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@ Image restoration, deconvolution
o Motivating examples: medical, astrophysical, industrial, vision,. ..
e Various problems: deconvolution, Fourier synthesis, denoising. . .
o Missing information: ill-posed character and regularisation

@ Three types of regularised inversion

@ Quadratic penalties and linear solutions
o Closed-form expression
o Computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Non-quadratic penalties and edge preservation
o Half-quadratic approaches, including computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

© Constraints: positivity and support
@ Augmented Lagrangian and ADMM, including computation by FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Bayesian strategy: a few incursions
o Tuning hyperparameters, instrument parameters,. . .
o Hidden / latent parameters, segmentation, detection,. ..
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Convolution / Deconvolution

y=Hxr+e=h*x+e

= X(y)

Restoration, deconvolution-denoising
@ General problem: ill-posed inverse problems, i.e., lack of information

@ Methodology: regularisation, i.e., information compensation

e Specificity of the inversion / reconstruction / restoration methods
o Trade off and tuning parameters

@ Limited quality results
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Competition: Adequation to data

@ Compare observations y and model output Hx

o Unknown: x
o Known: H and y

Comparison experiment — model

@ Quadratic criterion: distance observation — model output

Jus(@) = ||y — Ha|®
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Competition: Smoothness prior

o Data insufficiently informative
~~ Account for prior information
~~ Here: smoothness of images

@ Quadratic penalty of the gray level “gradient”

Plx) = Z (zp — z4)?

I
K
g
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Quadratic penalty: criterion and solution

@ Least squares and quadratic penalty:

Jows(@) = |ly — He|” + p || Dz |®

@ Restored image

Tprs = argminJpg(x)
(H'H + uD'D) ,,s = H'y
Zors = (H'H+puD'D)™' H'y

o Computations based on diagonalization through FFT

T = (AJA,+pAlA)T ALY
2 b, .
T, = ————1y, forn=1,...N

(|2 + | |2
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Object computation: other possibilities

Various options and many relationships. . .

@ Direct calculus, compact (closed) form, matrix inversion

@ Algorithms for linear system

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o gradient descent. ..and various modifications
o Pixel wise, pixel by pixel

@ Diagonalization

o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
e Kalman smoother or filter (and fast versions,. . .)
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Solution from least squares and quadratic penalty

True Observation Quadratic penalty
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Synthesis and extensions to edge preservation

@ Limited capability to manage conflict between

e Smoothing and
o Avoiding noise explosion

... that limits resolution capabilities )

Extension: new penalty

@ Desirable: less “smoothing” around “discontinuities”
o Ambivalence:

@ Smoothing (homogeneous regions)
@ Heightening, enhancement, sharpening (discontinuities, edges)

e ...and new compromise, trade off, conciliation

@ Resort to the linear solution and FFT (Wiener-Hunt)
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Edge preservation and non-quadratic penalties

@ Restored image still defined as the minimiser. ..

~

T = argmin J(x)

@ ...of a penalised criterion ...

J(@) = |y - He|" + n P(=)

@ ...once again penalising variations

=D _elay =)

p~q

.. but strong penalisation of “small variations”
and less penalisation for “discontinuities”

o(0) =62 ~  p(0) =...7

o Ambivalence: new compromise, trade off, conciliation
@ Smoothing (homogeneous regions)
@ Heightening, enhancement, sharpening (discontinuities, edges)
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Typical potentials ¢

o Again ©(8) ~ 62 for small §

@ Behaviour for large ¢
@ Horizontal asymptote
[Blake and Zisserman (87), Geman and McClure (87)]
@ Horizontal parabolic behaviour
[Hebert and Leahy (89)]
© Oblique (slant) asymptote
[Huber (81)]
© Vertical parabolic behaviour
Wiener-Tikhonov solution

Alpha = 0.50 et Seuil = 1.00 ---q
25 v T
[ Huber
Hand L
——G and McC
—BandZ

2

15

Potentiel

1

-1 0 1
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Four major types of potentials

Q Horizontal asymptote p(§) ~ 1

e ifle|<s B (6/5)?
‘/’(5)_{32 iflo]>s P0) =5

@ Horizontal parabolic behaviour ¢(§) ~ log |d]

©(0) = s?log [1 + (5/5)2]

@ Oblique (slant) asymptote ¢(d) ~ ||
52 if|6] < s 2< 2 )
5) = D op(8) =282 (/14 1[6/s)? — 1
©(9) {QSW_SQ 6] > s p(6) = 2s [0/5]

@ Vertical parabolic behaviour ¢(§) ~ §2

p(6) = 6?

12/35



Potentials with oblique asymptote (Ls / L1): details

Alpha = 0.50 et Seuil = 1.00

25
2
15
g
ELO.S
0
w4 3 =2 a1 o 1 2 3 4
Variable Delta
5/s)? if 6] < s
Huber : ©(0) 2 19/5] i10]
216]/s—1 if|d]|>=s
Hyperbolic : o(6) = 2s° < 1+1[0/s)]> — 1)
LogCosh : ©(8) = 2s?logcosh (|&]/s)
FairFunction : ©(8) = 2s2[|8]/s —log(1+|5]|/s) ]
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More general non-quadratic penalties (1D)

o Differences, derivative and higher order, generalizations,. ..

Pa) = 3 pleni )

Plz) = zn: O(Tni1 — 20p + Tn_1)
Plz) = zn: (O i1 — Tp +0 T 1)
Plx) = Z plad, @)

@ Linear combinations (wavelet, other-stuff-in-‘et’,. . . dictionaries,. . . )
Ple) = Y plwhe) = 3¢ (z wnmxm)
n n m

o Redundant or not
o Link with Haar wavelet and other
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More general non-quadratic penalties (2D)

o Differences, derivatives and higher order, gradient, generalizations

P(x) = Z‘P » — Tq)

p~q
= Z (p(xn—&-l,m - xn,m) + Z @(In,m—i-l - xn,m)
n,m n,m

o Notion of neighborhood and Markov field
o Any highpass filter, contour detector (Prewitt, Sobel,...)
o Linear combinations: wavelet, contourlet and other-stuff-in-‘et’,. ..

@ Other possibilities (slightly different)
o Enforcement towards a known shape Z

ZSD p— Zp)

o Separable penalty

= Z‘P(l’p)
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Penalised least squares solution

@ A reminder of the criterion and the restored image
2
J(@) =y — He|" +p Z‘PS(xp )
p~q

Z = argmin J ()

e with ¢ one of the mentioned (non-quadratic) potentials
e and two hyperparameters: p and s

@ Non-quadratic criterion

o Non-linear gradient
o No closed-form expression

@ Two questions

e Practical computation: numerical optimisation algorithm,. ..
o Minimiser: existence, uniqueness,. .. continuity
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Convexity and existence-uniqueness

@ Convex set

o RY, ]Rf, intervals of RY,. ..
o Properties: intersection, convex envelope, projection,. ..

Strictly convex criterion, convex criterion,
o O(u) = u?, O(u) = ||[u||®, O(u) = |u|, Huber,. ..
o Properties: sum of convex function, level sets,. ..

Key result

o Set of minimisers of convex criterion on a convex set is a convex set
o Strict convexity ~> unique minimiser

Application

@ ¢ convex ~» J convex

@ In the following developments, potential ¢

o Huber or hyperbolic: convex (strict) ~~ guarantees
o In addition: non-convex ~~ no guarantee (although, sometimes. . .)
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Half-quadratic enchantement (start)

@ Reminder of the criterion

J(@) = |ly = Ha|* +p Y olw, — )

p~q

@ Minimisation based on quadratic
e Original idea of [Geman + Yang, 95]
o Set of auxiliary variables a,, so that: ¢(d,,) +— &2,

o(6) = inf B(a _a)’ 4 C((z)}
o With appropriate {(a)

@ Extended criterion

. 1
J(z,a) =y - HwH2 tu Z B [(zp — 2q) — “pq]z + ((apq)

p~q

und naturlich:

18/35



Legendre Transform (LT) or Convex Conjugate (CC)

Definition of LT or CC (far more general than that version)
Consider f: R — R
@ strictly convex

@ once (or twice) differentiable

The LT or CC is the function f*: R — R defined by:

£ = sup [t — f()]

zeR

.
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LT: some shift and dilatation / contraction properties

g(x) = f(yz) g9(x) = f(z — o)
g*(t) = f*(t) — ot

Vertical: shift-dilatation (o € R and 3 € RY)

{g(x) =a+ff(z)

g (t) = Bf*(t/B) — a

a=0,=1 /) =0 / =1
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LT: a first example

Quadratic case (« € R and 3 € RY)

1
Let us consider f(z) = a + éﬂ(x —20)?

And look for the LT: f*(t) = sup,er [zt — f(z)]

o Let us denote g;(z) = zt — f(z) = ot — (a + Bz — z0)? / 2)
o The derivative reads: gi(z) =t — B(z — zo)
o And the second derivative is: g:(x)” = -3
o By nullification of g;(z): T = xo +t/8
o Then by substitution: f*(t) = g:(Z)
() = %ﬁ +try —

@ Have a look at the case aa =0, zg =0and S =1...
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LT: a generic result for explicitation (a)

A swiss army formula: Legendre formula
fr@) = sup [zt — f(z)]

zeR

o Let us denote g;(z) = xt — f(x)
o The derivative reads: gi(z) =t — f'(x)
o And the second derivative is: gi(z)” = —f"(z)
o By nullification of g (z):
b — (@)
T = f @) = x@®)

Il
(=

@ Then by substitution:
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LT: a generic result for explicitation (b)

Derivatives
@ Convex conjugate made explicit

£ = tx(®) — fIx(®)] withx = f""

@ The derivative reads:

) = x®+t®) X ® X))
= x(®)
= /7
@ And the second derivative is:
1 ].
() =x@) == >0
f @) =x(®) o)
o Hence f* is convex. ..
e ...and in fact f* is always convex. ..
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LT: a key result

Double conjugate

[ (x) = f(=)

f7() = sup [zt — f*(z)]

@ Let us note hi(x) = at — f*(x) and calculate the derivative:

—

hy@) = t—f (@) = t—f (@) = t—xa)

@ Nullify the derivative:
t—x(@) =0
@ By substitution
@) = h(z) = 3t = f*(2)
= ot = [zx(T) - f(x(2))]
= zt—zt+ f(t)
= f(®)
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Outcome for LT: “un théoréme vivant”

Let us consider f : R — R

@ strictly convex
@ once (or twice) differentiable
frt) = sup [zt — f(2)]
z€R y
F5(8) = tx(®) = F [x(@)] withx = £
P=f"=x
@ =1/ x)

f* is convex

7 (x) = f(x)

\
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Half-quadratic enchantement (start repeated)

@ Reminder of the criterion

J(@) = |ly = Ha|* +p Y olw, — )

p~q

@ Minimisation based on quadratic
e Original idea of [Geman + Yang, 95]
o Set of auxiliary variables a,, so that: ¢(d,,) +— &2,

o(6) = inf B(a _a)’ 4 C((z)}
o With appropriate {(a)

@ Extended criterion

. 1
J(z,a) =y - HwH2 tu Z B [(zp — 2q) — “pq]z + ((apq)

p~q

und naturlich:
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A theorem in action: half-quadratic (beginning)

Problem statement

Consider a potential ¢, convex or not, and look for ¢ such that

»(d) = inf [((5 = a)2/2 + C(a)]

acR

@ Let us define g such that it is strictly convex:

g9(8) = 6%/2 — ©(9)

o Consider its LT:

g*(a) = Sup [ad —g(d)]
= sup [¢(6) — (6 —a)?/2] +a?/2
JER

@ Let us set (reason explained on the next slide):

¢(a) = g*(a) —a*/2 =sup [p(d) — (8 —a)?/2]

JER
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A theorem in action: half-quadratic (middle)

o Take advantage of g = ¢g**

9(6) = g7 (9)
0%/2—¢(8) = sup [ad—g* ()]

a

@ Then:
p(8) = 06%/2—sup [ad — g*(3)]
62/2 + inf [g*(8) — ad]
= §°/2+inf [((a)+a®/2 — ad]
= inf [(5 —a)?/2+ C(a)}

@ The icing on the cake, we have the minimiser:

[(0—a)?/2+¢(a)] =(a—8)+((a) =g (a) =&

then:
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A theorem in action: half-quadratic (ending)

@ Reminder: original criterion. ..
2
T(@) =y~ Ha| + 5 Y ol — ;)
p~q

@ ...and extended criterion

- 1
2 2
J(@,a) =y —Hz|" +p Z 5 [(zp — ) = apg]” + Capq)
@ Algorithmic strategy: alternating minimisation

@ Minimisation w.r.t. @ for fixed a: #(a) = argmin, J(x, a)
Quadratic problem

@ Minimisation w.r.t. a for fixed @: @(x) = argmin, J(x,a)
Separated and explicit update

@ Remark:
Non-quadratic with Interacting variables

Interacting but simply quadratic
EVNY
Non-quadratic but non-interacting
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Image update, given current auxiliary variables

@ Non-separable but quadratic w.r.t. x

~ 1
J(@) # Ny Hell*+p )5 (@ —2q) — ap)”

p~q

= lly-Hz|*+p | Dz - a|’

o Image update: standard. ..

Z = argminJ(x)
@
(H'H + iD'D)Z = H'y+ iD'a
z = (H'H+uD'D)™! (H'y+pD'a)
B = (AfAy+pAlA) T (ALY + i AL)
%n = M forn=1,...N

[hn|? + pildn?
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Object update: other possibilities

Various options and many relationships. . .

@ Direct calculus, compact (closed) form, matrix inversion

@ Algorithms for linear system

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o gradient descent. ..and various modifications
o Pixel wise, pixel by pixel

@ Diagonalization

o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
e Kalman smoother or filter (and fast versions,. . .)
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Auxiliary variables update, given current image

@ Non quadratic but separable w.r.t. a
- 1 5
J(a) # Z ) [(zp — 2q) = apg]™ + C(apq)
p~q

@ Second enchantment:
o Parallel computation (no loop): separability
e Explicit (no inner-iterations): icing on the cake

e Update: Gpg = dpg — ¢’ (Opq)
o Huber: Gpq = dpq [1 — 2acmin (1;5/0pq)]

e Hyperbolic: apg = 0pq . - ]

Alpha = 0.40 et Seuil = 2.00

N

—Huber
Hand L
—G and McC

—BandZ

Facteur de contraction
<)
>

*(iO -5

"0 5 10
Variable Delta 32/35



Auxiliary variables update, given current image

e Update: Gpq = dpg — ¢’ (0pq)
o Blake und Zissermann: Gpq = dpq [ - ]

° ... 1 Gpg=0pql ]

o Geman & McClure: a = 4§ [1 — 2a 2]
(s/6)

Alpha = 0.40 et Seuil = 2.00

N

N

<4
@

—Huber
Hand L
—G and McC

—BandZ

o
=

Facteur de contraction
o
o

o
[}

o
5

0 10
Variable Delta

No more guarantees (my knowledge. .. ):
existence, unicity. . .and convergence. . . J
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Result Huber

True Observation Quadratic penalty Huber penalty
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Conclusions

@ Image deconvolution

@ Edge preserving and non-quadratic penalties

o Gradient of gray levels (and other transforms)
o Convex (and differentiable) case and also some non-convex cases

@ Numerical computations: half-quadratic approach
o lterative: quadratic & separable
o Circulant case (diagonalization) ~ FFT only
(or numerical optimisation, system solvers,. . .)
o Parallel (separable and explicit)

Extensions (next lectures)

@ Also available for
e non-invariant linear direct model
o colour images, multispectral and hyperspectral

o also signal, 3D and more, video, 3D+t. ..
@ Including constraints ~~ better image resolution (next lecture)

@ Hyperparameters estimation, instrument parameter estimation,. . .
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