
Image restoration: constrained approaches

— Support and positivity —

Jean-François Giovannelli

Groupe Signal – Image
Laboratoire de l’Intégration du Matériau au Système

Univ. Bordeaux – CNRS – BINP

1 / 33

Topics

Image restoration, deconvolution
Motivating examples: medical, astrophysical, industrial, vision,. . .
Various problems: deconvolution, Fourier synthesis, denoising. . .
Missing information: ill-posed character and regularisation

Three types of regularised inversion

1 Quadratic penalties and linear solutions
Closed-form expression
Computation through FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

2 Non-quadratic penalties and edge preservation
Half-quadratic approaches, including computation through FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

3 Constraints: positivity and support
Augmented Lagrangian and ADMM, including computation by FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

Bayesian strategy: a few incursions
Tuning hyperparameters, instrument parameters,. . .
Hidden / latent parameters, segmentation, detection,. . .

2 / 33

Convolution /Deconvolution

y = Hx + ε = h ? x + ε

x
H +

y

ε

x̂ = X̂ (y)

Restoration, deconvolution-denoising

General problem: ill-posed inverse problems, i.e., lack of information

Methodology: regularisation, i.e., information compensation

Specificity of the inversion / reconstruction / restoration methods
Trade off and tuning parameters

Limited quality results

3 / 33

Regularized inversion through penalty: two terms

Known: H and y / Unknown: x

Compare observations y and model output Hx

JLS(x) = ‖y −Hx‖2

Quadratic penalty of the gray level gradient
(or other linear combinations)

P(x) =
∑
p∼q

(xp − xq)2 = ‖Dx‖2

Least squares and quadratic penalty:

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

4 / 33

Quadratic penalty: criterion and solution

Least squares and quadratic penalty:

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Restored image

x̂PLS = arg min
x

JPLS(x)

(HtH + µDtD) x̂PLS = Hty

x̂PLS = (HtH + µDtD)−1 Hty

Computations based on diagonalization through FFT

◦
x̂ = (Λ†hΛh + µΛ†dΛd)

−1Λ†h
◦
y

◦
x̂n =

◦
h
∗
n

|
◦
hn|2 + µ|

◦
dn|2

◦
yn for n = 1, . . . N

5 / 33

Object computation: other possibilities

Various options and many relationships. . .

Direct calculus, compact (closed) form, matrix inversion

Algorithms for linear system

Gauss, Gauss-Jordan
Substitution
Triangularisation,. . .

Numerical optimisation

gradient descent. . . and various modifications
Pixel wise, pixel by pixel

Diagonalization

Circulant approximation and diagonalization by FFT

Special algorithms, especially for 1D case

Recursive least squares
Kalman smoother or filter (and fast versions,. . .)

6 / 33

Solution from least squares and quadratic penalty

True Observation Quadratic penalty

7 / 33

Synthesis and extensions to constraints

Limited capability to manage conflict between

Smoothing and
Avoiding noise explosion

. . . that limits resolution capabilities

Extension to non-quadratic penalty

Less “smoothing” around “discontinuities”
Ambivalence:

Smoothing (homogeneous regions)
Heightening, enhancement, sharpening (discontinuities, edges)

. . . and new compromise, trade off, conciliation

Another extension: include constraints

Positivity and support

Better physics and improved resolution

Resort to the linear solution and FFT (Wiener-Hunt)

Augmented Lagrangian and ADMM

8 / 33

Taking constraints into account

Expected benefits

Better physical modelling
More information “quality” improvement
Improved resolution

Restoration technology

Still based on a penalised criterion. . .

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

. . . restored image still defined as a minimiser. . .

x̂ = arg min
x

JPLS(x)

. . . but including constraints
. . . (about the value of the gray level of pixels)

9 / 33

Taking constraints into account: positivity and support

Notation

M: index set of the image pixels
S,D: index set of a subset (support, region, mask,. . .) of the pixels

Investigated constraints here

Positivity
Cp : ∀p ∈M , xp > 0

Support, mask
Cs : ∀p ∈ S̄ , xp = 0

Extensions (non investigated here)

Template
∀p ∈M , t−p 6 xp 6 t

+
p

Partially known map

∀p ∈ D , xp = mp

10 / 33

Taking constraints into account: positivity and support

General form inequality / equality

Bx− b > 0 et Ax− a = 0

Positivity

Cp : ∀p ∈M , xp > 0 B = I et b = 0

Support

Cs : ∀p ∈ S̄ , xp = 0 A = TS et a = 0

Template

∀p ∈M , t−p 6 xp B = I et b = t−

xp 6 t+p B = −I et b = −t+

Partially known map

∀p ∈ D , xp = mp A = TD et a = m

11 / 33

Constrained minimiser

Theoretical point: criterion, constraint and property

Quadratic criterion: JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Linear constraints:

{
xp = 0 for p ∈ S̄
xp > 0 for p ∈M

Question of convexity

Convex (strict) criterion
Convex constraint set

Theoretical point: construction of the solution

Solution: the only constrained minimiser

x̂ = arg min
x


‖y −Hx‖2 + µ ‖Dx‖2

s.t.

{
xp = 0 for p ∈ S̄
xp > 0 for p ∈M

12 / 33

Constraints: some illustrations

13 / 33

Positivity: one variable

One variable: α(t− t̄)2 + γ

−10 −5 0 5 10

0

50

100

150

200

250

−10 −5 0 5 10

0

50

100

150

200

250

t t

Unconstrained solution: t̂ = t̄

Constrained solution: t̂ = max [0, t̄]

Active and inactive constraints

14 / 33

Positivity: two variables (1)

Two variables: α1(t1 − t̄1)2 + α2(t2 − t̄2)2 + β(t2 − t1)2 + γ

Glop Pas glop

−5 0 5 10
−5

0

5

10

−5 0 5 10
−5

0

5

10

Sometimes / often difficult to deduce

the constrained minimiser
from the unconstrained one

15 / 33

Positivity: two variables (2)

Two variables: α1(t1 − t̄1)2 + α2(t2 − t̄2)2 + β(t2 − t1)2 + γ

−5 0 5 10
−5

0

5

10

−5 0 5 10
−5

0

5

10

−5 0 5 10
−5

0

5

10

1 2a 2b

Constrained solution = Unconstrained solution (1)

Constrained solution 6= Unconstrained solution (2)
. . . so active constraints

16 / 33

Positivity: two variables (3)

Two variables: α1(t1 − t̄1)2 + α2(t2 − t̄2)2 + β(t2 − t1)2 + γ

−5 0 5 10
−5

0

5

10

−5 0 5 10
−5

0

5

10

2a 2b

Constrained solution 6= Unconstrained solution (2)
. . . so active constraints

Constrained solution 6= Projected unconstrained solution (2a)(
t̂1; t̂2

)
6= (max [0, t̄1] ; max [0, t̄2])

Constrained solution = Projected unconstrained solution (2b)(
t̂1; t̂2

)
= (max [0, t̄1] ; max [0, t̄2])

17 / 33

Numerical optimisation: state of the art

Problem

Quadratic optimisation with linear constraints

Difficulties

N ∼ 1 000 000
Constraints ⊕ non-separable variables

Existing algorithms

Existing tools with guaranteed convergence
[Bertsekas 95,99; Nocedal 00,08; Boyd 04,11]

Gradient projection methods, constrained gradient method
Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory
Interior points and barrier
Pixel-wise descent
Augmented Lagrangian, ADMM

Constrained but separated + non-separated but non-constrained
Partial solutions still through FFT

18 / 33

Equality constraints

Simplified problem

x̂ = arg min
x

 ‖y −Hx‖2 + µ ‖Dx‖2

s.t. xp = 0 for p ∈ S̄

Sets and subsets of pixels
M: full vector of pixels x ∈ RN

S: vector of unconstrained pixels x̄ ∈ RM

Truncation
x̄ = Tx truncation, selection of unconstrained pixels

T is M ×N (M < N), e.g., T =

[
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0

]
Properties: zero-padding,. . .

T tx̄ zero-padding, fill with zeros

TT t = IM

T tT = diag
[
. . . 0 / 1 . . .

]
: projection, “nullification matrix”

19 / 33

Equality: direct closed form expression

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Zero-padded variable
x = T tx̄

Restricted criterion

J̄PLS(x̄) =
∥∥y −HT tx̄

∥∥2
+ µ

∥∥DT tx̄
∥∥2

Closed form expression for the solution̂̄x = arg min
x̄∈RM

J̄PLS(x̄)

=
[
THtHT t + µTDtDT t

]−1
THty

=
[
T (HtH + µDtD)T t

]−1
THty

x̂ = T t x̄

= T t
[
T (HtH + µDtD)T t

]−1
THty

20 / 33

Equality: closed form expression via Lagrangian

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Equality constraints:

xp = 0 for p ∈ S̄
T̄ x = 0

Equality constraints and Lagrangian term∑
p∈S̄

`pxp = `tT̄ x

Lagrangian

L(x, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + `tT̄ x

Closed form expression (see exercise)

x̂ =
[
Q−1 −Q−1 T̄ t(T̄Q−1T̄ t)−1 T̄Q−1

]
Hty

Q = (HtH + µDtD)
21 / 33

Equality: practical algorithm via Lagrangian

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Equality constraints:
T̄ x = 0

Lagrangian

L(x, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + `tT̄ x

Iterative algorithmx[k+1] = arg min
x

L(x, `[k]) = (HtH + µDtD)−1(Hty − •)

`[k+1] = `[k] + τk T̄ x[k+1]

22 / 33

Equality: practical algorithm via Lagrangian

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Equality constraints:
T̄ x = 0

Lagrangian

L(x, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + `tT̄ x

Iterative algorithmx[k+1] = arg min
x

L(x, `[k]) = (HtH + µDtD)−1(Hty − T̄ t`[k]/2)

`[k+1] = `[k] + τk T̄ x[k+1]

23 / 33

Equality: algorithm via augmented Lagrangian

Original (unconstrained) criterion

J +
PLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ

∥∥T̄ x
∥∥2

Equality constraints:
T̄ x = 0

Lagrangian

Lρ(x, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ
∥∥T̄ x

∥∥2
+ `tT̄ x

Iterative algorithmx[k+1] = (HtH + µDtD + •)−1(Hty − T̄ t`[k]/2)

`[k+1] = `[k] + 2ρ T̄ x[k+1]

24 / 33

Equality: algorithm via augmented Lagrangian

Original (unconstrained) criterion

J +
PLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ

∥∥T̄ x
∥∥2

Equality constraints:
T̄ x = 0

Lagrangian

Lρ(x, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ
∥∥T̄ x

∥∥2
+ `tT̄ x

Iterative algorithmx[k+1] = (HtH + µDtD + ρT tT)−1(Hty − T̄ t`[k]/2)

`[k+1] = `[k] + 2ρ T̄ x[k+1]

25 / 33

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Constraint ⊕ auxiliary (slack) variables

xp = 0 for p ∈ S̄

{
xp = sp for p ∈M
sp = 0 for p ∈ S̄

Augmented Lagrangian ⊕ slack variables

Lρ(x, s, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ ‖x− s‖2 + `t(x− s)

Iterative algorithm

x[k+1] = (HtH + µDtD + ρI)−1(Hty − `[k]/2 + •)

s
[k+1]
p =

{
• for p ∈ S
0 for p ∈ S̄

`[k+1] = `[k] + 2ρ (x[k+1] − s[k+1])

26 / 33

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Constraint ⊕ auxiliary (slack) variables

xp = 0 for p ∈ S̄

{
xp = sp for p ∈M
sp = 0 for p ∈ S̄

Augmented Lagrangian ⊕ slack variables

Lρ(x, s, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ ‖x− s‖2 + `t(x− s)

Iterative algorithm

x[k+1] = (HtH + µDtD + ρI)−1(Hty − `[k]/2 + ρs[k])

s
[k+1]
p =

{
• for p ∈ S
0 for p ∈ S̄

`[k+1] = `[k] + 2ρ (x[k+1] − s[k+1])

27 / 33

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Constraint ⊕ auxiliary (slack) variables

xp = 0 for p ∈ S̄

{
xp = sp for p ∈M
sp = 0 for p ∈ S̄

Augmented Lagrangian ⊕ slack variables

Lρ(x, s, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ ‖x− s‖2 + `t(x− s)

Iterative algorithm

x[k+1] = (HtH + µDtD + ρI)−1(Hty − `[k]/2 + ρs[k])

s
[k+1]
p =

{
x

[k+1]
p + `

[k]
p /(2ρ) for p ∈ S

0 for p ∈ S̄

`[k+1] = `[k] + 2ρ (x[k+1] − s[k+1])

28 / 33

Equality and inequality constraints: problem

Original (unconstrained) criterion

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Equality and inequality constraints{
xp = 0 for p ∈ S̄
xp ≥ 0 for p ∈M

Equality and inequality constraints ⊕ slack variables
xp = sp for p ∈M{
sp = 0 for p ∈ S̄
sp > 0 for p ∈M

Augmented Lagrangian ⊕ slack variables

Lρ(x, s, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ ‖x− s‖2 + `t(x− s)

29 / 33

Iterative algorithm: ADMM

L(x, s, `) = ‖y −Hx‖2 + µ ‖Dx‖2 + ρ ‖x− s‖2 + `t(x− s)

Iterate three steps

1 Unconstrained minimisation w.r.t. x

x̃ = (HtH + µDtD + ρI)−1 (Hty + [ρs− `/2]
)

(≡ FFT)

2 Constrained minimisation w.r.t. s (s.t. sp > 0 or sp = 0)

s̃p =

{
max (0, xp + `p/(2ρ)) for p ∈ S
0 for p ∈ S̄

3 Update ` ˜̀
p = `p + 2ρ(xp − sp)

30 / 33

Object update: other possibilities

Various options and many relationship. . .

Direct calculus, closed-form expression, matrix inversion

Algorithm for linear systems

Gauss, Gauss-Jordan
Substitution
Triangularisation,. . .

Numerical optimisation

Gradient descent. . . and modified versions
Pixel wise, pixel by pixel

Diagonalization

Circulant approximation and diagonalization by FFT

Special algorithms, especially for 1D case

Recursive least squares
Kalman smoother or filter (and fast versions)

31 / 33

Constrained solution

True Observation Quadratic penalty Constrained

32 / 33

Conclusions

Synthesis

Image deconvolution

Taking constraints into account

Positivity and support
Quadratic penalty

Numerical computations: augmented Lagrangian and ADMM
Iterative: quadratic ⊕ separable

Circulant case (diagonalization) FFT only
(or numerical optimisation, system solvers,. . .)
Parallel (separable and explicit)

Extensions (not developped)

Also available for

non-invariant linear direct model
colour images, multispectral and hyperspectral
also signal, 3D and more, video, 3D+t. . .

Including both Huber penalty and constraints

Hyperparameters estimation, instrument parameter estimation,. . .
33 / 33

