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Topics

Image restoration, deconvolution
Motivating examples: medical, astrophysical, industrial, vision,. . .
Various problems: deconvolution, Fourier synthesis, denoising. . .
Missing information: ill-posed character and regularisation

Three types of regularised inversion

1 Quadratic penalties and linear solutions
Closed-form expression
Computation through FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

2 Non-quadratic penalties and edge preservation
Half-quadratic approaches, including computation through FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

3 Constraints: positivity and support
Augmented Lagrangian and ADMM, including computation by FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

Bayesian strategy: a few incursions
Tuning hyperparameters, instrument parameters,. . .
Hidden / latent parameters, segmentation, detection,. . .
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Convolution / Deconvolution

y = Hx+ ε = h ? x+ ε

x
H +

y

ε

x̂ = X̂ (y)

Restoration, deconvolution-denoising

General problem: ill-posed inverse problems, i.e., lack of information

Methodology: regularisation, i.e., information compensation

Specificity of the inversion / reconstruction / restoration methods
Trade off and tuning parameters

Limited quality results
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Competition: Adequation to data

Compare observations y and model output Hx

Unknown: x
Known: H and y

Comparison experiment – model

x
H

Hx

y

Quadratic criterion: distance observation – model output

JLS(x) = ‖y −Hx‖2
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Competition: Smoothness prior

Data insufficiently informative
 Account for prior information
 Here: smoothness of images

Quadratic penalty of the gray level “gradient”

P(x) =
∑
p∼q

(xp − xq)2

= ‖Dx‖2
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Quadratic penalty: criterion and solution

Least squares and quadratic penalty:

JPLS(x) = ‖y −Hx‖2 + µ ‖Dx‖2

Restored image

x̂PLS = arg min
x

JPLS(x)

(HtH + µDtD) x̂PLS = Hty

x̂PLS = (HtH + µDtD)−1 Hty

Computations based on diagonalization through FFT

◦
x̂ = (Λ†hΛh + µΛ†dΛd)

−1Λ†h
◦
y

◦
x̂n =

◦
h
∗
n

|
◦
hn|2 + µ|

◦
dn|2

◦
yn for n = 1, . . . N
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Object computation: other possibilities

Various options and many relationships. . .

Direct calculus, compact (closed) form, matrix inversion

Algorithms for linear system

Gauss, Gauss-Jordan
Substitution
Triangularisation,. . .

Numerical optimisation

gradient descent. . . and various modifications
Pixel wise, pixel by pixel

Diagonalization

Circulant approximation and diagonalization by FFT

Special algorithms, especially for 1D case

Recursive least squares
Kalman smoother or filter (and fast versions,. . . )
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Solution from least squares and quadratic penalty

True Observation Quadratic penalty
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Synthesis and extensions to edge preservation

Limited capability to manage conflict between

Smoothing and
Avoiding noise explosion

. . . that limits resolution capabilities

Extension: new penalty

Desirable: less “smoothing” around “discontinuities”
Ambivalence:

Smoothing (homogeneous regions)
Heightening, enhancement, sharpening (discontinuities, edges)

. . . and new compromise, trade off, conciliation

Resort to the linear solution and FFT (Wiener-Hunt)
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Edge preservation and non-quadratic penalties

Restored image still defined as the minimiser. . .

x̂ = arg min
x

J (x)

. . . of a penalised criterion . . .

J (x) = ‖y −Hx‖2 + µP(x)

. . . once again penalising variations

P(x) =
∑
p∼q

ϕ(xp − xq)

. . . but strong penalisation of “small variations”
and less penalisation for “discontinuities”

ϕ(δ) = δ2  ϕ(δ) = . . . ?

Ambivalence: new compromise, trade off, conciliation
Smoothing (homogeneous regions)
Heightening, enhancement, sharpening (discontinuities, edges)
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Typical potentials ϕ

Again ϕ(δ) ∼ δ2 for small δ

Behaviour for large δ
1 Horizontal asymptote

[Blake and Zisserman (87), Geman and McClure (87)]
2 Horizontal parabolic behaviour

[Hebert and Leahy (89)]
3 Oblique (slant) asymptote

[Huber (81)]
4 Vertical parabolic behaviour

Wiener-Tikhonov solution
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Four major types of potentials

1 Horizontal asymptote ϕ(δ) ∼ 1

ϕ(δ) =

{
δ2 if | δ | 6 s
s2 if | δ | > s

; ϕ(δ) = s2
(δ/s)2

1 + (δ/s)2

2 Horizontal parabolic behaviour ϕ(δ) ∼ log |δ|

ϕ(δ) = s2 log
[
1 + (δ/s)2

]
3 Oblique (slant) asymptote ϕ(δ) ∼ |δ|

ϕ(δ) =

{
δ2 if | δ | 6 s
2s | δ | − s2 if | δ | > s

; ϕ(δ) = 2s2
(√

1 + [δ/s]
2 − 1

)

4 Vertical parabolic behaviour ϕ(δ) ∼ δ2

ϕ(δ) = δ2
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Potentials with oblique asymptote (L2 /L1): details
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2 if | δ | 6 s
2 | δ |/s− 1 if | δ | > s

Hyperbolic : ϕ(δ) = 2s2
(√
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)
LogCosh : ϕ(δ) = 2s2 log cosh (| δ |/s)

FairFunction : ϕ(δ) = 2s2 [ | δ |/s− log (1 + | δ |/s) ]
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More general non-quadratic penalties (1D)

Differences, derivative and higher order, generalizations,. . .

P(x) =
∑
n

ϕ(xn+1 − xn)

P(x) =
∑
n

ϕ(xn+1 − 2xn + xn−1)

P(x) =
∑
n

ϕ(α xn+1 − xn + α′ xn−1)

P(x) =
∑
n

ϕ(αt
n x)

Linear combinations (wavelet, other-stuff-in-‘et’,. . . dictionaries,. . . )

P(x) =
∑
n

ϕ(wt
nx) =

∑
n

ϕ

(∑
m

wnmxm

)

Redundant or not
Link with Haar wavelet and other
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More general non-quadratic penalties (2D)

Differences, derivatives and higher order, gradient, generalizations

P(x) =
∑
p∼q

ϕ(xp − xq)

=
∑
n,m

ϕ(xn+1,m − xn,m) +
∑
n,m

ϕ(xn,m+1 − xn,m)

Notion of neighborhood and Markov field
Any highpass filter, contour detector (Prewitt, Sobel,. . . )
Linear combinations: wavelet, contourlet and other-stuff-in-‘et’,. . .

Other possibilities (slightly different)

Enforcement towards a known shape x̄

P(x) =
∑
p

ϕ(xp − x̄p)

Separable penalty

P(x) =
∑
p

ϕ(xp)
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Penalised least squares solution

A reminder of the criterion and the restored image

J (x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕs(xp − xq)

x̂ = arg min
x

J (x)

with ϕs one of the mentioned (non-quadratic) potentials
and two hyperparameters: µ and s

Non-quadratic criterion

Non-linear gradient
No closed-form expression

Two questions

Practical computation: numerical optimisation algorithm,. . .
Minimiser: existence, uniqueness,. . . continuity
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Convexity and existence-uniqueness

Convex set

RN , RN
+ , intervals of RN ,. . .

Properties: intersection, convex envelope, projection,. . .

Strictly convex criterion, convex criterion,

Θ(u) = u2, Θ(u) = ‖u‖2, Θ(u) = |u |, Huber,. . .
Properties: sum of convex function, level sets,. . .

Key result

Set of minimisers of convex criterion on a convex set is a convex set
Strict convexity  unique minimiser

Application

ϕ convex  J convex

In the following developments, potential ϕs
Huber or hyperbolic: convex (strict)  guarantees
In addition: non-convex  no guarantee (although, sometimes. . . )

17 / 35



Half-quadratic enchantement (start)

Reminder of the criterion

J (x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕ(xp − xq)

Minimisation based on quadratic
Original idea of [Geman + Yang, 95]
Set of auxiliary variables apq so that: ϕ(δpq) ←→ δ2pq

ϕ(δ) = inf
a

[
1

2
(δ − a)2 + ζ(a)

]
With appropriate ζ(a)

Extended criterion

J̃ (x,a) = ‖y −Hx‖2 + µ
∑
p∼q

1

2
[(xp − xq)− apq]2 + ζ(apq)

und natürlich:
J (x) = inf

a
J̃ (x,a)
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Legendre Transform (LT) or Convex Conjugate (CC)

Definition of LT or CC (far more general than that version)

Consider f : R −→ R

strictly convex

once (or twice) differentiable

The LT or CC is the function f? : R −→ R defined by:

f?(t) = sup
x∈R

[xt− f(x) ]

Remark

f?(0) = sup
x∈R

[−f(x) ] = − inf
x∈R

[ f(x) ]

∀t, x ∈ R, xt− f(x) 6 f?(t)

∀t, x ∈ R, f?(t) + f(x) > xt
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LT: some shift and dilatation / contraction properties

f?(t) = sup
x∈R

[xt− f(x) ]

Horizontal: dilatation (γ ∈ R?+) and shift (x0 ∈ R){
g(x) = f(γx)

g?(t) = f?(t/γ)

{
g(x) = f(x− x0)

g?(t) = f?(t)− x0t

Vertical: shift-dilatation (α ∈ R and β ∈ R?+){
g(x) = α+ β f(x)

g?(t) = β f?(t/β)− α

Specific case

α = 0, β = 1 / x0 = 0 / γ = 1
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LT: a first example

Quadratic case (α ∈ R and β ∈ R?+)

Let us consider f(x) = α+
1

2
β(x− x0)2

And look for the LT: f?(t) = supx∈R [xt− f(x) ]

Let us denote gt(x) = xt− f(x) = xt−
(
α+ β(x− x0)2 / 2

)
The derivative reads: g′t(x) = t− β(x− x0)

And the second derivative is: gt(x)′′ = −β

By nullification of g′t(x): x̄ = x0 + t/β

Then by substitution: f?(t) = gt(x̄)

f?(t) =
1

2β
t2 + tx0 − α

Have a look at the case α = 0, x0 = 0 and β = 1. . .
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LT: a generic result for explicitation (a)

A swiss army formula: Legendre formula

f?(t) = sup
x∈R

[xt− f(x) ]

Let us denote gt(x) = xt− f(x)

The derivative reads: g′t(x) = t− f ′(x)

And the second derivative is: gt(x)′′ = −f ′′(x)

By nullification of g′t(x):

t− f ′(x̄) = 0

x̄ = f
′−1

(t) = χ(t)

Then by substitution:

f?(t) = gt(x̄) = tx̄− f(x̄) = tχ(t)− f [χ(t)]
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LT: a generic result for explicitation (b)

Derivatives

Convex conjugate made explicit

f?(t) = tχ(t)− f [χ(t)] with χ = f
′−1

The derivative reads:

f?
′
(t) = χ(t) + tχ′(t)− χ′(t) f ′ [χ(t)]

= χ(t)

= f
′−1

(t)

And the second derivative is:

f?
′′
(t) = χ(t)′ =

1

f ′′ [χ(t)]
> 0

Hence f? is convex. . .
. . . and in fact f? is always convex. . .
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LT: a key result

Double conjugate

f??(x) = f(x)

f??(t) = sup [xt− f?(x) ]

Let us note ht(x) = xt− f?(x) and calculate the derivative:

h′t(x) = t− f?
′
(x) = t− f

′−1

(x) = t− χ(x)

Nullify the derivative:
t− χ(x̄) = 0

By substitution

f??(t) = ht(x̄) = x̄t− f?(x̄)

= x̄t− [x̄χ(x̄)− f(χ(x̄))]

= x̄t− x̄t+ f(t)

= f(t)
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Outcome for LT: “un théorème vivant”

Definition

Let us consider f : R −→ R

strictly convex

once (or twice) differentiable

f?(t) = sup
x∈R

[xt− f(x) ]

Properties

f?(t) = tχ(t)− f [χ(t)] with χ = f
′−1

f?
′

= f
′−1

= χ

f?
′′
(t) = 1 / f

′′
[χ(t)]

f? is convex

f??(x) = f(x)
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Half-quadratic enchantement (start repeated)

Reminder of the criterion

J (x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕ(xp − xq)

Minimisation based on quadratic
Original idea of [Geman + Yang, 95]
Set of auxiliary variables apq so that: ϕ(δpq) ←→ δ2pq

ϕ(δ) = inf
a

[
1

2
(δ − a)2 + ζ(a)

]
With appropriate ζ(a)

Extended criterion

J̃ (x,a) = ‖y −Hx‖2 + µ
∑
p∼q

1

2
[(xp − xq)− apq]2 + ζ(apq)

und natürlich:
J (x) = inf

a
J̃ (x,a)
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A theorem in action: half-quadratic (beginning)

Problem statement

Consider a potential ϕ, convex or not, and look for ζ such that

ϕ(δ) = inf
a∈R

[
(δ − a)2/2 + ζ(a)

]
Let us define g such that it is strictly convex:

g(δ) = δ2/2− ϕ(δ)

Consider its LT:

g?(a) = sup
δ∈R

[ aδ − g(δ) ]

= sup
δ∈R

[
ϕ(δ)− (δ − a)2/2

]
+ a2/2

Let us set (reason explained on the next slide):

ζ(a) = g?(a)− a2/2 = sup
δ∈R

[
ϕ(δ)− (δ − a)2/2

]
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A theorem in action: half-quadratic (middle)

Take advantage of g = g??

g(δ) = g??(δ)

δ2/2− ϕ(δ) = sup
a

[ aδ − g?(δ) ]

Then:
ϕ(δ) = δ2/2− sup [aδ − g?(δ)]

= δ2/2 + inf [g?(δ)− aδ]
= δ2/2 + inf

[
ζ(a) + a2/2− aδ

]
= inf

[
(δ − a)2/2 + ζ(a)

]
The icing on the cake, we have the minimiser:[

(δ − a)2/2 + ζ(a)
]′

= (a− δ) + ζ ′(a) = g?
′
(a)− δ

then:
ā = g?

′−1

(δ) = g′(δ) = δ − ϕ′(δ)
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A theorem in action: half-quadratic (ending)

Reminder: original criterion. . .

J (x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕ(xp − xq)

. . . and extended criterion

J̃ (x,a) = ‖y −Hx‖2 + µ
∑ 1

2
[(xp − xq)− apq]2 + ζ(apq)

Algorithmic strategy: alternating minimisation

1 Minimisation w.r.t. x for fixed a: x̃(a) = arg minx J̃ (x,a)
Quadratic problem

2 Minimisation w.r.t. a for fixed x: ã(x) = arg mina J̃ (x,a)
Separated and explicit update

Remark:
Non-quadratic with Interacting variables

 

{
Interacting but simply quadratic

Non-quadratic but non-interacting
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Image update, given current auxiliary variables

Non-separable but quadratic w.r.t. x

J̃ (x) # ‖y −Hx‖2 + µ
∑
p∼q

1

2
[(xp − xq)− apq]2

= ‖y −Hx‖2 + µ̄ ‖Dx− a‖2

Image update: standard. . .

x̃ = arg min
x

J̃ (x)

(HtH + µ̄DtD) x̃ = Hty + µ̄Dta

x̃ = (HtH + µDtD)−1 (Hty + µ̄Dta)

◦
x̂ = (Λ†hΛh + µΛ†dΛd)

−1(Λ†h
◦
y + µ̄Λ†d

◦
a)

◦
x̂n =

◦
h
∗
n
◦
yn + µ̄

◦
d
∗
n
◦
an

|
◦
hn|2 + µ|

◦
dn|2

for n = 1, . . . N
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Object update: other possibilities

Various options and many relationships. . .

Direct calculus, compact (closed) form, matrix inversion

Algorithms for linear system

Gauss, Gauss-Jordan
Substitution
Triangularisation,. . .

Numerical optimisation

gradient descent. . . and various modifications
Pixel wise, pixel by pixel

Diagonalization

Circulant approximation and diagonalization by FFT

Special algorithms, especially for 1D case

Recursive least squares
Kalman smoother or filter (and fast versions,. . . )
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Auxiliary variables update, given current image

Non quadratic but separable w.r.t. a

J̃ (a) #
∑
p∼q

1

2
[(xp − xq)− apq]2 + ζ(apq)

Second enchantment:
Parallel computation (no loop): separability
Explicit (no inner-iterations): icing on the cake

Update: ãpq = δpq − ϕ′(δpq)
Huber: ãpq = δpq [1− 2αmin (1; s/δpq)]

Hyperbolic: ãpq = δpq [. . .]
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Auxiliary variables update, given current image

Update: ãpq = δpq − ϕ′(δpq)
Blake und Zissermann: ãpq = δpq [. . .]

. . . : ãpq = δpq [. . .]

Geman & McClure: ã = δ

[
1− 2α

(s/δ)2

]
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No more guarantees (my knowledge. . . ):
existence, unicity. . . and convergence. . .
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Result Huber

True Observation Quadratic penalty Huber penalty
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Conclusions

Synthesis

Image deconvolution

Edge preserving and non-quadratic penalties

Gradient of gray levels (and other transforms)
Convex (and differentiable) case and also some non-convex cases

Numerical computations: half-quadratic approach
Iterative: quadratic ⊕ separable

Circulant case (diagonalization)  FFT only
(or numerical optimisation, system solvers,. . . )
Parallel (separable and explicit)

Extensions (next lectures)

Also available for

non-invariant linear direct model
colour images, multispectral and hyperspectral
also signal, 3D and more, video, 3D+t. . .

Including constraints  better image resolution (next lecture)

Hyperparameters estimation, instrument parameter estimation,. . .
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