Image restoration

Concluding remarks and perspectives —

Jean-François Giovannelli

Groupe Signal – Image Laboratoire de l'Intégration du Matériau au Système Univ. Bordeaux – CNRS – BINP

Convolution / Deconvolution

$$y = Hx + \varepsilon = h \star x + \varepsilon$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
 - Specificity of the inversion / reconstruction / restoration methods
 - Trade off and tuning parameters
- Limited quality results

Three solutions: various penalties and constraints

Smoothness and quadratic penalty

$$\mathcal{J}(\boldsymbol{x}) = \left\|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\right\|^2 + \mu \sum_{\boldsymbol{x}} (\boldsymbol{x}_{\boldsymbol{p}} - \boldsymbol{x}_{\boldsymbol{q}})^2 = \left\|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\right\|^2 + \mu \left\|\boldsymbol{D}\boldsymbol{x}\right\|^2$$

• Edge preservation and Huber penalty

$$\mathcal{J}(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \mu \sum \varphi(\mathbf{x}_p - \mathbf{x}_q)$$

• Constraints: positivity and support

$$\begin{cases} \mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 \\ \text{s.t.} \begin{cases} \boldsymbol{x}_{\boldsymbol{p}} = 0 & \text{for } \boldsymbol{p} \in \bar{\mathcal{S}} \\ \boldsymbol{x}_{\boldsymbol{p}} \geqslant 0 & \text{for } \boldsymbol{p} \in \mathcal{M} \end{cases}$$

Three solutions: efficient computations

Smoothness and quadratic penalty

$$\mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{\boldsymbol{x}} (\boldsymbol{x}_{\boldsymbol{p}} - \boldsymbol{x}_{\boldsymbol{q}})^2 = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2$$

• Edge preservation and Huber penalty

$$\mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum \varphi(\boldsymbol{x}_p - \boldsymbol{x}_q)$$

• Extended criterion, Legendre transform and half-quadratic idea

$$\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{q} \frac{1}{2} \left[(\boldsymbol{x}_{p} - \boldsymbol{x}_{q}) - a_{pq} \right]^2 + \zeta(a_{pq})$$

• Constraints: positivity and support

$$\begin{cases} \mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 \\ \text{s.t.} \begin{cases} \boldsymbol{x}_p = 0 & \text{for } p \in \bar{\mathcal{S}} \\ \boldsymbol{x}_p \geqslant 0 & \text{for } p \in \mathcal{M} \end{cases}$$

Extended criterion, augmented Lagrangian and ADMM

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\ell}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 + \rho \|\boldsymbol{x} - \boldsymbol{a}\|^2 + \ell^{t}(\boldsymbol{x} - \boldsymbol{a})$$

Quadratic penalty: fast computation by FFT

Reminder: least squares and quadratic penalty:

$$\mathcal{J}(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \mu \|\mathbf{D}\mathbf{x}\|^2$$

Restored image

$$\widehat{\boldsymbol{x}} = \operatorname{arg\,min}_{\boldsymbol{x}} \mathcal{J}(\boldsymbol{x})$$

$$(\boldsymbol{H}^{t}\boldsymbol{H} + \mu \boldsymbol{D}^{t}\boldsymbol{D}) \ \widehat{\boldsymbol{x}} = \boldsymbol{H}^{t}\boldsymbol{y}$$

$$\widehat{\boldsymbol{x}} = (\boldsymbol{H}^{t}\boldsymbol{H} + \mu \boldsymbol{D}^{t}\boldsymbol{D})^{-1} \ \boldsymbol{H}^{t}\boldsymbol{y}$$

$$= \boldsymbol{F}^{\dagger}(\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{\Lambda}_{h} + \mu \boldsymbol{\Lambda}_{d}^{\dagger}\boldsymbol{\Lambda}_{d})^{-1}\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{F}\boldsymbol{y}$$

Computation by FFT

Huber penalty: efficient iterative computation

Reminder: extended criterion

$$\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{q} \frac{1}{2} \left[(\boldsymbol{x}_{p} - \boldsymbol{x}_{q}) - a_{pq} \right]^2 + \zeta(a_{pq})$$

• Minimisation w.r.t. x for fixed a:

$$\begin{split} \widetilde{\boldsymbol{x}} &= & (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu\boldsymbol{D}^{\mathrm{t}}\boldsymbol{D})^{-1} (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} + \bar{\mu}\,\boldsymbol{D}^{\mathrm{t}}\boldsymbol{a}) \\ &= & \boldsymbol{F}^{\dagger} (\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{\Lambda}_{h} + \mu\boldsymbol{\Lambda}_{d}^{\dagger}\boldsymbol{\Lambda}_{d})^{-1} (\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{F}\boldsymbol{y} + \bar{\mu}\,\boldsymbol{\Lambda}_{d}^{\dagger}\boldsymbol{F}\boldsymbol{a}) \end{split}$$

2 Minimisation w.r.t. a for fixed x:

$$\begin{array}{lcl} \widetilde{a}_{pq} & = & \delta_{pq} - \varphi'(\delta_{pq}) \\ & = & \delta_{pq} \left[1 - 2\alpha \min\left(1; s/\delta_{pq}\right) \right] & \text{ for Huber penalty} \end{array}$$

Non-quadratic and interacting

Constraints: efficient iterative computation

• Reminder: augmented Lagrangian

$$\mathcal{L}(\mathbf{x}, \mathbf{a}, \boldsymbol{\ell}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \mu \|\mathbf{D}\mathbf{x}\|^2 + \rho \|\mathbf{x} - \mathbf{a}\|^2 + \ell^{t}(\mathbf{x} - \mathbf{a})$$

• Unconstrained minimisation w.r.t. x

$$\begin{split} \widetilde{\boldsymbol{x}} &= & (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu\boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \rho\boldsymbol{I})^{-1} \left(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} + [\rho\boldsymbol{a} - \ell/2]\right) \\ &= & \boldsymbol{F}^{\dagger} \left(\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{\Lambda}_{h} + \mu\boldsymbol{\Lambda}_{d}^{\dagger}\boldsymbol{\Lambda}_{d} + \rho\boldsymbol{I}\right)^{-1} (\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{F}\boldsymbol{y} + \rho\boldsymbol{F}\boldsymbol{a} - \boldsymbol{F}\ell/2) \end{split}$$

Constrained minimisation w.r.t. a

$$\widetilde{a}_p = \begin{cases} \max(0, x_p + \ell_p/(2\rho)) & \text{for } p \in \mathcal{S} \\ 0 & \text{for } p \in \overline{\mathcal{S}} \end{cases}$$

lacktriangle Update ℓ

Quadratic and interacting with constraints

Object computation / update: other possibilities

Various options and many relationships...

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,...
- Numerical optimisation
 - Gradient descent... and various modifications
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions,...)

Images, deconvolution results

Common structure

Iterative scheme

- lacksquare Minimisation w.r.t. object x
 - Update by FFT (weighting the Fourier domain)
- Minimisation w.r.t. some auxiliary variables
 - Update by non-linear separable transform

. .

Common structure

Iterative scheme

- **1** Minimisation w.r.t. object x
 - Update by FFT (weighting the Fourier domain) that is to say convolution
- Minimisation w.r.t. some auxiliary variables
 - Update by non-linear separable transform

Common structure

Iterative scheme

- lacktriangle Minimisation w.r.t. object x
 - Update by FFT (weighting the Fourier domain) that is to say convolution
- Minimisation w.r.t. some auxiliary variables
 - Update by non-linear separable transform

Convolutional network

Conclusions

Synthesis: three problems / three solutions

- Quadratic penalty and smoothness (avoid exploding solution)
- Edge preserving and non-quadratic penalties
- Taking constraints into account

A first extension: a fourth problem and a solution

- Both of them [Henrot 2013]
 - Edge preserving and non-quadratic penalties
 - Taking constraints into account
 - ...in a unique reconstruction method and an efficient algorithm

Conclusions

Synthesis: formal context

- Convolution and noise / Deconvolution and denoising
- Images (2D)

Extensions

- Non-invariant linear observation model
 - Tomography, scanner,...
 - Missing data
 - interpolation / inpainting
 - extrapolation / outpainting
 - Super-resolution
- Various dimensions (in each pixel)...
 - Colour images, multispectral, hyperspectral
 - Vectorial imaging (e.g., speed, electromagnetic field...)
- ...and various dimensions (of the object)...
 - Signal 1D, volume 3D and more, ... e.g., video, ...
 - 3D+t, the 3D beating heart . . .

Conclusions: error and noise

Synthesis

Additive and zero-mean and Gaussian and white and homogeneous

Extensions

- Non-homogeneous: various confidence
- Correlated noise
 - Unknown / known structure / parameters
 - Correlated to the object...
- Non-Gaussian
 - Impulsive noises: Cauchy, alpha-stable
 - Outliers and robustness
 - Counting process, e.g., Poisson
- Various interaction data-noise
 - Multiplicative
 - ... other model of interaction

Conclusions: extra variables

Synthesis

• Image reconstruction, pixels only

Extensions: hidden variables, latent variables

- Object
 - Detection (singular points,...)
 - Segmentation
 - Contours
 - Regions, labels
- Noise
 - Detection of outliers and robustness
- Extra-decision
 - Make a decision regarding...

Conclusions: hyper and extra parameters

Synthesis

- ullet Two hyperparameters: image and noise level $(\gamma_x$ and $\gamma_e)$
- Bayesian interpretation and Gaussian models

Extensions

- Instrument parameter
 - Width of impulse response
 - Other parameters,...
- Object and noise: non-Gaussian models
 - Partition function...
 - Sampling itself...
- Object and noise extra-parameters
 - Labels, contours,...
 - Singular data / pixels
 - Outliers....

Conclusions: textures, smoothness, spikes,...

Synthesis

Smooth and edges

Extensions: textured image and prior / penalty

- Gaussian models
 - Oriented, quasi-periodic
 - Specific correlation function
- Advanced probabilistic models
- Dictionary and decomposition recomposition

Conclusions: model selection / comparison

Synthesis: given model

- Instrument, direct model,...
- Adequation to the data and model for noise
- Penalty and prior model

Extensions: model selection

- Observation model
 - Gaussian vs Lorentzian blur
- Model for noise
 - Family: Gaussian, Cauchy,...
 - Structure: Correlated or not
- Penalty / prior model
 - Structure of penalty: neighborhood, potential,...
 - Prior model: Gauss, Huber,...
 - Number of class

Conclusions: uncertainty quantification

Synthesis

- Bias...
- Standard deviation
 - Bayesian statement: posterior standard deviation
 - Deterministic statement: Hessian and curvature (spatial or Fourier)

Extensions

- Standard deviation
 - Combination / sets / region... of pixels
- Probability of decisions
 - Detection of object
 - Label and segmentation
 - State, status,...
- Uncertainty propagation
 - Forward and inverse

Some historical landmarks

- \bullet Quadratic approaches and linear filtering ~ 60
 - Phillips, Twomey, Tikhonov
 - Kalman
 - Hunt (and Wiener ~ 40)
- Extension: discrete hidden variables ~ 80
 - Kormylo & Mendel (impulsions, peaks,...)
 - Geman & Geman (lines, contours, edges,...)
 - Besag, Graffigne, Descombes (regions, labels,...)
- Convex penalties (also hidden variables,...) ~ 90
 - $L_2 L_1$, Huber, hyperbolic: Sauer, Blanc-Féraud, Idier...
 - ...et les POCS
 - L_1 : Alliney-Ruzinsky, Taylor ~ 79 , Yarlagadda ~ 85 . . .
 - \bullet And... L_1 -boom ~ 2005
- Back to more complex models ~ 2000
 - Unsupervised, myopic, semi-blind, blind
 - Stochastic sampling (MCMC, Metropolis-Hastings...)

And other imaging... fields, modalities, problems,...

Modalities

- Interferometry (radio, optical, coherent,...)
- Magnetic Resonance Imaging
- Tomography based on X-ray, optical wavelength, tera-Hertz,...
- Ultrasonic imaging, sound, mechanical
- Holography
- Polarimetry: optical and other
- Synthetic aperture radars
- Microscopy, atomic force microscopy
- Camera, photography
- Lidar, radar, sonar,...
- ..

 \leadsto Essentially "wave \leftrightarrow matter" interaction

And other imaging... fields, modalities, problems,...

Fields

- Astronomy, geology, hydrology,...
- Thermography, fluid mechanics, transport phenomena,...
- Medical: diagnosis, prognosis, theranostics,...
- Remote sensing, airborne imaging,...
- Surveillance, security,...
- Non destructive evaluation, control,...
- Computer vision, under bad conditions,...
- Augmented reality, computer vision & graphics, . . .
- Photography, games, recreational activities, leisure,...
- . . .
 - → Health, knowledge, leisure,...
 - → Augmented Reality, Computer Vision & Graphics,...
 - → Aerospace, aeronautics, transport, energy, industry,...

- Thank you for your commitment...
- ... and to my colleagues (Université & IPCV, ENSEIRB, IOGS,...)
- Visit our websites
 - http://giovannelli.free.fr/ and also
 - https://gretsi.fr/ressources-pedagogiques/
- Do not hesitate: Giova@IMS-Bordeaux.fr