Image restoration: constrained approaches

- Support and positivity -

Jean-François Giovannelli
Groupe Signal - Image
Laboratoire de I'Intégration du Matériau au Système Univ. Bordeaux - CNRS - BINP

Topics

- Image restoration, deconvolution
- Motivating examples: medical, astrophysical, industrial, vision,...
- Various problems: deconvolution, Fourier synthesis, denoising...
- Missing information: ill-posed character and regularisation
- Three types of regularised inversion
(1) Quadratic penalties and linear solutions
- Closed-form expression
- Computation through FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
(2) Non-quadratic penalties and edge preservation
- Half-quadratic approaches, including computation through FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
(3) Constraints: positivity and support
- Augmented Lagrangian and ADMM, including computation by FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
- Bayesian strategy: a few incursions
- Tuning hyperparameters, instrument parameters,...
- Hidden / latent parameters, segmentation, detection,...

Convolution / Deconvolution

$$
\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\varepsilon=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}
$$

$$
\widehat{\boldsymbol{x}}=\widehat{\mathcal{X}}(\boldsymbol{y})
$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
- Specificity of the inversion / reconstruction / restoration methods
- Trade off and tuning parameters
- Limited quality results

Regularized inversion through penalty: two terms

- Known: H and $y /$ Unknown: x
- Compare observations y and model output $H x$

$$
J_{\mathrm{LS}}(x)=\|y-H x\|^{2}
$$

- Quadratic penalty of the gray level gradient (or other linear combinations)

$$
\mathcal{P}(\boldsymbol{x})=\sum_{p \sim q}\left(x_{p}-x_{q}\right)^{2}=\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Least squares and quadratic penalty:

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|y-\boldsymbol{H} x\|^{2}+\mu\|\boldsymbol{D} x\|^{2}
$$

Quadratic penalty: criterion and solution

- Least squares and quadratic penalty:

$$
\mathcal{J}_{\text {PLS }}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Restored image

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\underset{\boldsymbol{x}}{\arg \min } \mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x}) \\
\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right) \widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y} \\
\widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)^{-1} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}
\end{aligned}
$$

- Computations based on diagonalization through FFT

$$
\begin{aligned}
\stackrel{\circ}{\boldsymbol{x}} & =\left(\boldsymbol{\Lambda}_{h}^{\dagger} \boldsymbol{\Lambda}_{h}+\mu \boldsymbol{\Lambda}_{d}^{\dagger} \boldsymbol{\Lambda}_{d}\right)^{-1} \boldsymbol{\Lambda}_{h}^{\dagger} \stackrel{\boldsymbol{y}}{ } \\
\stackrel{\circ}{x}_{n} & =\frac{\stackrel{\circ}{h}_{n}^{*}}{\left|\circ_{n}\right|^{2}+\mu\left|\circ_{n}\right|^{2}} \stackrel{\circ}{y}_{n} \quad \text { for } n=1, \ldots N
\end{aligned}
$$

Object computation: other possibilities

Various options and many relationships. . .

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
- Gauss, Gauss-Jordan
- Substitution
- Triangularisation,...
- Numerical optimisation
- gradient descent... and various modifications
- Pixel wise, pixel by pixel
- Diagonalization
- Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
- Recursive least squares
- Kalman smoother or filter (and fast versions,...)

Solution from least squares and quadratic penalty

Synthesis and extensions to constraints

- Limited capability to manage conflict between
- Smoothing and
- Avoiding noise explosion
... that limits resolution capabilities

Extension to non-quadratic penalty

- Less "smoothing" around "discontinuities"
- Ambivalence:
- Smoothing (homogeneous regions)
- Heightening, enhancement, sharpening (discontinuities, edges)
- ... and new compromise, trade off, conciliation

Another extension: include constraints

- Positivity and support
- Better physics and improved resolution
- Resort to the linear solution and FFT (Wiener-Hunt)
- Augmented Lagrangian and ADMM
- Expected benefits
- Better physical modelling
- More information \rightsquigarrow "quality" improvement
- Improved resolution
- Restoration technology
- Still based on a penalised criterion...

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- ... restored image still defined as a minimiser...

$$
\widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \mathcal{J}_{\text {PLS }}(\boldsymbol{x})
$$

- ... but including constraints
... (about the value of the gray level of pixels)

Taking constraints into account: positivity and support

- Notation
- \mathcal{M} : index set of the image pixels
- \mathcal{S}, \mathcal{D} : index set of a subset (support, region, mask,...) of the pixels

Investigated constraints here

- Positivity

$$
\mathrm{C}_{\mathrm{p}}: \forall p \in \mathcal{M}, \quad x_{p} \geqslant 0
$$

- Support, mask

$$
\mathrm{C}_{\mathrm{s}}: \forall p \in \overline{\mathcal{S}}, \quad x_{p}=0
$$

Extensions (non investigated here)

- Template

$$
\forall p \in \mathcal{M}, \quad t_{p}^{-} \leqslant x_{p} \leqslant t_{p}^{+}
$$

- Partially known map

$$
\forall p \in \mathcal{D}, \quad x_{p}=m_{p}
$$

Taking constraints into account: positivity and support

General form inequality / equality

$$
\boldsymbol{B} \boldsymbol{x}-\boldsymbol{b} \geqslant 0 \quad \text { et } \quad \boldsymbol{A} \boldsymbol{x}-\boldsymbol{a}=0
$$

- Positivity

$$
\mathrm{C}_{\mathrm{p}}: \forall p \in \mathcal{M}, \quad x_{p} \geqslant 0 \quad \rightsquigarrow \quad \boldsymbol{B}=\boldsymbol{I} \text { et } \boldsymbol{b}=\mathbf{0}
$$

- Support

$$
\mathrm{C}_{\mathrm{s}}: \forall p \in \overline{\mathcal{S}}, \quad x_{p}=0 \quad \rightsquigarrow \quad \boldsymbol{A}=\boldsymbol{T}_{\mathcal{S}} \text { et } \boldsymbol{a}=\mathbf{0}
$$

- Template

$$
\begin{array}{ll}
\forall p \in \mathcal{M}, & t_{p}^{-} \leqslant x_{p} \rightsquigarrow \quad \boldsymbol{B}=\boldsymbol{I} \text { et } \boldsymbol{b}=\boldsymbol{t}^{-} \\
& x_{p} \leqslant t_{p}^{+} \rightsquigarrow \quad \boldsymbol{B}=-\boldsymbol{I} \text { et } \boldsymbol{b}=-\boldsymbol{t}^{+}
\end{array}
$$

- Partially known map

$$
\forall p \in \mathcal{D}, \quad x_{p}=m_{p} \rightsquigarrow \quad \boldsymbol{A}=\boldsymbol{T}_{\mathcal{D}} \text { et } \boldsymbol{a}=\boldsymbol{m}
$$

Constrained minimiser

Theoretical point: criterion, constraint and property

- Quadratic criterion: $\mathcal{J}_{\text {PLS }}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}$
- Linear constraints: $\begin{cases}x_{p}=0 & \text { for } p \in \overline{\mathcal{S}} \\ x_{p} \geqslant 0 & \text { for } p \in \mathcal{M}\end{cases}$
- Question of convexity
- Convex (strict) criterion
- Convex constraint set

Theoretical point: construction of the solution

- Solution: the only constrained minimiser

$$
\widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\left\{\begin{array}{l}
\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2} \\
\text { s.t. } \begin{cases}x_{p}=0 & \text { for } p \in \overline{\mathcal{S}} \\
x_{p} \geqslant 0 & \text { for } p \in \mathcal{M}\end{cases}
\end{array}\right.
$$

Constraints: some illustrations

Positivity: one variable

- One variable: $\alpha(t-\bar{t})^{2}+\gamma$

- Unconstrained solution: $\widehat{t}=\bar{t}$
- Constrained solution: $\widehat{t}=\max [0, \bar{t}]$
- Active and inactive constraints

Positivity: two variables (1)

- Two variables: $\alpha_{1}\left(t_{1}-\overline{t_{1}}\right)^{2}+\alpha_{2}\left(t_{2}-\overline{t_{2}}\right)^{2}+\beta\left(t_{2}-t_{1}\right)^{2}+\gamma$

- Sometimes / often difficult to deduce
- the constrained minimiser
- from the unconstrained one

Positivity: two variables (2)

- Two variables: $\alpha_{1}\left(t_{1}-\overline{t_{1}}\right)^{2}+\alpha_{2}\left(t_{2}-\overline{t_{2}}\right)^{2}+\beta\left(t_{2}-t_{1}\right)^{2}+\gamma$

1

2a

2b

- Constrained solution $=$ Unconstrained solution
- Constrained solution \neq Unconstrained solution (2)
...so active constraints

Positivity: two variables (3)

- Two variables: $\alpha_{1}\left(t_{1}-\overline{t_{1}}\right)^{2}+\alpha_{2}\left(t_{2}-\overline{t_{2}}\right)^{2}+\beta\left(t_{2}-t_{1}\right)^{2}+\gamma$

2a

2b

- Constrained solution \neq Unconstrained solution (2)
...so active constraints
- Constrained solution \neq Projected unconstrained solution (2a)

$$
\left(\widehat{t_{1}} ; \widehat{t_{2}}\right) \neq\left(\max \left[0, \overline{t_{1}}\right] ; \max \left[0, \overline{t_{2}}\right]\right)
$$

- Constrained solution $=$ Projected unconstrained solution (2b)

$$
\left(\widehat{t_{1}} ; \widehat{t_{2}}\right)=\left(\max \left[0, \overline{t_{1}}\right] ; \max \left[0, \overline{t_{2}}\right]\right)
$$

Numerical optimisation: state of the art

Problem

- Quadratic optimisation with linear constraints
- Difficulties
- $N \sim 1000000$
- Constraints \oplus non-separable variables

Existing algorithms

- Existing tools with guaranteed convergence
[Bertsekas 95,99; Nocedal 00,08; Boyd 04,11]
- Gradient projection methods, constrained gradient method
- Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory
- Interior points and barrier
- Pixel-wise descent
- Augmented Lagrangian, ADMM
- Constrained but separated + non-separated but non-constrained
- Partial solutions still through FFT

Equality constraints

Simplified problem

$$
\widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\left\{\begin{array}{l}
\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2} \\
\text { s.t. } x_{p}=0 \text { for } p \in \overline{\mathcal{S}}
\end{array}\right.
$$

- Sets and subsets of pixels
- \mathcal{M} : full vector of pixels $\rightsquigarrow \boldsymbol{x} \in \mathbb{R}^{N}$
- \mathcal{S} : vector of unconstrained pixels $\rightsquigarrow \overline{\boldsymbol{x}} \in \mathbb{R}^{M}$
- Truncation
- $\overline{\boldsymbol{x}}=\boldsymbol{T} \boldsymbol{x}$ truncation, selection of unconstrained pixels
- \boldsymbol{T} is $M \times N(M<N)$, e.g., $\boldsymbol{T}=\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
- Properties: zero-padding,...
- $\boldsymbol{T}^{\mathrm{t}} \overline{\boldsymbol{x}}$ zero-padding, fill with zeros
- $\boldsymbol{T} \boldsymbol{T}^{\mathrm{t}}=\boldsymbol{I}_{M}$
- $\boldsymbol{T}^{\mathrm{t}} \boldsymbol{T}=\operatorname{diag}[\ldots 0 / 1 \ldots]$: projection, "nullification matrix"
- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Zero-padded variable

$$
\boldsymbol{x}=\boldsymbol{T}^{\mathrm{t}} \overline{\boldsymbol{x}}
$$

- Restricted criterion

$$
\overline{\mathcal{J}}_{\mathrm{PLS}}(\overline{\boldsymbol{x}})=\left\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{T}^{\mathrm{t}} \overline{\boldsymbol{x}}\right\|^{2}+\mu\left\|\boldsymbol{D} \boldsymbol{T}^{\mathrm{t}} \overline{\boldsymbol{x}}\right\|^{2}
$$

- Closed form expression for the solution

$$
\begin{aligned}
\widehat{\widehat{\boldsymbol{x}}} & =\underset{\overline{\boldsymbol{x}} \in \mathbb{R}^{M}}{\arg \min } \overline{\mathcal{J}}_{\mathrm{PLS}}(\overline{\boldsymbol{x}}) \\
& =\left[\boldsymbol{T} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{H} \boldsymbol{T}^{\mathrm{t}}+\mu \boldsymbol{T} \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D} \boldsymbol{T}^{\mathrm{t}}\right]^{-1} \boldsymbol{T} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y} \\
& =\left[\boldsymbol{T}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right) \boldsymbol{T}^{\mathrm{t}}\right]^{-1} \boldsymbol{T} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y} \\
\widehat{\boldsymbol{x}} & =\boldsymbol{T}^{\mathrm{t}} \overline{\boldsymbol{x}} \\
& =\boldsymbol{T}^{\mathrm{t}}\left[\boldsymbol{T}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right) \boldsymbol{T}^{\mathrm{t}}\right]^{-1} \boldsymbol{T} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}
\end{aligned}
$$

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Equality constraints:

$$
\begin{aligned}
x_{p} & =0 \text { for } p \in \overline{\mathcal{S}} \\
\overline{\boldsymbol{T}} \boldsymbol{x} & =\mathbf{0}
\end{aligned}
$$

- Equality constraints and Lagrangian term

$$
\sum_{p \in \overline{\mathcal{S}}} \ell_{p} x_{p}=\ell^{t} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Lagrangian

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Closed form expression (see exercise)

$$
\begin{aligned}
\widehat{\boldsymbol{x}}= & {\left[\boldsymbol{Q}^{-1}-\boldsymbol{Q}^{-1} \overline{\boldsymbol{T}}^{\mathrm{t}}\left(\overline{\boldsymbol{T}} \boldsymbol{Q}^{-1} \overline{\boldsymbol{T}}^{\mathrm{t}}\right)^{-1} \overline{\boldsymbol{T}} \boldsymbol{Q}^{-1}\right] \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y} } \\
& \boldsymbol{Q}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)
\end{aligned}
$$

Equality: practical algorithm via Lagrangian

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Equality constraints:

$$
\bar{T} x=0
$$

- Lagrangian

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\underset{\boldsymbol{x}}{\arg \min } \mathcal{L}\left(\boldsymbol{x}, \ell^{[k]}\right)=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\bullet\right) \\
\boldsymbol{\ell}^{[k+1]}=\ell^{[k]}+\tau_{k} \overline{\boldsymbol{T}} \boldsymbol{x}^{[k+1]}
\end{array}\right.
$$

Equality: practical algorithm via Lagrangian

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Equality constraints:

$$
\bar{T} x=0
$$

- Lagrangian

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\underset{\boldsymbol{x}}{\arg \min } \mathcal{L}\left(\boldsymbol{x}, \ell^{[k]}\right)=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\overline{\boldsymbol{T}}^{\mathrm{t}} \boldsymbol{\ell}^{[k]} / 2\right) \\
\boldsymbol{\ell}^{[k+1]}=\ell^{[k]}+\tau_{k} \overline{\boldsymbol{T}} \boldsymbol{x}^{[k+1]}
\end{array}\right.
$$

Equality: algorithm via augmented Lagrangian

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}^{+}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\overline{\boldsymbol{T}} \boldsymbol{x}\|^{2}
$$

- Equality constraints:

$$
\bar{T} x=0
$$

- Lagrangian

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\overline{\boldsymbol{T}} \boldsymbol{x}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\bullet\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\overline{\boldsymbol{T}}^{\mathrm{t}} \boldsymbol{\ell}^{[k]} / 2\right) \\
\ell^{[k+1]}=\ell^{[k]}+2 \rho \overline{\boldsymbol{T}} \boldsymbol{x}^{[k+1]}
\end{array}\right.
$$

Equality: algorithm via augmented Lagrangian

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}^{+}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\overline{\boldsymbol{T}} \boldsymbol{x}\|^{2}
$$

- Equality constraints:

$$
\bar{T} x=0
$$

- Lagrangian

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\overline{\boldsymbol{T}} \boldsymbol{x}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}} \overline{\boldsymbol{T}} \boldsymbol{x}
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\rho \boldsymbol{T}^{\mathrm{t}} \boldsymbol{T}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\overline{\boldsymbol{T}}^{\mathrm{t}} \ell^{[k]} / 2\right) \\
\ell^{[k+1]}=\ell^{[k]}+2 \rho \overline{\boldsymbol{T}} \boldsymbol{x}^{[k+1]}
\end{array}\right.
$$

Equality: via augmented Lagrangian and slack variables

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Constraint \oplus auxiliary (slack) variables

$$
x_{p}=0 \text { for } p \in \overline{\mathcal{S}} \rightsquigarrow \begin{cases}x_{p}=s_{p} & \text { for } p \in \mathcal{M} \\ s_{p}=0 & \text { for } p \in \overline{\mathcal{S}}\end{cases}
$$

- Augmented Lagrangian \oplus slack variables

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\ell^{\mathrm{t}}(\boldsymbol{x}-\boldsymbol{s})
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\boldsymbol{\ell}^{[k]} / 2+\bullet\right) \\
s_{p}^{[k+1]}= \begin{cases}\bullet & \text { for } p \in \mathcal{S} \\
0 & \text { for } p \in \overline{\mathcal{S}}\end{cases} \\
\boldsymbol{\ell}^{[k+1]}=\boldsymbol{\ell}^{[k]}+2 \rho\left(\boldsymbol{x}^{[k+1]}-\boldsymbol{s}^{[k+1]}\right)
\end{array}\right.
$$

Equality: via augmented Lagrangian and slack variables

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Constraint \oplus auxiliary (slack) variables

$$
x_{p}=0 \text { for } p \in \overline{\mathcal{S}} \rightsquigarrow \begin{cases}x_{p}=s_{p} & \text { for } p \in \mathcal{M} \\ s_{p}=0 & \text { for } p \in \overline{\mathcal{S}}\end{cases}
$$

- Augmented Lagrangian \oplus slack variables

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\ell^{\mathrm{t}}(\boldsymbol{x}-\boldsymbol{s})
$$

- Iterative algorithm

$$
\begin{cases}\boldsymbol{x}^{[k+1]} & =\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\boldsymbol{\ell}^{[k]} / 2+\rho \boldsymbol{s}^{[k]}\right) \\ s_{p}^{[k+1]} & = \begin{cases}\boldsymbol{\text { for }} p \in \mathcal{S} \\ 0 & \text { for } p \in \overline{\mathcal{S}}\end{cases} \\ \boldsymbol{\ell}^{[k+1]} & =\boldsymbol{\ell}^{[k]}+2 \rho\left(\boldsymbol{x}^{[k+1]}-\boldsymbol{s}^{[k+1]}\right)\end{cases}
$$

Equality: via augmented Lagrangian and slack variables

- Original (unconstrained) criterion

$$
\mathcal{J}_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Constraint \oplus auxiliary (slack) variables

$$
x_{p}=0 \text { for } p \in \overline{\mathcal{S}} \rightsquigarrow \begin{cases}x_{p}=s_{p} & \text { for } p \in \mathcal{M} \\ s_{p}=0 & \text { for } p \in \overline{\mathcal{S}}\end{cases}
$$

- Augmented Lagrangian \oplus slack variables

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\ell^{\mathrm{t}}(\boldsymbol{x}-\boldsymbol{s})
$$

- Iterative algorithm

$$
\left\{\begin{array}{l}
\boldsymbol{x}^{[k+1]}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}-\boldsymbol{\ell}^{[k]} / 2+\rho \boldsymbol{s}^{[k]}\right) \\
s_{p}^{[k+1]}= \begin{cases}x_{p}^{[k+1]}+\ell_{p}^{[k]} /(2 \rho) & \text { for } p \in \mathcal{S} \\
0 & \text { for } p \in \overline{\mathcal{S}}\end{cases} \\
\boldsymbol{\ell}^{[k+1]}=\boldsymbol{\ell}^{[k]}+2 \rho\left(\boldsymbol{x}^{[k+1]}-\boldsymbol{s}^{[k+1]}\right)
\end{array}\right.
$$

Equality and inequality constraints: problem

- Original (unconstrained) criterion

$$
\mathcal{J}_{\text {PLS }}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Equality and inequality constraints

$$
\begin{cases}x_{p}=0 & \text { for } p \in \overline{\mathcal{S}} \\ x_{p} \geq 0 & \text { for } p \in \mathcal{M}\end{cases}
$$

- Equality and inequality constraints \oplus slack variables

$$
\begin{cases}x_{p}=s_{p} \text { for } p \in \mathcal{M} \\ \begin{cases}s_{p}=0 & \text { for } p \in \overline{\mathcal{S}} \\ s_{p} \geqslant 0 & \text { for } p \in \mathcal{M}\end{cases} \end{cases}
$$

- Augmented Lagrangian \oplus slack variables

$$
\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{s}, \ell)=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\ell^{\mathrm{t}}(\boldsymbol{x}-\boldsymbol{s})
$$

Iterative algorithm: ADMM

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}+\rho\|\boldsymbol{x}-\boldsymbol{s}\|^{2}+\boldsymbol{\ell}^{\mathrm{t}}(\boldsymbol{x}-\boldsymbol{s})
$$

- Iterate three steps
(1) Unconstrained minimisation w.r.t. \boldsymbol{x}

$$
\widetilde{\boldsymbol{x}}=\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}+\rho \boldsymbol{I}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}+[\rho \boldsymbol{s}-\boldsymbol{\ell} / 2]\right) \quad(\equiv F F T)
$$

(2) Constrained minimisation w.r.t. s (s.t. $s_{p} \geqslant 0$ or $s_{p}=0$)

$$
\widetilde{s}_{p}= \begin{cases}\max \left(0, x_{p}+\ell_{p} /(2 \rho)\right) & \text { for } p \in \mathcal{S} \\ 0 & \text { for } p \in \overline{\mathcal{S}}\end{cases}
$$

(3) Update ℓ

$$
\tilde{\ell}_{p}=\ell_{p}+2 \rho\left(x_{p}-s_{p}\right)
$$

Object update: other possibilities

Various options and many relationship. .

- Direct calculus, closed-form expression, matrix inversion
- Algorithm for linear systems
- Gauss, Gauss-Jordan
- Substitution
- Triangularisation,...
- Numerical optimisation
- Gradient descent. . . and modified versions
- Pixel wise, pixel by pixel
- Diagonalization
- Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
- Recursive least squares
- Kalman smoother or filter (and fast versions)

Constrained solution

Conclusions

Synthesis

- Image deconvolution
- Taking constraints into account
- Positivity and support
- Quadratic penalty
- Numerical computations: augmented Lagrangian and ADMM
- Iterative: quadratic \oplus separable
- Circulant case (diagonalization) \rightsquigarrow FFT only (or numerical optimisation, system solvers,...)
- Parallel (separable and explicit)

Extensions (not developped)

- Also available for
- non-invariant linear direct model
- colour images, multispectral and hyperspectral
- also signal, 3D and more, video, 3D+t...
- Including both Huber penalty and constraints
- Hyperparameters estimation, instrument parameter estimation,...

