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@ Image restoration, deconvolution
o Motivating examples: medical, astrophysical, industrial, vision,. ..
e Various problems: deconvolution, Fourier synthesis, denoising. . .
o Missing information: ill-posed character and regularisation

@ Three types of regularised inversion

@ Quadratic penalties and linear solutions
o Closed-form expression
o Computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Non-quadratic penalties and edge preservation
o Half-quadratic approaches, including computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

© Constraints: positivity and support
@ Augmented Lagrangian and ADMM, including computation by FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Bayesian strategy: a few incursions
o Tuning hyperparameters, instrument parameters,. . .
o Hidden / latent parameters, segmentation, detection,. ..
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Convolution / Deconvolution

y=Hxr+e=h*x+e

= X(y)

Restoration, deconvolution-denoising
@ General problem: ill-posed inverse problems, i.e., lack of information

@ Methodology: regularisation, i.e., information compensation

e Specificity of the inversion / reconstruction / restoration methods
o Trade off and tuning parameters

@ Limited quality results
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Regularized inversion through penalty: two terms

e Known: H and y / Unknown:

o Compare observations y and model output Hx

Jus(x) = |y — Ha|?

o Quadratic penalty of the gray level gradient
(or other linear combinations)

P(a) =) (zp —x,)° = || Dl

p~q

@ Least squares and quadratic penalty:

Jos(®) = |ly— Hz|? + p |Dz|?
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Quadratic penalty: criterion and solution

@ Least squares and quadratic penalty:

Tous(x) = |ly — He|? + p | Dz|?

@ Restored image

/m\PLS = argmianLs(m)
(H'H + uD'D) ,,s = H'y
Zors = (H'H+puD'D)™' H'y

o Computations based on diagonalization through FFT

T = (AJA,+pAlA)T ALY
2 b, .
T, = ————1y, forn=1,...N

(|2 + | |2
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Object computation: other possibilities

Various options and many relationships. . .

@ Direct calculus, compact (closed) form, matrix inversion

@ Algorithms for linear system

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o gradient descent. ..and various modifications
o Pixel wise, pixel by pixel

@ Diagonalization

o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
e Kalman smoother or filter (and fast versions,. . .)
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Solution from least squares and quadratic penalty

True Observation Quadratic penalty
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Synthesis and extensions to constraints

@ Limited capability to manage conflict between

e Smoothing and
o Avoiding noise explosion

... that limits resolution capabilities

.

Extension to non-quadratic penalty

@ Less “smoothing” around “discontinuities”
o Ambivalence:

@ Smoothing (homogeneous regions)
@ Heightening, enhancement, sharpening (discontinuities, edges)

e ...and new compromise, trade off, conciliation
W

Another extension: include constraints

@ Positivity and support

@ Better physics and improved resolution
@ Resort to the linear solution and FFT (Wiener-Hunt)
o Augmented Lagrangian and ADMM

€
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Taking constraints into account

o Expected benefits

o Better physical modelling
o More information ~~ “quality” improvement
o Improved resolution

@ Restoration technology

o Still based on a penalised criterion. ..

Ters(z) = |ly — He|® + p | Dz|?

o ...restored image still defined as a minimiser. . .
T = argmin Jprs ()
@x

o ...but including constraints
... (about the value of the gray level of pixels)
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Taking constraints into account: positivity and support

@ Notation

o M: index set of the image pixels
o S, D: index set of a subset (support, region, mask,...) of the pixels

Investigated constraints here

o Positivity

CPZVPGM, xp>0

@ Support, mask ~
C:VpelS, z,=0

.

Extensions (non investigated here)

o Template
VpeM, t; <z, <th

o Partially known map

VpeD, x,=my

.
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Taking constraints into account: positivity and support

General form inequality / equality

Bx—b>0 et Ax—a=0 J

o Positivity
Co:VpeM, 2,20 ~» B=1I et b=0

@ Support
Cs:VpeS, p=0 ~» A=Ts et a=0
e Template
Vpe M, t,<xp, ~ B=1Ietb=t"
r, <tt ~ B=-I et b=—t*

@ Partially known map

VpeD, z,=m, ~ A=Tp et a=m
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Constrained minimiser

Theoretical point: criterion, constraint and property

o Quadratic criterion: Jps(x) = ||y — Hz|* + p | Dz|

i . z, =0 forpe S
@ Linear constraints: 2 P
zp, 20 forpe M
@ Question of convexity

o Convex (strict) criterion
o Convex constraint set

Theoretical point: construction of the solution

@ Solution: the only constrained minimiser
2 2
ly — Hz||” + p || Dz||

E:argwmin ; z,=0 forpeS8
s.t.
2,20 forpe M
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Constraints: some illustrations
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Positivity: one variable

e One variable: a(t — %)% +~

150 150

100 100

50 50]

-10 -5 0 5

e Unconstrained solution: = ¢

o Constrained solution: ¢ = max [0, ]

@ Active and inactive constraints
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Positivity: two variables (1)

e Two variables: ay(t; — 1) + ao(ta — t2)? + B(ta — t1)% +

Pas glop

@ Sometimes / often difficult to deduce

o the constrained minimiser
o from the unconstrained one
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Positivity: two variables (2)

@ Two variables: Ozl(tl - t_1>2 + Ozg(tg — t_2)2 + /B(tQ - t1>2 +y

e Constrained solution = Unconstrained solution (1)

@ Constrained solution # Unconstrained solution (2)
...S0 active constraints
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Positivity: two variables (3)

o Two variables: ay(t; — 1) + ao(ta — t2)? + B(ta — t1)% + 7

10

- S —
7 ‘,/,/ .
/// ﬁ o

@)W (G

2a 2b

e Constrained solution # Unconstrained solution (2)
...s0 active constraints
e Constrained solution # Projected unconstrained solution (2a)

(t1;12) # (max [0, %] ; max [0, {2])
o Constrained solution = Projected unconstrained solution (2b)

(tAl,t/;) = (max [0, 1] ; max [0, £2])
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Numerical optimisation: state of the art

Problem

@ Quadratic optimisation with linear constraints
o Difficulties

e N ~ 1000000
o Constraints @ non-separable variables

Existing algorithms

@ Existing tools with guaranteed convergence
[BERTSEKAS 95,99; NOCEDAL 00,08; BoyD 04,11]

o Gradient projection methods, constrained gradient method

o Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory
o Interior points and barrier

o Pixel-wise descent

o Augmented Lagrangian, ADMM

o Constrained but separated + non-separated but non-constrained
o Partial solutions still through FFT

\,

18/33



Equality constraints

Simplified problem

2 2
_ | lly—He|” + p||Dz|
T = arg min

= st. 2, =0 forpeS

@ Sets and subsets of pixels
o M: full vector of pixels ~» & € RN

o S: vector of unconstrained pixels ~ & € RM

@ Truncation

o & = T'x truncation, selection of unconstrained pixels

. o 1 0o 0 0 0 o0
e TisMxN(M<N),eg, T=|0o o 1 0o 0o o0 o0
o 0 0o 0o 1 0 o

@ Properties: zero-padding,. ..
o T*'% zero-padding, fill with zeros
o TT' =1y

o T'T =diag[...0/1...]: projection, “nullification matrix”
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Equality: direct closed form expression

@ Original (unconstrained) criterion

ijs(w) = Hy - I_I:EH2 +u ||D£B||2

@ Zero-padded variable
x=T'z

@ Restricted criterion
Jrns(@) = |y - BT'z|* + || DT

@ Closed form expression for the solution

~

x = argmin Jprs(Z)
ZeRM
[TH'HT' + uTD'DT'] "' TH'y

[T (H'H +uD'D)T"| ' TH'y

= T'z
— T'[T(H'H+uD'D)T'] ' TH'y

)
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Equality: closed form expression via Lagrangian

@ Original (unconstrained) criterion

ijs(w) = Hy - H$||2 +p ||D33||2

@ Equality constraints:
r, = 0 forpeS
Tx = 0
@ Equality constraints and Lagrangian term
> tyr, = LT
peS
o Lagrangian

L(x,0) = ly - Ha|? + | D|> + T
o Closed form expression (see exercise)
T = [Q_l _Q—l Tt(TQ—th)—l TQ—l] th
Q= (H'H +uD'D)
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Equality: practical algorithm via Lagrangian

Original (unconstrained) criterion

Jers(®) = |ly — Ha|* + p|| Dz

o Equality constraints: _
Tx =0
o Lagrangian
L(@.8) = |y — He|* + p| Da|* + £ T
@ lIterative algorithm

e+ — argminﬁ(:v,f[k]) — (H'H + uD'D) " (H'y — o)

g — gkl k1]
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Equality: practical algorithm via Lagrangian

Original (unconstrained) criterion

Jers(®) = |ly — Ha|* + p|| Dz

o Equality constraints: _
Tx =0
o Lagrangian
L(@.8) = |y — He|* + p| Da|* + £ T
@ lIterative algorithm

zlFt1 = argmin £(w,ﬁ[k]) = (H'H + uD'D) ' (H'y — Ttﬁ[k]/Q)

T

e — gkl gkt
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Equality: algorithm via augmented Lagrangian

@ Original (unconstrained) criterion

Jits(@) = |y — Ha|* + | Dl + p | T||”

e Equality constraints:

o Lagrangian

Ly(@,8) = |y — Ha|* + u | Dz|? + p | Ta|” + £ T

o lterative algorithm
k] = (H'H + uD'D + o )"L(H 7Tt£[k] )
( p )" (H'y /2)

pler — plK] +2p Tplk+1]
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Equality: algorithm via augmented Lagrangian

@ Original (unconstrained) criterion

Jits(@) = |y — Ha|* + | Dl + p | T||”

e Equality constraints:

o Lagrangian

Ly(@,8) = |y — Ha|* + u | Dz|? + p | Ta|” + £ T

o lterative algorithm
m[k+1] —_ (HtH + thD + thT)fl(th . Tte[k]/2)

pler — plK] +2p Tplk+1]
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Equality: via augmented Lagrangian and slack variables

@ Original (unconstrained) criterion
2 2
JPLS(w) = Hy - H:BH +u ||D(IZ||
o Constraint @ auxiliary (slack) variables

rp, =58, forpeM

m=0forpes - {s =0 forpe S
p =

@ Augmented Lagrangian & slack variables

Ly(x,s,8) = |y — Ha||" + u| Dz|* + p @ - s|* + £'(z - s)

@ lterative algorithm

ekt — (H'H + uD'D + pI) "' (Hy — £%1/2 + o)
Jeru _ ) e forpeS
P 0 forpe S

PR = pM 9 (1) glh+1])
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Equality: via augmented Lagrangian and slack variables

@ Original (unconstrained) criterion
2 2
JPLS(w) = Hy - H:BH +u ||D(IZ||
o Constraint @ auxiliary (slack) variables

rp, =58, forpeM

m=0forpes - {s =0 forpe S
p =

@ Augmented Lagrangian & slack variables

Ly(x,s,8) = |y — Ha||" + u| Dz|* + p @ - s|* + £'(z - s)

@ lterative algorithm

bt = (H'H + puD'D + pI) "' (H'y — £ /2 1 pslk)
5[k+1] _ ° for pE S
P 0 forpeS

R = pM 9 (k1] k1]
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Equality: via augmented Lagrangian and slack variables

@ Original (unconstrained) criterion
2 2
JPLS(w) = Hy - H:BH +u ||D(IZ||
o Constraint @ auxiliary (slack) variables

rp, =58, forpeM

m=0forpes - {s =0 forpe S
p =

@ Augmented Lagrangian & slack variables

Ly(x,s,8) = |y — Ha||" + u| Dz|* + p @ - s|* + £'(z - s)

@ lterative algorithm

w[k-ﬁ-l] — (HtH+thD +pI)—1(th _g[k]/Q +ps[k]>
LR ifgﬁl] + 47“/(20) forpes
b 0 forpeS

R = pM 9 (k1] k1]
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Equality and inequality constraints: problem

@ Original (unconstrained) criterion

2 2
Jers(x) = |ly — Hz||” + p || Dz
e Equality and inequality constraints

r,=0 forped8
zp >0 for pe M

@ Equality and inequality constraints & slack variables
xzp =5, forpe M

sp=0 forped8
sp 20 forpe M

@ Augmented Lagrangian & slack variables
Lo(@,5.8) = |ly — He||" + u|Dz|” + pllz - s||* + £(z - s)
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Iterative algorithm: ADMM

L(z,s,8) = |ly — He|" + p||Dz|* + pllz - s||* + £'(x — 5)

@ lterate three steps

@ Unconstrained minimisation w.r.t. @

&= (H'H+uD'D+pI)~" (H'y + [ps — £/2)) (= FFT)

@ Constrained minimisation w.r.t. s (s.t. s, > 0 or s, =0)

- max (0,2, +£p/(2p)) forpeS
Sp = _
P 0 forpeS

© Update £

by = €y + 2p(zp — Sp)
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Object update: other possibilities

Various options and many relationship. . .

@ Direct calculus, closed-form expression, matrix inversion

@ Algorithm for linear systems

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o Gradient descent. .. and modified versions
o Pixel wise, pixel by pixel

@ Diagonalization
o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
o Kalman smoother or filter (and fast versions)
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Constrained solution

True Observation Quadratic penalty Constrained
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Conclusions

@ Image deconvolution

@ Taking constraints into account
o Positivity and support
o Quadratic penalty
@ Numerical computations: augmented Lagrangian and ADMM

o lterative: quadratic & separable
o Circulant case (diagonalization) ~ FFT only
(or numerical optimisation, system solvers,. . .)
o Parallel (separable and explicit)

Extensions (not developped)

@ Also available for
e non-invariant linear direct model
o colour images, multispectral and hyperspectral

o also signal, 3D and more, video, 3D+t. ..

@ Including both Huber penalty and constraints
@ Hyperparameters estimation, instrument parameter estimation,. . .
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