Image restoration: edge preserving

- Convex penalties

Jean-François Giovannelli
Groupe Signal - Image
Laboratoire de I'Intégration du Matériau au Système Univ. Bordeaux - CNRS - BINP

Topics

- Image restoration, deconvolution
- Motivating examples: medical, astrophysical, industrial, vision,...
- Various problems: deconvolution, Fourier synthesis, denoising...
- Missing information: ill-posed character and regularisation
- Three types of regularised inversion
(1) Quadratic penalties and linear solutions
- Closed-form expression
- Computation through FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
(2) Non-quadratic penalties and edge preservation
- Half-quadratic approaches, including computation through FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
(3) Constraints: positivity and support
- Augmented Lagrangian and ADMM, including computation by FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
- Bayesian strategy: a few incursions
- Tuning hyperparameters, instrument parameters,...
- Hidden / latent parameters, segmentation, detection,...

Convolution / Deconvolution

$$
\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\varepsilon=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}
$$

$$
\widehat{\boldsymbol{x}}=\widehat{\mathcal{X}}(\boldsymbol{y})
$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
- Specificity of the inversion / reconstruction / restoration methods
- Trade off and tuning parameters
- Limited quality results

Competition: Adequation to data

- Compare observations \boldsymbol{y} and model output $\boldsymbol{H} \boldsymbol{x}$
- Unknown: \boldsymbol{x}
- Known: \boldsymbol{H} and \boldsymbol{y}

Comparison experiment - model

- Quadratic criterion: distance observation - model output

$$
\mathcal{J}_{\mathrm{LS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}
$$

Competition: Smoothness prior

- Data insufficiently informative
\rightsquigarrow Account for prior information
\rightsquigarrow Here: smoothness of images
- Quadratic penalty of the gray level "gradient"

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{x}) & =\sum_{p \sim q}\left(x_{p}-x_{q}\right)^{2} \\
& =\|\boldsymbol{D} \boldsymbol{x}\|^{2}
\end{aligned}
$$

Quadratic penalty: criterion and solution

- Least squares and quadratic penalty:

$$
J_{\mathrm{PLS}}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu\|\boldsymbol{D} \boldsymbol{x}\|^{2}
$$

- Restored image

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\underset{\boldsymbol{x}}{\arg \min } J_{\mathrm{PLS}}(\boldsymbol{x}) \\
\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right) \widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y} \\
\widehat{\boldsymbol{x}}_{\mathrm{PLS}} & =\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)^{-1} \boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}
\end{aligned}
$$

- Computations based on diagonalization through FFT

$$
\begin{aligned}
\stackrel{\circ}{\boldsymbol{x}} & =\left(\boldsymbol{\Lambda}_{h}^{\dagger} \boldsymbol{\Lambda}_{h}+\mu \boldsymbol{\Lambda}_{d}^{\dagger} \boldsymbol{\Lambda}_{d}\right)^{-1} \boldsymbol{\Lambda}_{h}^{\dagger} \stackrel{\boldsymbol{y}}{ } \\
\stackrel{\circ}{x}_{n} & =\frac{\stackrel{\circ}{h}_{n}^{*}}{\left|\circ_{n}\right|^{2}+\mu\left|\circ_{n}\right|^{2}} \stackrel{\circ}{y}_{n} \quad \text { for } n=1, \ldots N
\end{aligned}
$$

Object computation: other possibilities

Various options and many relationships. . .

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
- Gauss, Gauss-Jordan
- Substitution
- Triangularisation,...
- Numerical optimisation
- gradient descent... and various modifications
- Pixel wise, pixel by pixel
- Diagonalization
- Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
- Recursive least squares
- Kalman smoother or filter (and fast versions,...)

Solution from least squares and quadratic penalty

Synthesis and extensions to edge preservation

- Limited capability to manage conflict between
- Smoothing and
- Avoiding noise explosion
... that limits resolution capabilities

Extension: new penalty

- Desirable: less "smoothing" around "discontinuities"
- Ambivalence:
- Smoothing (homogeneous regions)
- Heightening, enhancement, sharpening (discontinuities, edges)
- ... and new compromise, trade off, conciliation
- Resort to the linear solution and FFT (Wiener-Hunt)

Edge preservation and non-quadratic penalties

- Restored image still defined as the minimiser...

$$
\widehat{\boldsymbol{x}}=\arg \min \mathcal{J}(\boldsymbol{x})
$$

$$
x
$$

- ... of a penalised criterion ...

$$
\mathcal{J}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu \mathcal{P}(\boldsymbol{x})
$$

- ... once again penalising variations

$$
\mathcal{P}(\boldsymbol{x})=\sum_{p \sim q} \varphi\left(x_{p}-x_{q}\right)
$$

- ... but strong penalisation of "small variations" and less penalisation for "discontinuities"

$$
\varphi(\delta)=\delta^{2} \rightsquigarrow \varphi(\delta)=\ldots ?
$$

- Ambivalence: new compromise, trade off, conciliation
- Smoothing (homogeneous regions)
- Heightening, enhancement, sharpening (discontinuities, edges)

Typical potentials φ

- Again $\varphi(\delta) \sim \delta^{2}$ for small δ
- Behaviour for large δ
(1) Horizontal asymptote
[Blake and Zisserman (87), Geman and McClure (87)]
(2) Horizontal parabolic behaviour
[Hebert and Leahy (89)]
(3) Oblique (slant) asymptote [Huber (81)]
(9) Vertical parabolic behaviour

Wiener-Tikhonov solution

(1) Horizontal asymptote $\varphi(\delta) \sim 1$

$$
\varphi(\delta)=\left\{\begin{array}{ll}
\delta^{2} & \text { if }|\delta| \leqslant s \\
s^{2} & \text { if }|\delta| \geqslant s
\end{array} \quad ; \quad \varphi(\delta)=s^{2} \frac{(\delta / s)^{2}}{1+(\delta / s)^{2}}\right.
$$

(2) Horizontal parabolic behaviour $\varphi(\delta) \sim \log |\delta|$

$$
\varphi(\delta)=s^{2} \log \left[1+(\delta / s)^{2}\right]
$$

(3) Oblique (slant) asymptote $\varphi(\delta) \sim|\delta|$

$$
\varphi(\delta)=\left\{\begin{array}{ll}
\delta^{2} & \text { if }|\delta| \leqslant s \\
2 s|\delta|-s^{2} & \text { if }|\delta| \geqslant s
\end{array} ; \varphi(\delta)=2 s^{2}\left(\sqrt{1+[\delta / s]^{2}}-1\right)\right.
$$

(1) Vertical parabolic behaviour $\varphi(\delta) \sim \delta^{2}$

$$
\varphi(\delta)=\delta^{2}
$$

Potentials with oblique asymptote (L_{2} / L_{1}): details

Alpha $=0.50$ et Seuil $=1.00$

Huber : $\quad \varphi(\delta)=s^{2} \begin{cases}{[\delta / s]^{2}} & \text { if }|\delta| \leqslant s \\ 2|\delta| / s-1 & \text { if }|\delta| \geqslant s\end{cases}$
Hyperbolic: $\quad \varphi(\delta)=2 s^{2}\left(\sqrt{1+[\delta / s]^{2}}-1\right)$
LogCosh: $\quad \varphi(\delta)=2 s^{2} \log \cosh (|\delta| / s)$
FairFunction : $\varphi(\delta)=2 s^{2}[|\delta| / s-\log (1+|\delta| / s)]$

More general non-quadratic penalties (1D)

- Differences, derivative and higher order, generalizations,...

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{x}) & =\sum_{n} \varphi\left(x_{n+1}-x_{n}\right) \\
\mathcal{P}(\boldsymbol{x}) & =\sum_{n} \varphi\left(x_{n+1}-2 x_{n}+x_{n-1}\right) \\
\mathcal{P}(\boldsymbol{x}) & =\sum_{n} \varphi\left(\alpha x_{n+1}-x_{n}+\alpha^{\prime} x_{n-1}\right) \\
\mathcal{P}(\boldsymbol{x}) & =\sum_{n} \varphi\left(\boldsymbol{\alpha}_{n}^{\mathrm{t}} \boldsymbol{x}\right)
\end{aligned}
$$

- Linear combinations (wavelet, other-stuff-in-'et',... dictionaries,....)

$$
\mathcal{P}(\boldsymbol{x})=\sum_{n} \varphi\left(\boldsymbol{w}_{n}^{\mathrm{t}} \boldsymbol{x}\right)=\sum_{n} \varphi\left(\sum_{m} w_{n m} x_{m}\right)
$$

- Redundant or not
- Link with Haar wavelet and other

More general non-quadratic penalties (2D)

- Differences, derivatives and higher order, gradient, generalizations

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{x}) & =\sum_{p \sim q} \varphi\left(x_{p}-x_{q}\right) \\
& =\sum_{n, m} \varphi\left(x_{n+1, m}-x_{n, m}\right)+\sum_{n, m} \varphi\left(x_{n, m+1}-x_{n, m}\right)
\end{aligned}
$$

- Notion of neighborhood and Markov field
- Any highpass filter, contour detector (Prewitt, Sobel,....)
- Linear combinations: wavelet, contourlet and other-stuff-in-'et',...
- Other possibilities (slightly different)
- Enforcement towards a known shape \bar{x}

$$
\mathcal{P}(\boldsymbol{x})=\sum_{p} \varphi\left(x_{p}-\bar{x}_{p}\right)
$$

- Separable penalty

$$
\mathcal{P}(\boldsymbol{x})=\sum_{p} \varphi\left(x_{p}\right)
$$

Penalised least squares solution

- A reminder of the criterion and the restored image

$$
\begin{gathered}
\mathcal{J}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu \sum_{p \sim q} \varphi_{s}\left(x_{p}-x_{q}\right) \\
\widehat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min } \mathcal{J}(\boldsymbol{x})
\end{gathered}
$$

- with φ_{s} one of the mentioned (non-quadratic) potentials
- and two hyperparameters: μ and s
- Non-quadratic criterion
- Non-linear gradient
- No closed-form expression
- Two questions
- Practical computation: numerical optimisation algorithm,...
- Minimiser: existence, uniqueness,... continuity

Convexity and existence-uniqueness

- Convex set
- $\mathbb{R}^{N}, \mathbb{R}_{+}^{N}$, intervals of \mathbb{R}^{N}, \ldots
- Properties: intersection, convex envelope, projection,...
- Strictly convex criterion, convex criterion,
- $\Theta(u)=u^{2}, \Theta(\boldsymbol{u})=\|\boldsymbol{u}\|^{2}, \Theta(u)=|u|$, Huber, ...
- Properties: sum of convex function, level sets,...
- Key result
- Set of minimisers of convex criterion on a convex set is a convex set
- Strict convexity \rightsquigarrow unique minimiser
- Application
- φ convex $\rightsquigarrow J$ convex
- In the following developments, potential φ_{s}
- Huber or hyperbolic: convex (strict) \rightsquigarrow guarantees
- In addition: non-convex \rightsquigarrow no guarantee (although, sometimes...)

Half-quadratic enchantement (start)

- Reminder of the criterion

$$
\mathcal{J}(x)=\|\boldsymbol{y}-\boldsymbol{H} x\|^{2}+\mu \sum_{p \sim q} \varphi\left(x_{p}-x_{q}\right)
$$

- Minimisation based on quadratic
- Original idea of [Geman + Yang, 95]
- Set of auxiliary variables $a_{p q}$ so that: $\varphi\left(\delta_{p q}\right) \longleftrightarrow \delta_{p q}^{2}$

$$
\varphi(\delta)=\inf _{a}\left[\frac{1}{2}(\delta-a)^{2}+\zeta(a)\right]
$$

- With appropriate $\zeta(a)$
- Extended criterion

$$
\tilde{\mathcal{J}}(x, a)=\|\boldsymbol{y}-\boldsymbol{H} x\|^{2}+\mu \sum_{p \sim q} \frac{1}{2}\left[\left(x_{p}-x_{q}\right)-a_{p q}\right]^{2}+\zeta\left(a_{p q}\right)
$$

und natürlich:

$$
\mathcal{J}(x)=\inf _{a} \tilde{\mathcal{J}}(x, a)
$$

Legendre Transform (LT) or Convex Conjugate (CC)

Definition of LT or CC (far more general than that version)

Consider $f: \mathbb{R} \longrightarrow \mathbb{R}$

- strictly convex
- once (or twice) differentiable

The $L T$ or $C C$ is the function $f^{\star}: \mathbb{R} \longrightarrow \mathbb{R}$ defined by:

$$
f^{\star}(t)=\sup _{x \in \mathbb{R}}[x t-f(x)]
$$

Remark

$$
\begin{gathered}
f^{\star}(0)=\sup _{x \in \mathbb{R}}[-f(x)]=-\inf _{x \in \mathbb{R}}[f(x)] \\
\forall t, x \in \mathbb{R}, \quad x t-f(x) \leqslant f^{\star}(t) \\
\forall t, x \in \mathbb{R}, \quad f^{\star}(t)+f(x) \geqslant x t
\end{gathered}
$$

LT: some shift and dilatation / contraction properties

$$
f^{\star}(t)=\sup _{x \in \mathbb{R}}[x t-f(x)]
$$

Horizontal: dilatation $\left(\gamma \in \mathbb{R}_{+}^{\star}\right)$ and shift $\left(x_{0} \in \mathbb{R}\right)$

$$
\left\{\begin{array} { l }
{ g (x) = f (\gamma x) } \\
{ g ^ { \star } (t) = f ^ { \star } (t / \gamma) }
\end{array} \quad \left\{\begin{array}{l}
g(x)=f\left(x-x_{0}\right) \\
g^{\star}(t)=f^{\star}(t)-x_{0} t
\end{array}\right.\right.
$$

Vertical: shift-dilatation $\left(\alpha \in \mathbb{R}\right.$ and $\left.\beta \in \mathbb{R}_{+}^{\star}\right)$

$$
\left\{\begin{array}{l}
g(x)=\alpha+\beta f(x) \\
g^{\star}(t)=\beta f^{\star}(t / \beta)-\alpha
\end{array}\right.
$$

Specific case

$$
\alpha=0, \beta=1 \quad / \quad x_{0}=0 \quad / \quad \gamma=1
$$

LT: a first example

Quadratic case ($\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}_{+}^{\star}$)

Let us consider $f(x)=\alpha+\frac{1}{2} \beta\left(x-x_{0}\right)^{2}$
And look for the LT: $f^{\star}(t)=\sup _{x \in \mathbb{R}}[x t-f(x)]$

- Let us denote $g_{t}(x)=x t-f(x)=x t-\left(\alpha+\beta\left(x-x_{0}\right)^{2} / 2\right)$
- The derivative reads: $g_{t}^{\prime}(x)=t-\beta\left(x-x_{0}\right)$
- And the second derivative is: $g_{t}(x)^{\prime \prime}=-\beta$
- By nullification of $g_{t}^{\prime}(x): \bar{x}=x_{0}+t / \beta$
- Then by substitution: $f^{\star}(t)=g_{t}(\bar{x})$

$$
f^{\star}(t)=\frac{1}{2 \beta} t^{2}+t x_{0}-\alpha
$$

- Have a look at the case $\alpha=0, x_{0}=0$ and $\beta=1$...

LT: a generic result for explicitation (a)

A swiss army formula: Legendre formula

$$
f^{\star}(t)=\sup _{x \in \mathbb{R}}[x t-f(x)]
$$

- Let us denote $g_{t}(x)=x t-f(x)$
- The derivative reads: $g_{t}^{\prime}(x)=t-f^{\prime}(x)$
- And the second derivative is: $g_{t}(x)^{\prime \prime}=-f^{\prime \prime}(x)$
- By nullification of $g_{t}^{\prime}(x)$:

$$
\begin{aligned}
t-f^{\prime}(\bar{x}) & =0 \\
\bar{x} & =f^{\prime-1}(t)=\chi(t)
\end{aligned}
$$

- Then by substitution:

$$
f^{\star}(t)=g_{t}(\bar{x})=t \bar{x}-f(\bar{x})=t \chi(t)-f[\chi(t)]
$$

LT: a generic result for explicitation (b)

Derivatives

- Convex conjugate made explicit

$$
f^{\star}(t)=t \chi(t)-f[\chi(t)] \text { with } \chi=f^{\prime-1}
$$

- The derivative reads:

$$
\begin{aligned}
f^{\star^{\prime}}(t) & =\chi(t)+t \chi^{\prime}(t)-\chi^{\prime}(t) f^{\prime}[\chi(t)] \\
& =\chi(t) \\
& =f^{\prime-1}(t)
\end{aligned}
$$

- And the second derivative is:

$$
f^{\star^{\prime \prime}}(t)=\chi(t)^{\prime}=\frac{1}{f^{\prime \prime}[\chi(t)]}>0
$$

- Hence f^{\star} is convex...
- ... and in fact f^{\star} is always convex...

LT: a key result

Double conjugate

$$
f^{\star \star}(x)=f(x)
$$

$$
f^{\star \star}(t)=\sup \left[x t-f^{\star}(x)\right]
$$

- Let us note $h_{t}(x)=x t-f^{\star}(x)$ and calculate the derivative:

$$
h_{t}^{\prime}(x)=t-f^{\star^{\prime}}(x)=t-f^{\prime-1}(x)=t-\chi(x)
$$

- Nullify the derivative:

$$
t-\chi(\bar{x})=0
$$

- By substitution

$$
\begin{aligned}
f^{\star \star}(t)=h_{t}(\bar{x}) & =\bar{x} t-f^{\star}(\bar{x}) \\
& =\bar{x} t-[\bar{x} \chi(\bar{x})-f(\chi(\bar{x}))] \\
& =\bar{x} t-\bar{x} t+f(t) \\
& =f(t)
\end{aligned}
$$

Outcome for LT: "un théorème vivant"

Definition

Let us consider $f: \mathbb{R} \longrightarrow \mathbb{R}$

- strictly convex
- once (or twice) differentiable

$$
f^{\star}(t)=\sup _{x \in \mathbb{R}}[x t-f(x)]
$$

Properties

$$
\begin{gathered}
f^{\star}(t)=t \chi(t)-f[\chi(t)] \text { with } \chi=f^{\prime-1} \\
f^{\star^{\prime}}=f^{\prime-1}=\chi \\
f^{\star^{\prime \prime}}(t)=1 / f^{\prime \prime}[\chi(t)] \\
f^{\star} \text { is convex }
\end{gathered}
$$

$$
f^{\star \star}(x)=f(x)
$$

Half-quadratic enchantement (start repeated)

- Reminder of the criterion

$$
\mathcal{J}(x)=\|\boldsymbol{y}-\boldsymbol{H} x\|^{2}+\mu \sum_{p \sim q} \varphi\left(x_{p}-x_{q}\right)
$$

- Minimisation based on quadratic
- Original idea of [Geman + Yang, 95]
- Set of auxiliary variables $a_{p q}$ so that: $\varphi\left(\delta_{p q}\right) \longleftrightarrow \delta_{p q}^{2}$

$$
\varphi(\delta)=\inf _{a}\left[\frac{1}{2}(\delta-a)^{2}+\zeta(a)\right]
$$

- With appropriate $\zeta(a)$
- Extended criterion

$$
\tilde{\mathcal{J}}(x, a)=\|\boldsymbol{y}-\boldsymbol{H} x\|^{2}+\mu \sum_{p \sim q} \frac{1}{2}\left[\left(x_{p}-x_{q}\right)-a_{p q}\right]^{2}+\zeta\left(a_{p q}\right)
$$

und natürlich:

$$
\mathcal{J}(x)=\inf _{a} \tilde{\mathcal{J}}(x, a)
$$

A theorem in action: half-quadratic (beginning)

Problem statement

Consider a potential φ, convex or not, and look for ζ such that

$$
\varphi(\delta)=\inf _{a \in \mathbb{R}}\left[(\delta-a)^{2} / 2+\zeta(a)\right]
$$

- Let us define g such that it is strictly convex:

$$
g(\delta)=\delta^{2} / 2-\varphi(\delta)
$$

- Consider its LT:

$$
\begin{aligned}
g^{\star}(a) & =\sup _{\delta \in \mathbb{R}}[a \delta-g(\delta)] \\
& =\sup _{\delta \in \mathbb{R}}\left[\varphi(\delta)-(\delta-a)^{2} / 2\right]+a^{2} / 2
\end{aligned}
$$

- Let us set (reason explained on the next slide):

$$
\zeta(a)=g^{\star}(a)-a^{2} / 2=\sup _{\delta \in \mathbb{R}}\left[\varphi(\delta)-(\delta-a)^{2} / 2\right]
$$

A theorem in action: half-quadratic (middle)

- Take advantage of $g=g^{\star \star}$

$$
\begin{aligned}
g(\delta) & =g^{\star \star}(\delta) \\
\delta^{2} / 2-\varphi(\delta) & =\sup _{a}\left[a \delta-g^{\star}(\delta)\right]
\end{aligned}
$$

- Then:

$$
\begin{aligned}
\varphi(\delta) & =\delta^{2} / 2-\sup \left[a \delta-g^{\star}(\delta)\right] \\
& =\delta^{2} / 2+\inf \left[g^{\star}(\delta)-a \delta\right] \\
& =\delta^{2} / 2+\inf \left[\zeta(a)+a^{2} / 2-a \delta\right] \\
& =\inf \left[(\delta-a)^{2} / 2+\zeta(a)\right]
\end{aligned}
$$

- The icing on the cake, we have the minimiser:

$$
\left[(\delta-a)^{2} / 2+\zeta(a)\right]^{\prime}=(a-\delta)+\zeta^{\prime}(a)=g^{\star^{\prime}}(a)-\delta
$$

then:

$$
\bar{a}=g^{\star^{\prime-1}}(\delta)=g^{\prime}(\delta)=\delta-\varphi^{\prime}(\delta)
$$

A theorem in action: half-quadratic (ending)

- Reminder: original criterion. . .

$$
\mathcal{J}(\boldsymbol{x})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu \sum_{p \sim q} \varphi\left(x_{p}-x_{q}\right)
$$

- ... and extended criterion

$$
\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a})=\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu \sum \frac{1}{2}\left[\left(x_{p}-x_{q}\right)-a_{p q}\right]^{2}+\zeta\left(a_{p q}\right)
$$

- Algorithmic strategy: alternating minimisation
(1) Minimisation w.r.t. \boldsymbol{x} for fixed $\boldsymbol{a}: \widetilde{\boldsymbol{x}}(\boldsymbol{a})=\arg \min _{\boldsymbol{x}} \tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a})$ Quadratic problem
(2) Minimisation w.r.t. \boldsymbol{a} for fixed $\boldsymbol{x}: \widetilde{\boldsymbol{a}}(\boldsymbol{x})=\arg \min _{a} \tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a})$ Separated and explicit update
- Remark:

Non-quadratic with Interacting variables
$\rightsquigarrow\left\{\begin{array}{l}\text { Interacting but simply quadratic } \\ \text { Non-quadratic but non-interacting }\end{array}\right.$

Image update, given current auxiliary variables

- Non-separable but quadratic w.r.t. x

$$
\begin{aligned}
\tilde{\mathcal{J}}(\boldsymbol{x}) & \#\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\mu \sum_{p \sim q} \frac{1}{2}\left[\left(x_{p}-x_{q}\right)-a_{p q}\right]^{2} \\
& =\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}+\bar{\mu}\|\boldsymbol{D} \boldsymbol{x}-\boldsymbol{a}\|^{2}
\end{aligned}
$$

- Image update: standard. . .

$$
\begin{aligned}
\widetilde{\boldsymbol{x}} & =\underset{\boldsymbol{x}}{\arg \min } \tilde{\mathcal{J}}(\boldsymbol{x}) \\
\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\bar{\mu} \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right) \widetilde{\boldsymbol{x}} & =\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}+\bar{\mu} \boldsymbol{D}^{\mathrm{t}} \boldsymbol{a} \\
\widetilde{\boldsymbol{x}} & =\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{H}+\mu \boldsymbol{D}^{\mathrm{t}} \boldsymbol{D}\right)^{-1}\left(\boldsymbol{H}^{\mathrm{t}} \boldsymbol{y}+\bar{\mu} \boldsymbol{D}^{\mathrm{t}} \boldsymbol{a}\right) \\
\stackrel{\circ}{\boldsymbol{x}} & =\left(\boldsymbol{\Lambda}_{h}^{\dagger} \boldsymbol{\Lambda}_{h}+\mu \boldsymbol{\Lambda}_{d}^{\dagger} \boldsymbol{\Lambda}_{d}\right)^{-1}\left(\boldsymbol{\Lambda}_{h}^{\dagger} \dot{\boldsymbol{y}}+\bar{\mu} \boldsymbol{\Lambda}_{d}^{\dagger} \stackrel{\circ}{\boldsymbol{a}}\right) \\
\stackrel{\circ}{x}_{n} & =\frac{\stackrel{\circ}{h}_{n}^{*} \stackrel{\circ}{y}_{n}+\bar{\mu} \stackrel{\circ}{d}_{n}^{*} \stackrel{\circ}{a}_{n}}{\left|\circ_{n}\right|^{2}+\mu\left|\grave{d}_{n}\right|^{2}} \quad \text { for } n=1, \ldots N
\end{aligned}
$$

Object update: other possibilities

Various options and many relationships. . .

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
- Gauss, Gauss-Jordan
- Substitution
- Triangularisation,...
- Numerical optimisation
- gradient descent... and various modifications
- Pixel wise, pixel by pixel
- Diagonalization
- Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
- Recursive least squares
- Kalman smoother or filter (and fast versions,...)

Auxiliary variables update, given current image

- Non quadratic but separable w.r.t. \boldsymbol{a}

$$
\tilde{\mathcal{J}}(a) \# \sum_{p \sim q} \frac{1}{2}\left[\left(x_{p}-x_{q}\right)-a_{p q}\right]^{2}+\zeta\left(a_{p q}\right)
$$

- Second enchantment:
- Parallel computation (no loop): separability
- Explicit (no inner-iterations): icing on the cake
- Update: $\widetilde{a}_{p q}=\delta_{p q}-\varphi^{\prime}\left(\delta_{p q}\right)$
- Huber: $\widetilde{a}_{p q}=\delta_{p q}\left[1-2 \alpha \min \left(1 ; s / \delta_{p q}\right)\right]$
- Hyperbolic: $\widetilde{a}_{p q}=\delta_{p q}[\ldots]$

Alpha $=0.40$ et Seuil $=2.00$

Auxiliary variables update, given current image

- Update: $\widetilde{a}_{p q}=\delta_{p q}-\varphi^{\prime}\left(\delta_{p q}\right)$
- Blake und Zissermann: $\widetilde{a}_{p q}=\delta_{p q}[\ldots]$
- ... : $\widetilde{a}_{p q}=\delta_{p q}[\ldots]$
- Geman \& McClure: $\tilde{a}=\delta\left[1-\frac{2 \alpha}{(s / \delta)^{2}}\right]$

No more guarantees (my knowledge...): existence, unicity. . . and convergence. . .

Conclusions

Synthesis

- Image deconvolution
- Edge preserving and non-quadratic penalties
- Gradient of gray levels (and other transforms)
- Convex (and differentiable) case and also some non-convex cases
- Numerical computations: half-quadratic approach
- Iterative: quadratic \oplus separable
- Circulant case (diagonalization) \rightsquigarrow FFT only (or numerical optimisation, system solvers,...)
- Parallel (separable and explicit)

Extensions (next lectures)

- Also available for
- non-invariant linear direct model
- colour images, multispectral and hyperspectral
- also signal, 3D and more, video, 3D+t. . .
- Including constraints \rightsquigarrow better image resolution (next lecture)
- Hyperparameters estimation, instrument parameter estimation,...

