Image restoration: constrained approaches

Support and positivity

Jean-François Giovannelli

Groupe Signal – Image Laboratoire de l'Intégration du Matériau au Système Univ. Bordeaux – CNRS – BINP

Topics

- Image restoration, deconvolution
 - Motivating examples: medical, astrophysical, industrial, vision,...
 - Various problems: deconvolution, Fourier synthesis, denoising. . .
 - Missing information: ill-posed character and regularisation
- Three types of regularised inversion
 - Quadratic penalties and linear solutions
 - Closed-form expression
 - Computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 - Non-quadratic penalties and edge preservation
 - Half-quadratic approaches, including computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 - Constraints: positivity and support
 - Augmented Lagrangian and ADMM, including computation by FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
- Bayesian strategy: a few incursions
 - Tuning hyperparameters, instrument parameters,...
 - Hidden / latent parameters, segmentation, detection,...

Convolution / Deconvolution

$$y = Hx + \varepsilon = h \star x + \varepsilon$$

$$\widehat{m{x}} = \widehat{\mathcal{X}}(m{y})$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
 - Specificity of the inversion / reconstruction / restoration methods
 - Trade off and tuning parameters
- Limited quality results

Regularized inversion through penalty: two terms

- ullet Known: $oldsymbol{H}$ and $oldsymbol{y}$ / Unknown: $oldsymbol{x}$
- ullet Compare observations y and model output Hx

$$J_{\scriptscriptstyle
m LS}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2$$

 Quadratic penalty of the gray level gradient (or other linear combinations)

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p \sim q} (x_p - x_q)^2 = \|\boldsymbol{D}\boldsymbol{x}\|^2$$

• Least squares and quadratic penalty:

$$\mathcal{J}_{\text{PLS}}(\mathbf{x}) = \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \mu \|\mathbf{D}\mathbf{x}\|^2$$

Quadratic penalty: criterion and solution

Least squares and quadratic penalty:

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \, \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Restored image

Computations based on diagonalization through FFT

$$\begin{split} \mathring{\hat{x}} &= (\boldsymbol{\Lambda}_h^{\dagger} \boldsymbol{\Lambda}_h + \mu \boldsymbol{\Lambda}_d^{\dagger} \boldsymbol{\Lambda}_d)^{-1} \boldsymbol{\Lambda}_h^{\dagger} \mathring{\boldsymbol{y}} \\ \mathring{\hat{x}}_n &= \frac{\mathring{\boldsymbol{h}}_n^*}{|\mathring{\boldsymbol{h}}_n|^2 + \mu |\mathring{\boldsymbol{d}}_n|^2} \mathring{\boldsymbol{y}}_n \quad \text{for } n = 1, \dots N \end{split}$$

Object computation: other possibilities

Various options and many relationships...

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,...
- Numerical optimisation
 - gradient descent...and various modifications
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions,...)

Solution from least squares and quadratic penalty

Synthesis and extensions to constraints

- Limited capability to manage conflict between
 - Smoothing and
 - Avoiding noise explosion
 - ... that limits resolution capabilities

Extension to non-quadratic penalty

- Less "smoothing" around "discontinuities"
 - Ambivalence:
 - Smoothing (homogeneous regions)
 - Heightening, enhancement, sharpening (discontinuities, edges)
 - ...and new compromise, trade off, conciliation

Another extension: include constraints

- Positivity and support
- Better physics and improved resolution
- Resort to the linear solution and FFT (Wiener-Hunt)
 - Augmented Lagrangian and ADMM

Taking constraints into account

- Expected benefits
 - Better physical modelling
 - More information → "quality" improvement
 - Improved resolution
- Restoration technology
 - Still based on a penalised criterion...

$$\mathcal{J}_{ ext{PLS}}(\boldsymbol{x}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2$$

• ... restored image still defined as a minimiser. . .

$$\widehat{m{x}} = rg\min_{m{x}} \mathcal{J}_{ ext{PLS}}(m{x})$$

... but including constraints
 ... (about the value of the gray level of pixels)

Taking constraints into account: positivity and support

- Notation
 - M: index set of the image pixels
 - \mathcal{S}, \mathcal{D} : index set of a subset (support, region, mask,...) of the pixels

Investigated constraints here

Positivity

$$C_p: \forall p \in \mathcal{M}, \quad x_p \geqslant 0$$

Support, mask

$$C_s: \forall p \in \bar{S}, \quad x_p = 0$$

Extensions (non investigated here)

Template

$$\forall p \in \mathcal{M}, \quad t_p^- \leqslant x_p \leqslant t_p^+$$

Partially known map

$$\forall p \in \mathcal{D}, \quad x_p = m_p$$

Taking constraints into account: positivity and support

General form inequality / equality

$$Bx - b \geqslant 0$$
 et $Ax - a = 0$

Positivity

$$C_p: \forall p \in \mathcal{M}, \quad x_p \geqslant 0 \quad \leadsto \quad \boldsymbol{B} = \boldsymbol{I} \text{ et } \boldsymbol{b} = \boldsymbol{0}$$

Support

$$C_s: \forall p \in \bar{S}, \quad x_p = 0 \quad \leadsto \quad A = T_S \text{ et } a = 0$$

Template

$$\forall p \in \mathcal{M}$$
, $t_p^- \leqslant x_p \quad \leadsto \quad \boldsymbol{B} = \boldsymbol{I} \text{ et } \boldsymbol{b} = \boldsymbol{t}^ x_p \leqslant t_p^+ \quad \leadsto \quad \boldsymbol{B} = -\boldsymbol{I} \text{ et } \boldsymbol{b} = -\boldsymbol{t}^+$

Partially known map

$$\forall p \in \mathcal{D}, \quad x_p = m_p \quad \leadsto \quad \mathbf{A} = \mathbf{T}_{\mathcal{D}} \quad \text{et } \mathbf{a} = \mathbf{m}$$

Constrained minimiser

Theoretical point: criterion, constraint and property

- ullet Quadratic criterion: $\mathcal{J}_{ ext{ iny PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} oldsymbol{H} oldsymbol{x}
 ight\|^2 + \mu \, \left\|oldsymbol{D} oldsymbol{x}
 ight\|^2$
- Linear constraints: $\begin{cases} x_p = 0 & \text{for } p \in \bar{\mathcal{S}} \\ x_p \geqslant 0 & \text{for } p \in \mathcal{M} \end{cases}$
- Question of convexity
 - Convex (strict) criterion
 - Convex constraint set

Theoretical point: construction of the solution

• Solution: the only constrained minimiser

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \left\{ \begin{array}{l} \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2 \\ \text{s.t.} \left\{ \begin{aligned} x_p &= 0 & \text{for } p \in \bar{\mathcal{S}} \\ x_p &\geqslant 0 & \text{for } p \in \mathcal{M} \end{aligned} \right. \end{array} \right.$$

Constraints: some illustrations

Positivity: one variable

• One variable: $\alpha(t-\bar{t})^2 + \gamma$

- Unconstrained solution: $\hat{t} = \bar{t}$
- Constrained solution: $\hat{t} = \max [0, \bar{t}]$
- Active and inactive constraints

Positivity: two variables (1)

• Two variables: $\alpha_1(t_1 - \bar{t_1})^2 + \alpha_2(t_2 - \bar{t_2})^2 + \beta(t_2 - t_1)^2 + \gamma$

- Sometimes / often difficult to deduce
 - the constrained minimiser
 - from the unconstrained one

Positivity: two variables (2)

• Two variables: $\alpha_1(t_1 - \bar{t_1})^2 + \alpha_2(t_2 - \bar{t_2})^2 + \beta(t_2 - t_1)^2 + \gamma$

- Constrained solution = Unconstrained solution (1)
- Constrained solution ≠ Unconstrained solution (2)
 ... so active constraints

Positivity: two variables (3)

• Two variables: $\alpha_1(t_1 - \bar{t_1})^2 + \alpha_2(t_2 - \bar{t_2})^2 + \beta(t_2 - t_1)^2 + \gamma$

- ullet Constrained solution eq Unconstrained solution (2)
 - ... so active constraints
 - Constrained solution ≠ Projected unconstrained solution (2a)

$$\left(\widehat{t_1}; \widehat{t_2}\right) \neq \left(\max\left[0, \bar{t_1}\right]; \max\left[0, \bar{t_2}\right]\right)$$

• Constrained solution = Projected unconstrained solution (2b)

$$\left(\widehat{t_1}; \widehat{t_2}\right) = \left(\max\left[0, \bar{t_1}\right]; \max\left[0, \bar{t_2}\right]\right)$$

Numerical optimisation: state of the art

Problem

- Quadratic optimisation with linear constraints
- Difficulties
 - $N \sim 1000000$
 - Constraints ⊕ non-separable variables

Existing algorithms

- Existing tools with guaranteed convergence [Bertsekas 95,99; Nocedal 00,08; Boyd 04,11]
 - · Gradient projection methods, constrained gradient method
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited memory
 - Interior points and barrier
 - Pixel-wise descent
 - Augmented Lagrangian, ADMM
 - Constrained but separated + non-separated but non-constrained
 - Partial solutions still through FFT

Equality constraints

Simplified problem

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \left\{ \begin{array}{l} \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 \\ \text{s.t. } x_p = 0 \text{ for } p \in \bar{\mathcal{S}} \end{array} \right.$$

- Sets and subsets of pixels
 - $m{\cdot}$ \mathcal{M} : full vector of pixels $\leadsto m{x} \in \mathbb{R}^N$
 - $m{\circ}$ \mathcal{S} : vector of unconstrained pixels $ightsquigarrow ar{m{x}} \in \mathbb{R}^M$
- Truncation
 - $oldsymbol{ar{x}} = Tx$ truncation, selection of unconstrained pixels

- Properties: zero-padding,...
 - ullet $oldsymbol{T}^{\mathrm{t}}ar{oldsymbol{x}}$ zero-padding, fill with zeros
 - \bullet $TT^{\mathrm{t}} = I_M$
 - $T^{t}T = \operatorname{diag}[\ldots 0 / 1 \ldots]$: projection, "nullification matrix"

Equality: direct closed form expression

Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H} oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D} oldsymbol{x}
ight\|^2$$

Zero-padded variable

$$oldsymbol{x} = oldsymbol{T}^{ ext{t}}ar{oldsymbol{x}}$$

Restricted criterion

$$ar{\mathcal{J}}_{ ext{PLS}}(ar{oldsymbol{x}}) = \left\| oldsymbol{y} - oldsymbol{H}oldsymbol{T}^{ ext{t}}ar{oldsymbol{x}}
ight\|^2 + \mu \left\| oldsymbol{D}oldsymbol{T}^{ ext{t}}ar{oldsymbol{x}}
ight\|^2$$

Closed form expression for the solution

$$\widehat{\bar{x}} = \underset{\bar{x} \in \mathbb{R}^M}{\operatorname{arg min}} \overline{\mathcal{J}}_{\text{PLS}}(\bar{x})
= \left[TH^{\text{t}}HT^{\text{t}} + \mu TD^{\text{t}}DT^{\text{t}} \right]^{-1} TH^{\text{t}}y
= \left[T(H^{\text{t}}H + \mu D^{\text{t}}D) T^{\text{t}} \right]^{-1} TH^{\text{t}}y$$

$$egin{array}{lcl} \widehat{m{x}} & = & m{T}^{ ext{t}} \, ar{m{x}} \ & = & m{T}^{ ext{t}} \, ig[m{T} \, (m{H}^{ ext{t}} m{H} + \mu m{D}^{ ext{t}} m{D}) \, m{T}^{ ext{t}} \, ig]^{-1} \, m{T} m{H}^{ ext{t}} m{y} \end{array}$$

Equality: closed form expression via Lagrangian

Original (unconstrained) criterion

$$\mathcal{J}_{ ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H} oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D} oldsymbol{x}
ight\|^2$$

• Equality constraints:

$$x_p = 0 \text{ for } p \in \bar{\mathcal{S}}$$

 $\bar{T}x = 0$

• Equality constraints and Lagrangian term

$$\sum_{p \in \bar{\mathcal{S}}} \ell_p x_p = \boldsymbol{\ell}^{\mathrm{t}} \bar{\boldsymbol{T}} \boldsymbol{x}$$

Lagrangian

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 + \boldsymbol{\ell}^{\mathrm{t}} \bar{\boldsymbol{T}} \boldsymbol{x}$$

Closed form expression (see exercise)

Equality: practical algorithm via Lagrangian

Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H} oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D} oldsymbol{x}
ight\|^2$$

• Equality constraints:

$$\bar{T}x = 0$$

Lagrangian

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2 + \ell^{\mathrm{t}} \bar{\boldsymbol{T}} \boldsymbol{x}$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= \operatorname*{arg\,min}_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell}^{[k]}) = (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu \boldsymbol{D}^{\mathrm{t}}\boldsymbol{D})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \bullet) \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + \tau_k \ \bar{\boldsymbol{T}}\boldsymbol{x}^{[k+1]} \end{cases}$$

Equality: practical algorithm via Lagrangian

• Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H} oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D} oldsymbol{x}
ight\|^2$$

• Equality constraints:

$$\bar{T}x = 0$$

Lagrangian

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{D}\boldsymbol{x}\|^2 + \ell^{\mathrm{t}}\bar{\boldsymbol{T}}\boldsymbol{x}$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= \underset{\boldsymbol{x}}{\arg\min} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\ell}^{[k]}) = (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu \boldsymbol{D}^{\mathrm{t}}\boldsymbol{D})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \bar{\boldsymbol{T}}^{\mathrm{t}}\boldsymbol{\ell}^{[k]}/2) \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + \tau_k \; \bar{\boldsymbol{T}}\boldsymbol{x}^{[k+1]} \end{cases}$$

Equality: algorithm via augmented Lagrangian

Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}^{+}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^{2} + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^{2} +
ho \left\|ar{oldsymbol{T}}oldsymbol{x}
ight\|^{2}$$

• Equality constraints:

$$\bar{\boldsymbol{T}}\boldsymbol{x}=0$$

Lagrangian

$$\mathcal{L}_{
ho}(oldsymbol{x}, oldsymbol{\ell}) = \left\| oldsymbol{y} - oldsymbol{H} oldsymbol{x}
ight\|^2 + \mu \left\| oldsymbol{D} oldsymbol{x}
ight\|^2 +
ho \left\| ar{oldsymbol{T}} oldsymbol{x}
ight\|^2 + oldsymbol{\ell}^{\mathrm{t}} ar{oldsymbol{T}} oldsymbol{x}$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu \boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \bullet)^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \bar{\boldsymbol{T}}^{\mathrm{t}}\boldsymbol{\ell}^{[k]}/2) \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + 2\rho \; \bar{\boldsymbol{T}}\boldsymbol{x}^{[k+1]} \end{cases}$$

Equality: algorithm via augmented Lagrangian

Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}^{+}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^{2} + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^{2} +
ho \left\|ar{oldsymbol{T}}oldsymbol{x}
ight\|^{2}$$

• Equality constraints:

$$\bar{T}x = 0$$

Lagrangian

$$\mathcal{L}_{
ho}(\boldsymbol{x}, \boldsymbol{\ell}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2 +
ho \left\| \bar{\boldsymbol{T}} \boldsymbol{x} \right\|^2 + \ell^{\mathrm{t}} \bar{\boldsymbol{T}} \boldsymbol{x}$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu \boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \rho \boldsymbol{T}^{\mathrm{t}}\boldsymbol{T})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \bar{\boldsymbol{T}}^{\mathrm{t}}\boldsymbol{\ell}^{[k]}/2) \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + 2\rho \; \bar{\boldsymbol{T}}\boldsymbol{x}^{[k+1]} \end{cases}$$

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

$$\mathcal{J}_{ ext{ iny PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Constraint ⊕ auxiliary (slack) variables

$$x_p = 0 \text{ for } p \in \bar{\mathcal{S}} \quad \leadsto \quad \begin{cases} x_p = s_p & \text{ for } p \in \mathcal{M} \\ s_p = 0 & \text{ for } p \in \bar{\mathcal{S}} \end{cases}$$

• Augmented Lagrangian \oplus slack variables

$$\mathcal{L}_{\rho}(x, s, \ell) = \|y - Hx\|^{2} + \mu \|Dx\|^{2} + \rho \|x - s\|^{2} + \ell^{t}(x - s)$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu\boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \rho\boldsymbol{I})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \boldsymbol{\ell}^{[k]}/2 + \bullet) \\ s_p^{[k+1]} &= \begin{cases} \bullet & \text{for } p \in \mathcal{S} \\ 0 & \text{for } p \in \bar{\mathcal{S}} \end{cases} \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + 2\rho \; (\boldsymbol{x}^{[k+1]} - \boldsymbol{s}^{[k+1]}) \end{cases}$$

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

$$\mathcal{J}_{ ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Constraint ⊕ auxiliary (slack) variables

$$x_p = 0 \text{ for } p \in \bar{\mathcal{S}} \quad \leadsto \quad \begin{cases} x_p = s_p & \text{ for } p \in \mathcal{M} \\ s_p = 0 & \text{ for } p \in \bar{\mathcal{S}} \end{cases}$$

• Augmented Lagrangian \oplus slack variables

$$\mathcal{L}_{\rho}(x, s, \ell) = \|y - Hx\|^{2} + \mu \|Dx\|^{2} + \rho \|x - s\|^{2} + \ell^{t}(x - s)$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu \boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \rho \boldsymbol{I})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \boldsymbol{\ell}^{[k]}/2 + \rho \boldsymbol{s}^{[k]}) \\ s_{p}^{[k+1]} &= \begin{cases} \bullet & \text{for } p \in \mathcal{S} \\ 0 & \text{for } p \in \bar{\mathcal{S}} \end{cases} \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + 2\rho \; (\boldsymbol{x}^{[k+1]} - \boldsymbol{s}^{[k+1]}) \end{cases}$$

Equality: via augmented Lagrangian and slack variables

Original (unconstrained) criterion

$$\mathcal{J}_{ ext{ iny PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Constraint ⊕ auxiliary (slack) variables

$$x_p = 0 \text{ for } p \in \bar{\mathcal{S}} \quad \leadsto \quad \begin{cases} x_p = s_p & \text{ for } p \in \mathcal{M} \\ s_p = 0 & \text{ for } p \in \bar{\mathcal{S}} \end{cases}$$

• Augmented Lagrangian \oplus slack variables

$$\mathcal{L}_{\rho}(x, s, \ell) = \|y - Hx\|^{2} + \mu \|Dx\|^{2} + \rho \|x - s\|^{2} + \ell^{t}(x - s)$$

$$\begin{cases} \boldsymbol{x}^{[k+1]} &= (\boldsymbol{H}^{\mathrm{t}}\boldsymbol{H} + \mu\boldsymbol{D}^{\mathrm{t}}\boldsymbol{D} + \rho\boldsymbol{I})^{-1}(\boldsymbol{H}^{\mathrm{t}}\boldsymbol{y} - \boldsymbol{\ell}^{[k]}/2 + \rho\boldsymbol{s}^{[k]}) \\ s_{p}^{[k+1]} &= \begin{cases} x_{p}^{[k+1]} + \ell_{p}^{[k]}/(2\rho) & \text{for } p \in \mathcal{S} \\ 0 & \text{for } p \in \bar{\mathcal{S}} \end{cases} \\ \boldsymbol{\ell}^{[k+1]} &= \boldsymbol{\ell}^{[k]} + 2\rho \; (\boldsymbol{x}^{[k+1]} - \boldsymbol{s}^{[k+1]}) \end{cases}$$

Equality and inequality constraints: problem

Original (unconstrained) criterion

$$\mathcal{J}_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Equality and inequality constraints

$$\begin{cases} x_p = 0 & \text{for } p \in \bar{\mathcal{S}} \\ x_p \ge 0 & \text{for } p \in \mathcal{M} \end{cases}$$

Equality and inequality constraints
 ⊕ slack variables

$$\begin{cases} x_p = s_p & \text{for } p \in \mathcal{M} \\ s_p = 0 & \text{for } p \in \bar{\mathcal{S}} \\ s_p \geqslant 0 & \text{for } p \in \mathcal{M} \end{cases}$$

Augmented Lagrangian ⊕ slack variables

$$\mathcal{L}_{
ho}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2 +
ho \left\| \boldsymbol{x} - \boldsymbol{s} \right\|^2 + \ell^{\mathrm{t}} (\boldsymbol{x} - \boldsymbol{s})$$

Iterative algorithm: ADMM

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{s}, \boldsymbol{\ell}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \left\| \boldsymbol{D} \boldsymbol{x} \right\|^2 + \rho \left\| \boldsymbol{x} - \boldsymbol{s} \right\|^2 + \boldsymbol{\ell}^{\mathrm{t}} (\boldsymbol{x} - \boldsymbol{s})$$

- Iterate three steps
 - lacktriangle Unconstrained minimisation w.r.t. x

$$\widetilde{\boldsymbol{x}} = (\boldsymbol{H}^{t}\boldsymbol{H} + \mu \boldsymbol{D}^{t}\boldsymbol{D} + \rho \boldsymbol{I})^{-1} (\boldsymbol{H}^{t}\boldsymbol{y} + [\rho \boldsymbol{s} - \boldsymbol{\ell}/2])$$
 $(\equiv FFT)$

② Constrained minimisation w.r.t. s (s.t. $s_p \ge 0$ or $s_p = 0$)

$$\widetilde{s}_p = \begin{cases} \max(0, x_p + \ell_p/(2\rho)) & \text{for } p \in \mathcal{S} \\ 0 & \text{for } p \in \overline{\mathcal{S}} \end{cases}$$

lacksquare Update ℓ

$$\widetilde{\ell}_p = \ell_p + 2\rho(x_p - s_p)$$

Object update: other possibilities

Various options and many relationship. . .

- Direct calculus, closed-form expression, matrix inversion
- Algorithm for linear systems
 - · Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,...
- Numerical optimisation
 - Gradient descent...and modified versions
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions)

Constrained solution

Conclusions

Synthesis

- Image deconvolution
- Taking constraints into account
 - Positivity and support
 - Quadratic penalty
- Numerical computations: augmented Lagrangian and ADMM
 - Iterative: quadratic ⊕ separable
 - Circulant case (diagonalization) → FFT only (or numerical optimisation, system solvers,...)
 - Parallel (separable and explicit)

Extensions (not developped)

- Also available for
 - non-invariant linear direct model
 - colour images, multispectral and hyperspectral
 - also signal, 3D and more, video, 3D+t...
- Including both Huber penalty and constraints
- Hyperparameters estimation, instrument parameter estimation,...