Image restoration: edge preserving

Convex penalties —

Jean-François Giovannelli

Groupe Signal – Image Laboratoire de l'Intégration du Matériau au Système Univ. Bordeaux – CNRS – BINP

Topics

- Image restoration, deconvolution
 - Motivating examples: medical, astrophysical, industrial, vision,...
 - Various problems: deconvolution, Fourier synthesis, denoising. . .
 - Missing information: ill-posed character and regularisation
- Three types of regularised inversion
 - Quadratic penalties and linear solutions
 - Closed-form expression
 - Computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 - Non-quadratic penalties and edge preservation
 - Half-quadratic approaches, including computation through FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
 - Onstraints: positivity and support
 - Augmented Lagrangian and ADMM, including computation by FFT
 - Optimisation (e.g., gradient), system solvers (e.g., splitting)
- Bayesian strategy: a few incursions
 - Tuning hyperparameters, instrument parameters,...
 - Hidden / latent parameters, segmentation, detection,...

Convolution / Deconvolution

$$y = Hx + \varepsilon = h \star x + \varepsilon$$

$$\widehat{m{x}} = \widehat{\mathcal{X}}(m{y})$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
 - Specificity of the inversion / reconstruction / restoration methods
 - Trade off and tuning parameters
- Limited quality results

Competition: Adequation to data

- ullet Compare observations y and model output Hx
 - Unknown: x
 - ullet Known: $oldsymbol{H}$ and $oldsymbol{y}$

• Quadratic criterion: distance observation - model output

$$\mathcal{J}_{ ext{ iny LS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2$$

Competition: Smoothness prior

- Data insufficiently informative
 - → Account for prior information
 - → Here: smoothness of images
- Quadratic penalty of the gray level "gradient"

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p \sim q} (x_p - x_q)^2$$
$$= \|\boldsymbol{D}\boldsymbol{x}\|^2$$

Quadratic penalty: criterion and solution

Least squares and quadratic penalty:

$$J_{\scriptscriptstyle ext{PLS}}(oldsymbol{x}) = \left\|oldsymbol{y} - oldsymbol{H}oldsymbol{x}
ight\|^2 + \mu \, \left\|oldsymbol{D}oldsymbol{x}
ight\|^2$$

Restored image

Computations based on diagonalization through FFT

$$\hat{\hat{x}} = (\mathbf{\Lambda}_h^{\dagger} \mathbf{\Lambda}_h + \mu \mathbf{\Lambda}_d^{\dagger} \mathbf{\Lambda}_d)^{-1} \mathbf{\Lambda}_h^{\dagger} \hat{\mathbf{y}}$$

$$\hat{\hat{x}}_n = \frac{\hat{h}_n^*}{|\hat{h}_n|^2 + \mu |\hat{d}_n|^2} \hat{y}_n \quad \text{for } n = 1, \dots N$$

Object computation: other possibilities

Various options and many relationships...

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,...
- Numerical optimisation
 - gradient descent...and various modifications
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions,...)

Solution from least squares and quadratic penalty

Synthesis and extensions to edge preservation

- Limited capability to manage conflict between
 - Smoothing and
 - Avoiding noise explosion
 - ... that limits resolution capabilities

Extension: new penalty

- Desirable: less "smoothing" around "discontinuities"
 - Ambivalence:
 - Smoothing (homogeneous regions)
 - Heightening, enhancement, sharpening (discontinuities, edges)
 - ...and new compromise, trade off, conciliation
- Resort to the linear solution and FFT (Wiener-Hunt)

Edge preservation and non-quadratic penalties

Restored image still defined as the minimiser. . .

$$\hat{x} = \operatorname*{arg\,min}_{x} \mathcal{J}(x)$$

... of a penalised criterion ...

$$\mathcal{J}(\boldsymbol{x}) = \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2 + \mu \, \mathcal{P}(\boldsymbol{x})$$

• ...once again penalising variations

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p \sim q} \varphi(x_p - x_q)$$

 ... but strong penalisation of "small variations" and less penalisation for "discontinuities"

$$\varphi(\delta) = \delta^2 \quad \leadsto \quad \varphi(\delta) = \dots ?$$

- Ambivalence: new compromise, trade off, conciliation
 - Smoothing (homogeneous regions)
 - Heightening, enhancement, sharpening (discontinuities, edges)

Typical potentials φ

- Again $\varphi(\delta) \sim \delta^2$ for small δ
- ullet Behaviour for large δ
 - Horizontal asymptote [Blake and Zisserman (87), Geman and McClure (87)]
 - Weight in the experiment of the experiment is a second of the experiment of the experiment is a second of the experiment of the experiment is a second of the experiment of
 - Oblique (slant) asymptote [Huber (81)]
 - Vertical parabolic behaviour Wiener-Tikhonov solution

Four major types of potentials

4 Output 4 Output 4 Output 4 Output 4 Output 5 Output 6 Output 0 Output 0

$$\varphi(\delta) = \begin{cases} \delta^2 & \text{if } |\delta| \leqslant s \\ s^2 & \text{if } |\delta| \geqslant s \end{cases} ; \quad \varphi(\delta) = s^2 \frac{(\delta/s)^2}{1 + (\delta/s)^2}$$

② Horizontal parabolic behaviour $\varphi(\delta) \sim \log |\delta|$

$$\varphi(\delta) = s^2 \log \left[1 + (\delta/s)^2 \right]$$

 $\textbf{ 0 Dblique (slant) asymptote } \varphi(\delta) \sim |\delta|$

$$\varphi(\delta) = \begin{cases} \delta^2 & \text{if } |\delta| \leqslant s \\ 2s |\delta| - s^2 & \text{if } |\delta| \geqslant s \end{cases} \; ; \; \; \varphi(\delta) = 2s^2 \left(\sqrt{1 + \left[\delta/s \right]^2} - 1 \right)$$

9 Vertical parabolic behaviour $\varphi(\delta) \sim \delta^2$

$$\varphi(\delta) = \delta^2$$

Potentials with oblique asymptote (L_2/L_1) : details

$$Huber: \qquad \qquad \varphi(\delta) = s^2 \begin{cases} \left[\delta/s\right]^2 & \text{if } |\delta| \leqslant s \\ 2|\delta|/s - 1 & \text{if } |\delta| \geqslant s \end{cases}$$

Hyperbolic:
$$\varphi(\delta) = 2s^2 \left(\sqrt{1 + [\delta/s]^2} - 1 \right)$$

$$LogCosh:$$
 $\varphi(\delta) = 2s^2 \log \cosh(|\delta|/s)$

$$FairFunction: \varphi(\delta) = 2s^2 [|\delta|/s - \log(1 + |\delta|/s)]$$

More general non-quadratic penalties (1D)

• Differences, derivative and higher order, generalizations,...

$$\mathcal{P}(\boldsymbol{x}) = \sum_{n} \varphi(x_{n+1} - x_n)$$

$$\mathcal{P}(\boldsymbol{x}) = \sum_{n} \varphi(x_{n+1} - 2x_n + x_{n-1})$$

$$\mathcal{P}(\boldsymbol{x}) = \sum_{n} \varphi(\alpha x_{n+1} - x_n + \alpha' x_{n-1})$$

$$\mathcal{P}(\boldsymbol{x}) = \sum_{n} \varphi(\alpha_n^{t} \boldsymbol{x})$$

• Linear combinations (wavelet, other-stuff-in-'et',... dictionaries,...)

$$\mathcal{P}(\boldsymbol{x}) = \sum_{n} \varphi(\boldsymbol{w}_{n}^{\mathsf{t}} \boldsymbol{x}) = \sum_{n} \varphi\left(\sum_{m} w_{nm} x_{m}\right)$$

- Redundant or not
- Link with Haar wavelet and other

More general non-quadratic penalties (2D)

• Differences, derivatives and higher order, gradient, generalizations

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p \sim q} \varphi(x_p - x_q)$$
$$= \sum_{n,m} \varphi(x_{n+1,m} - x_{n,m}) + \sum_{n,m} \varphi(x_{n,m+1} - x_{n,m})$$

- Notion of neighborhood and Markov field
- Any highpass filter, contour detector (Prewitt, Sobel,...)
- Linear combinations: wavelet, contourlet and other-stuff-in-'et',...
- Other possibilities (slightly different)
 - Enforcement towards a known shape \bar{x}

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p} \varphi(x_p - \bar{x}_p)$$

Separable penalty

$$\mathcal{P}(\boldsymbol{x}) = \sum_{p} \varphi(x_p)$$

Penalised least squares solution

A reminder of the criterion and the restored image

$$\mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{p \sim q} \varphi_s(x_p - x_q)$$
$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \mathcal{J}(\boldsymbol{x})$$

- with φ_s one of the mentioned (non-quadratic) potentials
- ullet and two hyperparameters: μ and s
- Non-quadratic criterion
 - Non-linear gradient
 - No closed-form expression
- Two questions
 - Practical computation: numerical optimisation algorithm,...
 - Minimiser: existence, uniqueness,...continuity

Convexity and existence-uniqueness

- Convex set
 - \bullet \mathbb{R}^N , \mathbb{R}^N_+ , intervals of \mathbb{R}^N, \dots
 - Properties: intersection, convex envelope, projection,...
- Strictly convex criterion, convex criterion,
 - $\Theta(u) = u^2$, $\Theta(u) = ||u||^2$, $\Theta(u) = |u|$, Huber,...
 - Properties: sum of convex function, level sets,...
- Key result
 - Set of minimisers of convex criterion on a convex set is a convex set
 - Strict convexity \sim unique minimiser
- Application
 - $\bullet \ \varphi \ \mathsf{convex} \leadsto J \ \mathsf{convex} \\$
- ullet In the following developments, potential $arphi_s$
 - Huber or hyperbolic: convex (strict) → guarantees
 - In addition: non-convex → no guarantee (although, sometimes...)

Half-quadratic enchantement (start)

Reminder of the criterion

$$\mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{p \sim q} \varphi(\boldsymbol{x}_p - \boldsymbol{x}_q)$$

- Minimisation based on quadratic
 - Original idea of [Geman + Yang, 95]
 - Set of auxiliary variables a_{pq} so that: $\varphi(\delta_{pq}) \longleftrightarrow \delta_{pq}^2$

$$\varphi(\delta) = \inf_{a} \left[\frac{1}{2} (\delta - a)^2 + \zeta(a) \right]$$

- With appropriate $\zeta(a)$
- Extended criterion

$$\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{p > q} \frac{1}{2} \left[(\boldsymbol{x}_p - \boldsymbol{x}_q) - a_{pq} \right]^2 + \zeta(a_{pq})$$

und natürlich:

$$\mathcal{J}(\mathbf{x}) = \inf_{\mathbf{a}} \tilde{\mathcal{J}}(\mathbf{x}, \mathbf{a})$$

Legendre Transform (LT) or Convex Conjugate (CC)

Definition of LT or CC (far more general than that version)

Consider $f: \mathbb{R} \longrightarrow \mathbb{R}$

- strictly convex
- once (or twice) differentiable

The LT or CC is the function $f^* : \mathbb{R} \longrightarrow \mathbb{R}$ defined by:

$$f^{\star}(t) = \sup_{x \in \mathbb{R}} \left[xt - f(x) \right]$$

Remark

$$f^{\star}(0) = \sup_{x \in \mathbb{R}} \left[-f(x) \right] = -\inf_{x \in \mathbb{R}} \left[f(x) \right]$$

$$\forall t, x \in \mathbb{R}, \quad xt - f(x) \leqslant f^{\star}(t)$$

$$\forall t, x \in \mathbb{R}, \quad f^{\star}(t) + f(x) \geqslant xt$$

LT: some shift and dilatation / contraction properties

$$f^{\star}(t) = \sup_{x \in \mathbb{R}} \left[xt - f(x) \right]$$

Horizontal: dilatation $(\gamma \in \mathbb{R}_+^*)$ and shift $(x_0 \in \mathbb{R})$

$$\begin{cases} g(x) = f(\gamma x) \\ g^{\star}(t) = f^{\star}(t/\gamma) \end{cases} \qquad \begin{cases} g(x) = f(x - x_0) \\ g^{\star}(t) = f^{\star}(t) - x_0 t \end{cases}$$

Vertical: shift-dilatation ($\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^{\star}$)

$$\begin{cases} g(x) = \alpha + \beta f(x) \\ g^{*}(t) = \beta f^{*}(t/\beta) - \alpha \end{cases}$$

Specific case

$$\alpha = 0, \beta = 1$$
 / $x_0 = 0$ / $\gamma = 1$

LT: a first example

Quadratic case $(\alpha \in \mathbb{R} \text{ and } \beta \in \mathbb{R}^{\star}_{+})$

Let us consider
$$f(x) = \alpha + \frac{1}{2}\beta(x - x_0)^2$$

And look for the LT: $f^{\star}(t) = \sup_{x \in \mathbb{R}} [xt - f(x)]$

- Let us denote $g_t(x) = xt f(x) = xt (\alpha + \beta(x x_0)^2 / 2)$
 - The derivative reads: $g_t'(x) = t \beta(x x_0)$
 - And the second derivative is: $g_t(x)'' = -\beta$
 - By nullification of $g_t'(x)$: $\bar{x} = x_0 + t/\beta$
 - Then by substitution: $f^{\star}(t) = g_t(\bar{x})$

$$f^{\star}(t) = \frac{1}{2\beta}t^2 + tx_0 - \alpha$$

• Have a look at the case $\alpha = 0$, $x_0 = 0$ and $\beta = 1...$

LT: a generic result for explicitation (a)

A swiss army formula: Legendre formula

$$f^{\star}(t) = \sup_{x \in \mathbb{R}} \left[xt - f(x) \right]$$

- Let us denote $g_t(x) = xt f(x)$
 - The derivative reads: $g'_t(x) = t f'(x)$
 - And the second derivative is: $g_t(x)'' = -f''(x)$
 - By nullification of $g'_t(x)$:

$$t - f'(\bar{x}) = 0$$

 $\bar{x} = f^{'-1}(t) = \chi(t)$

• Then by substitution:

$$f^{\star}(t) = g_t(\bar{x}) = t\bar{x} - f(\bar{x}) = t\chi(t) - f[\chi(t)]$$

LT: a generic result for explicitation (b)

Derivatives

Convex conjugate made explicit

$$f^{\star}(t) = t\chi(t) - f\left[\chi(t)\right] \text{ with } \chi = f^{'^{-1}}$$

• The derivative reads:

$$f^{\star'}(t) = \chi(t) + t\chi'(t) - \chi'(t) f'[\chi(t)]$$
$$= \chi(t)$$
$$= f^{'-1}(t)$$

• And the second derivative is:

$$f^{\star''}(t) = \chi(t)' = \frac{1}{f''[\chi(t)]} > 0$$

- Hence f^* is convex...
- ... and in fact f^* is always convex...

LT: a key result

Double conjugate

$$f^{\star\star}(x) = f(x)$$

$$f^{\star\star}(t) = \sup [xt - f^{\star}(x)]$$

• Let us note $h_t(x) = xt - f^*(x)$ and calculate the derivative:

$$h'_t(x) = t - f^{\star'}(x) = t - f^{'^{-1}}(x) = t - \chi(x)$$

• Nullify the derivative:

$$t - \chi(\bar{x}) = 0$$

By substitution

$$f^{**}(t) = h_t(\bar{x}) = \bar{x}t - f^*(\bar{x})$$

$$= \bar{x}t - [\bar{x}\chi(\bar{x}) - f(\chi(\bar{x}))]$$

$$= \bar{x}t - \bar{x}t + f(t)$$

$$= f(t)$$

Outcome for LT: "un théorème vivant"

Definition

Let us consider $f: \mathbb{R} \longrightarrow \mathbb{R}$

- strictly convex
- once (or twice) differentiable

$$f^{\star}(t) = \sup_{x \in \mathbb{R}} \left[xt - f(x) \right]$$

Properties

$$f^{\star}(t) = t\chi(t) - f\left[\chi(t)\right] \quad \text{with } \chi = f^{'^{-1}}$$

$$f^{\star'} = f^{'^{-1}} = \chi$$

$$f^{\star''}(t) = 1/f^{''}\left[\chi(t)\right]$$

$$f^{\star} \text{ is convex}$$

$$f^{\star\star}(x) = f(x)$$

Half-quadratic enchantement (start repeated)

Reminder of the criterion

$$\mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{p \sim q} \varphi(\boldsymbol{x}_p - \boldsymbol{x}_q)$$

- Minimisation based on quadratic
 - Original idea of [Geman + Yang, 95]
 - Set of auxiliary variables a_{pq} so that: $\varphi(\delta_{pq}) \longleftrightarrow \delta_{pq}^2$

$$\varphi(\delta) = \inf_{a} \left[\frac{1}{2} (\delta - a)^2 + \zeta(a) \right]$$

- With appropriate $\zeta(a)$
- Extended criterion

$$\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{r \neq q} \frac{1}{2} \left[(\boldsymbol{x}_p - \boldsymbol{x}_q) - a_{pq} \right]^2 + \zeta(a_{pq})$$

und natürlich:

$$\mathcal{J}(\mathbf{x}) = \inf_{\mathbf{a}} \tilde{\mathcal{J}}(\mathbf{x}, \mathbf{a})$$

A theorem in action: half-quadratic (beginning)

Problem statement

Consider a potential φ , convex or not, and look for ζ such that

$$\varphi(\delta) = \inf_{a \in \mathbb{R}} \left[(\delta - a)^2 / 2 + \zeta(a) \right]$$

ullet Let us define g such that it is strictly convex:

$$g(\delta) = \delta^2/2 - \varphi(\delta)$$

Consider its LT:

$$g^{\star}(a) = \sup_{\delta \in \mathbb{R}} \left[a\delta - g(\delta) \right]$$
$$= \sup_{\delta \in \mathbb{R}} \left[\varphi(\delta) - (\delta - a)^2 / 2 \right] + a^2 / 2$$

• Let us set (reason explained on the next slide):

$$\zeta(a) = g^{\star}(a) - a^2/2 = \sup_{\delta \subset \mathbb{R}} \left[\varphi(\delta) - (\delta - a)^2/2 \right]$$

A theorem in action: half-quadratic (middle)

• Take advantage of $g = g^{\star\star}$

$$g(\delta) = g^{\star\star}(\delta)$$

$$\delta^2/2 - \varphi(\delta) = \sup_{a} [a\delta - g^{\star}(\delta)]$$

Then:

$$\begin{split} \varphi(\delta) &= \delta^2/2 - \sup \left[a\delta - g^*(\delta) \right] \\ &= \delta^2/2 + \inf \left[g^*(\delta) - a\delta \right] \\ &= \delta^2/2 + \inf \left[\zeta(a) + a^2/2 - a\delta \right] \\ &= \inf \left[(\delta - a)^2/2 + \zeta(a) \right] \end{split}$$

• The icing on the cake, we have the minimiser:

$$[(\delta - a)^2/2 + \zeta(a)]' = (a - \delta) + \zeta'(a) = g^{\star'}(a) - \delta$$

then:

$$\bar{a} = g^{\star'^{-1}}(\delta) = g'(\delta) = \delta - \varphi'(\delta)$$

A theorem in action: half-quadratic (ending)

• Reminder: original criterion...

$$\mathcal{J}(\boldsymbol{x}) = \left\|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\right\|^2 + \mu \sum_{p \sim q} \varphi(\boldsymbol{x_p} - \boldsymbol{x_q})$$

...and extended criterion

$$\tilde{\mathcal{J}}(\boldsymbol{x}, \boldsymbol{a}) = \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{q} \frac{1}{2} \left[(\boldsymbol{x}_{p} - \boldsymbol{x}_{q}) - a_{pq} \right]^2 + \zeta(a_{pq})$$

- Algorithmic strategy: alternating minimisation

 - Minimisation w.r.t. a for fixed x: $\tilde{a}(x) = \arg\min_{a} \tilde{\mathcal{J}}(x, a)$ Separated and explicit update
- Remark:

Non-quadratic with Interacting variables

$$\underset{\text{Non-quadratic but non-interacting}}{\leadsto} \begin{cases} \text{Interacting but simply quadratic} \end{cases}$$

Image update, given current auxiliary variables

ullet Non-separable but quadratic w.r.t. $oldsymbol{x}$

$$\tilde{\mathcal{J}}(\boldsymbol{x}) \quad \# \quad \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \mu \sum_{p \sim q} \frac{1}{2} \left[(\boldsymbol{x}_p - \boldsymbol{x}_q) - a_{pq} \right]^2$$
$$= \quad \|\boldsymbol{y} - \boldsymbol{H}\boldsymbol{x}\|^2 + \bar{\mu} \|\boldsymbol{D}\boldsymbol{x} - \boldsymbol{a}\|^2$$

• Image update: standard...

$$\widetilde{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \widetilde{\mathcal{J}}(\boldsymbol{x})$$

$$(\boldsymbol{H}^{t}\boldsymbol{H} + \bar{\mu}\boldsymbol{D}^{t}\boldsymbol{D})\widetilde{\boldsymbol{x}} = \boldsymbol{H}^{t}\boldsymbol{y} + \bar{\mu}\boldsymbol{D}^{t}\boldsymbol{a}$$

$$\widetilde{\boldsymbol{x}} = (\boldsymbol{H}^{t}\boldsymbol{H} + \mu\boldsymbol{D}^{t}\boldsymbol{D})^{-1} (\boldsymbol{H}^{t}\boldsymbol{y} + \bar{\mu}\boldsymbol{D}^{t}\boldsymbol{a})$$

$$\mathring{\hat{\boldsymbol{x}}} = (\boldsymbol{\Lambda}_{h}^{\dagger}\boldsymbol{\Lambda}_{h} + \mu\boldsymbol{\Lambda}_{d}^{\dagger}\boldsymbol{\Lambda}_{d})^{-1}(\boldsymbol{\Lambda}_{h}^{\dagger}\mathring{\boldsymbol{y}} + \bar{\mu}\boldsymbol{\Lambda}_{d}^{\dagger}\mathring{\boldsymbol{a}})$$

$$\mathring{\hat{\boldsymbol{x}}}_{n} = \frac{\mathring{h}_{n}^{*}\mathring{\boldsymbol{y}}_{n} + \bar{\mu}\mathring{\boldsymbol{d}}_{n}^{*}\mathring{\boldsymbol{a}}_{n}}{|\mathring{h}_{n}|^{2} + \mu|\mathring{\boldsymbol{d}}_{n}|^{2}} \quad \text{for } n = 1, \dots N$$

Object update: other possibilities

Various options and many relationships...

- Direct calculus, compact (closed) form, matrix inversion
- Algorithms for linear system
 - Gauss, Gauss-Jordan
 - Substitution
 - Triangularisation,...
- Numerical optimisation
 - gradient descent...and various modifications
 - Pixel wise, pixel by pixel
- Diagonalization
 - Circulant approximation and diagonalization by FFT
- Special algorithms, especially for 1D case
 - Recursive least squares
 - Kalman smoother or filter (and fast versions,...)

Auxiliary variables update, given current image

ullet Non quadratic but separable w.r.t. a

$$\tilde{\mathcal{J}}(a) \# \sum_{p \sim q} \frac{1}{2} \left[(x_p - x_q) - a_{pq} \right]^2 + \zeta(a_{pq})$$

- Second enchantment:
 - Parallel computation (no loop): separability
 - Explicit (no inner-iterations): icing on the cake

• Update:
$$\widetilde{a}_{pq} = \delta_{pq} - \varphi'(\delta_{pq})$$

- Huber: $\widetilde{a}_{pq} = \delta_{pq} \left[1 2\alpha \min \left(1; s/\delta_{pq} \right) \right]$
- Hyperbolic: $\widetilde{a}_{pq} = \delta_{pq} \left[\dots \right]$

Auxiliary variables update, given current image

- $\bullet \ \ \mathsf{Update} \colon \ \widetilde{a}_{pq} = \delta_{pq} \varphi'(\delta_{pq})$
 - ullet Blake und Zissermann: $\widetilde{a}_{pq} = \delta_{pq} \left[\ldots \right]$
 - $\bullet \ldots : \widetilde{a}_{pq} = \delta_{pq} [\ldots]$
 - Geman & McClure: $\widetilde{a} = \delta \left[1 \frac{2\alpha}{(s/\delta)^2} \right]$

No more guarantees (my knowledge...): existence, unicity...and convergence...

Result Huber

Conclusions

Synthesis

- Image deconvolution
- Edge preserving and non-quadratic penalties
 - Gradient of gray levels (and other transforms)
 - Convex (and differentiable) case and also some non-convex cases
- Numerical computations: half-quadratic approach
 - Iterative: quadratic ⊕ separable
 - Circulant case (diagonalization) → FFT only (or numerical optimisation, system solvers,...)
 - Parallel (separable and explicit)

Extensions (next lectures)

- Also available for
 - non-invariant linear direct model
 - colour images, multispectral and hyperspectral
 - also signal, 3D and more, video, 3D+t...
- Including constraints → better image resolution (next lecture)
- Hyperparameters estimation, instrument parameter estimation,...