x̃).

— Penalised least squares estimation method —

We seek now to estimate x using the PLS method. We introduce a penalisation term P taking into account
the difference between successive samples of x (in a circular case, i.e., xN+1 = x1) :

P(x) =

N∑
n=1

|xn+1 − xn |2 = x†D†Dx .

9. Construct JPLS the corresponding PLS criterion and let µ denote the regularisation parameter.

10. Write out the matrixD. Highlight its particularities.

11. Specify the role and the influence of µ.

12. Give x̂PLS.

13. Determine
◦
x̂PLS = F x̂PLS and discuss the characteristics of x̂PLS from a resolution point of view.

14. Analyse the case when µ tends to 0 and when µ tends to +∞.

15. Propose a class of methods which enables to improve the resolution of the reconstructed images.

Exercice V — Signal Denoising: non-linear approach. We shall analyse a physical phenomenon described by
a signal x(t): voltage, current, electromagnetic wave,. . . For this purpose, we are going to takeN measurements
yn, for n = 1, . . . , N . The measurements are taken at regular sampling intervals given by the sampling period
Ts and are affected by errors (in an additive manner):

yn = xn + bn = x(nTs) + bn . (5)

Overall, the underlying physical phenomenon is assumed to be slowly varying with respect to the sampling
frequency: xn evolves slowly whereas bn can evolve quickly. From time to time though, the signal may exhibit
sudden changes, discontinuities in intensity.

We shall collect all N samples of xn, yn and bn in three vectors x = [x1, . . . , xN ]t, y = [y1, . . . , yN ]t and
b = [b1, . . . , bN ]t. The problem we wish to solve is to estimate x, which characterises the physical phenomenon
under study, starting from the measurements y without actually knowing the error terms b.

If necessary, in the following, we shall model the measurement errors as realisations of independent zero-
mean random variables, each having the same variance rb.
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1a. Write (5) for n = 1, 2, . . . , N in a vector form. The problem thus appears as a particular case
of the more general linear problem y = Hx+ b. Give the matrixH in this case.

1b. Provide appropriate remarks as to why the denoising problem is indeterminate.

— The Method of Least Squares —

As a first solution to this problem we shall use the least squares method. It is defined by the following
criterion:

QLS(x) =

N∑
n=1

(xn − yn)2 ,

and the least squares estimator is defined as its minimiser: x̂ = arg minxQLS(x).

2. Find the expression of the least squares estimator x̂ and provide appropriate remarks with respect
to it.

— Quadratic penalisation —

As a second solution we shall look at estimating x by using a penalised least squares approach. As such
we will introduce a penalisation on the quadratic norm (Euclidean norm) of the differences between successive
samples of x:

P2(x) =
N−1∑
n=1

(xn+1 − xn)2 .

We obtain thus the following penalised least squares criterion:

Q2(x) = QLS(x) + µP2(x) ,

and we define the penalised least squares estimator as its minimiser x̂2 = arg minxQ2(x). The extra positive
valued parameter µ, known as the regularisation parameter, is a parameter that allows tuning of the method.

3. Provide appropriate remarks with respect to the choice of Q2. What is the influence of the extra
parameter µ?

4. Find the minimiser x̂2 and provide appropriate remarks with respect to it. Enumerate several algo-
rithms to actually compute it.

5. Particular cases: what happens when µ ∼ 0 and when µ ∼ ∞?

— Non-Quadratic penalisation —

To better preserve discontinuities that are likely to be present in the signal x, we shall modify the imposed
penalisation by introducing three distinct potential functions:

ϕ1(δ) = | δ | , ϕ2/1(δ) =

{
δ2 if | δ | 6 s

2s | δ | − s2 if | δ | > s
and ϕ2/0(δ) =

{
δ2 if | δ | 6 s

s2 if | δ | > s

and for notational convenience, we state ϕ2(δ) = δ2.

6a. Plot the four potential functions. Determine the first and second order derivatives and plot
them. Identify the points of discontinuity and/or non-differantiability (first and second order).
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6b. For ϕ2/1 and ϕ2/0 provide the resulting potential functions in the case s ∼ ∞. Also, for ϕ2/1

provide the resulting potential functions for the case s ∼ 0.

6c. From the four potential function, identify the ones that are convex and the ones that aren’t.
Make also a distinction among the convex ones whether or not their are convex in the strict
sense.

For each of the above defined potential functions we shall construct a penalisation term:

P•(x) =
N−1∑
n=1

ϕ• (xn+1 − xn) ,

for • = 1, • = 2/1 and • = 2/0 together with the corresponding penalised criterion:

Q•(x) = QLS(x) + µP•(x) .

The estimated signal x̂• is the one that minimises: x̂• = arg minxQ•(x).

7. Predict the behaviour of the three estimators for the case when µ ∼ 0 and when µ ∼ ∞. Further
predict the behaviour of x̂2/1 and x̂2/0 as s ∼ ∞.

8. This question will focus on the analysis of the influence of the individual components xn0 on Q•
(with n0 6= 1 and n0 6= N ). To this end, let us introduce

q•(x|xleft, xright, y) = (x− y)2 + µ
[
ϕ• (x− xleft) + ϕ•

(
x− xright

)]
which whenever not ambiguous, shall be simply referred to as q•(x).

8a. Prove that q•(xn0) equals Q•(x) up to a certain additive constant (that does not depend on
xn0). Identify the terms xleft and xright.

8b. Analyse each of the resulting four functions q•(x). One can restrict the analysis just for the
case xleft 6 xright.

8c. Find the minimiser x• of q•. One can start with the case • = 2, then move to the case • = 1
and then move to the remaining two cases.

8d. Deduce qualitative properties one would expect for each of the estimated signal regarding the
preservation of discontinuities.

9. Deduce a minimisation algorithm forQ•. In which case does it provide us with a global minimiser?

10. Try to propose a method to estimate the hyper-parameters µ and swhile also stating what difficulties
you think one would encounter trying to implement them.

11. Propose other denoising methods and state for each, with respect to the properties of the signal to
be denoised, under what circumstances it is best to be used.
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Exercice VI — Legendre transform of quadratic functions. The aim of this exercise is to practice your skill of
manipulating the Legendre Transform (LT). To this end, we will deal with a simple scalar quadratic function.
This is an important aspect with a great impact on the practical implementation of various processing methods,
for instance in signal and image deconvolution.

Let α ∈ R, β ∈ R?
+ and x0 ∈ R. Let us consider the quadratic function f from R onto R defined by

f(x) = α+
1

2
β(x− x0)2 ,

for x ∈ R.

1. For a start, plot the function f(x) as well as its first and second derivatives. Then perform a quick
and proper analysis of the influence of α, β and x0. Discuss the particular cases where α = 0, β = 1
and x0 = 0.

We shall now recall the definition of f?, the LT of f . Itself is a function from R onto R and its expression
is given by

f?(t) = sup
x∈R

[xt− f(x) ]

that is, it is defined as the result of a function maximisation problem. Let us denote gt(x) = xt− f(x).

2a. Find f?. Also give its first and second derivatives.

2b. Analyse the influence of α, β et x0. Discuss the special cases where α = 0, β = 1 and x0 = 0.

Exercice VII — Legendre transform of transforms. Let f be a strictly convex function defined on R and
taking values in R and consider the following four real numbers α ∈ R, β, γ ∈ R?

+ and x0 ∈ R. We define the
following three new functions:

u(x) = α+ β f(x)

v(x) = f(x− x0)
w(x) = f(γx)

by means of scaling and/or shifting (vertically or horizontally) the function f .
We remind one that the Lengendre transform f? of f is a function defined on R and taking values in R

which is obtained as the result of a maximisation problem. For t ∈ R we have:

f?(t) = sup
x∈R

[xt− f(x) ] .

1. Determine the Lengendre transforms u?, v? and w? as functions of f?.

Exercice VIII — Legendre transform for absolute penalty. The aim of this exercise is to calculate the Legendre
Transform (LT) of the simple scalar absolute value function defined by: f(x) = |x| for x ∈ R.

1. For a start, plot the function f(x). Is it a convex function ? Large sense or strict sense convex ?
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We shall now recall an extended definition of f?, the LT of f . Itself is defined as a function from R onto
R̄ = R ∪ {+∞} and its expression is given by

f?(t) = sup
x∈R

[xt− f(x) ]

that is, it is defined as the result of a function maximisation problem. Let us denote gt(x) = xt− f(x).

2. Prove that f? is 0 for t ∈ [−1,+1] and +∞ if not.
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Exercice IX — Quadratic criterion and linear constraints. The purpose of this exercise is to familiarise
oneself with the concept of constrained optimisation. It arises in many applications (instrument development,
command and control, distribution over a network, finance, production planning and control,. . . ) which are
crucial in a vast array of domains such as telecommunications, energy and transport, health. . . It is also a
building block in many data processing methods, specifically in the construction of estimators as minimisers of
criteria involving constraints.

The literature abounds [1, 2, 3] in numerical constrained optimisation tools including those based on pro-
jected gradient or on constraint gradient, introduction of barrier functions, the methods based on Lagrange
multipliers. We will focus on the latter.

Preliminary result: constrained optimisation and Lagrange multipliers. Let us consider a function F
of a variable x ∈ RP with real values. Let us also consider Q equations Cq(x) = 0, for q = 1, . . . , Q. We
are interested in finding xo, the minimizer of F with respect to x subject to the Q contraints Cq(x) = 0,
that is to say the solution for the problem (P)

(P) : xo = arg min
x∈RP

{
F (x)

s.t. Cq(x) = 0, for q = 1, . . . , Q

where s.t. stands for subject to.
Let us introduce Q parameters collected in a vector ` = [`1, . . . , `Q], referred to as Lagrange multipliers
and build an extended function referred to as the Lagrangian:

L(x, `) = F (x) +

Q∑
q=1

`q Cq(x)

that is a function of x and `. Let us minimize L(x, `) with respect to x (for a fixed value of `) and denote
xm(`) the minimizer (which is natürlich a function of `):

xm(`) = arg min
x∈RP

L(x, `) . (6)

Let us substitute this value of x in the Lagrangian: this defines a function of ` exclusively

L̃(`) = L(xm(`), `)

called the dual function. In order to obtain the adequate value of ` to ensure that the constraints are satisfied,
maximisation of the dual function L̃ with respect to ` is required:

`m = arg max
`∈RQ

L̃(`) .

Finally, the constrained minimizer is then obtained by substitution of `m in the optimum with respect to x
given by (6):

xo = xm(`m) .

This result is valid under some hypothesis regarding F et Cp that are met in this exercise.

Notice — The aim of this exercise is to remind you of certain results one should already be acquainted with,
to practice your skills of manipulating linear constraints and quadratic functions. It is not strictly speaking a
“math exercice” in itself. On could refer to textbooks such as [1, 2, 3] for deep analysis.

Let ϕ be a function, ϕ : RN → R, which takes as input a vector x ∈ RN and produces as output the

Exercises Image restoration and convex approaches



Imaging and inverse problems: the example of deconvolution 15 / 18

following scalar quantity

ϕ(x) =
1

2
xtQx+ qtx+ q0

where q0 is a scalar, q is a vector of size N andQ is a square symmetric matrix of size N ×N strictly positive-
definite. Consider a matrixA of size M ×N and a vector a of size M . We are interested in the set of x ∈ RN

that satisfies
Ax− a = 0 .

This relationship represents a vectorial constraint that collects M scalar constraints given by M linear combi-
nations of the N components of x. A is assumed to be full rank, i.e., the rank of A is min(M,N). Usually,
M < N . The exercise deals with the minimization of ϕ including the constraintAx−a = 0, that is to say the
problem

(P) : xo = arg min
x∈RN

 ϕ(x)

s.t. Ax− a = 0

and focuses on its solution obtained using the method of Lagrange mutipliers.

1. Introductory examples and particular cases.

1a. Give the solution of the problem if there is no constraint.

1b. Let us study the degenerated case where M = N , a = 0N is the null vector and A = IN is
the identity matrix of size N . Give the solution of the problem.

1c. Que pasa si M = N y siA es inversible ?

1d. In the two-dimensionnal case, N = 2 (two variables) and M = 1 (one constraint), give a
graphical illustration of the problem and of its solution.

2. Write the Lagrangian L(x, `). Is it a quadratic or a linear function with respect to x ? What about
with respect to ` ? And finally with respect to (x, `) jointly ?

3. Give the minimizer xm(`) of L(x, `) w.r.t. x. Note that it is a linear function of `.

4. Build the dual function L̃(`) = L(xm(`), `) by replacing xm(`) in the Lagrangian L(x, `).

5. Give the maximizer `m of the dual function L̃(`) w.r.t. `.

6. Finally, deduce the constrained minimizer by replacing `m in the expression of xm(`). Study the
special case M = N andA invertible in relation with question 1c.

7. Optional questions.

7a. Do you think the constrained minimum is larger or smaller than the unconstrained one? Check
your answer by calculating the two values of the function ϕ.

7b. In the special case M = N and A invertible (in relation with question 1c and 6), check that
the minimum is ϕ(A−1a).
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Exercice X — Quadratic criterion and linear constraint, a two-one dimensional case. This exercise deals
with a constrained optimisation problem. More specifically, a two dimensional quadratic criterion and a one
dimensional linear constraint.

One the one hand, let ϕ be a function, ϕ : R2 → R, which takes as input a couple of real numbers (x, y)
and produces as output the following real number

ϕ(x, y) = 1 + (x2 + y2)/2 .

On the other hand, let us consider the set of couples of real numbers (x, y) that satisfy the constraint

(C) : y = s x+ o

where s ∈ R is a slope and o ∈ R is an offset.
The exercise deals with the minimization of ϕ including the constraint (C), that is to say the problem

(P) : (x?, y?) = arg min
x,y∈R

 ϕ(x, y)

s.t. y = s x+ o

and focuses on its solution based on the method of Lagrange mutipliers, in addition to a direct approach.

1. Give the unconstrained minimizer and the unconstrained minimum. The rest of the exercise is
devoted to the constrained case.

2. Give a graphical illustration of the problem and of its solution.

3. Propose a direct solution, by substitution of the constraint (C) in ϕ.

4. Lagrange mutipliers approach.

4a. Write the Lagrangian L(x, y, λ). Is it a quadratic or a linear function with respect to (x, y) ?
What about with respect to λ ?

4b. Give the minimizer xm(λ), ym(λ) of L(x, y, λ) w.r.t. (x, y). Is it a quadratic or a linear
function with respect to λ?

4c. Build the dual function L̃(λ) = L(xm(λ), ym(λ), λ) by replacing (xm(λ), ym(λ)) in the
Lagrangian L(x, y, λ).

4d. Give the maximizer λm of the dual function L̃(λ) w.r.t. λ.

4e. Finally, deduce the constrained minimizer (x?, y?) by replacing λm in the expression of
(xm(λ), ym(λ)).

5. Do you think the constrained minimum is larger or smaller than the unconstrained one? Check your
answer by calculating the two values of the function ϕ.

6. Compare the (constrained) minimum of the primal function ϕ and the (unconstrained) maximum of
the dual function L̃(λ).

7. Comment the special cases o = 0 and s = 0.
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Exercice XI — Quadratic criterion and linear constraint, a two-one dimensional case. This exercise deals
with a constrained optimisation problem. More specifically, a two dimensional quadratic criterion and a one
dimensional linear constraint.

One the one hand, let ϕ be a function, ϕ : R2 → R, which takes as input a couple of real numbers (x, y)
and produces as output the following real number

ϕ(x, y) =
1

2

[
(x− 1)2 + y2

]
.

On the other hand, let us consider the set of couples of real numbers (x, y) that satisfy the constraint

(C) : y = s x

where s ∈ R is a slope.
The exercise deals with the minimization of ϕ including the constraint (C), that is to say the problem

(P) : (x?, y?) = arg min
x,y∈R

 ϕ(x, y)

s.t. y = s x

and focuses on its solution based on the method of Lagrange mutipliers, in addition to a direct approach.

1. Give the unconstrained minimizer and the unconstrained minimum. The rest of the exercise is
devoted to the constrained case.

2. Give a graphical illustration of the problem and of its solution.

3. Propose a direct solution, by substitution of the constraint (C) in ϕ.

4. Lagrange mutipliers approach.

4a. Write the Lagrangian L(x, y, λ). Is it a quadratic or a linear function with respect to (x, y) ?
What about with respect to λ ?

4b. Give the minimizer xm(λ), ym(λ) of L(x, y, λ) w.r.t. (x, y). Is it a quadratic or a linear
function with respect to λ?

4c. Build the dual function L̃(λ) = L(xm(λ), ym(λ), λ) by replacing (xm(λ), ym(λ)) in the
Lagrangian L(x, y, λ).

4d. Give the maximizer λm of the dual function L̃(λ) w.r.t. λ.

4e. Finally, deduce the constrained minimizer (x?, y?) by replacing λm in the expression of
(xm(λ), ym(λ)).

5. Do you think the constrained minimum is larger or smaller than the unconstrained one? Check your
answer by calculating the two values of the function ϕ.

6. Compare the (constrained) minimum of the primal function ϕ and the (unconstrained) maximum of
the dual function L̃(λ).

7. Comment the special cases s = 1 and s = 0. And the case s = +∞.
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