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@ Image restoration, deconvolution
o Motivating examples: medical, astrophysical, industrial,. ..
e Various problems: Fourier synthesis, deconvolution,. ..
e Missing information: ill-posed character and regularisation

@ Three types of regularised inversion

@ Quadratic penalties and linear solutions
o Closed-form expression
o Computation through FFT
o Numerical optimisation, gradient algorithm

@ Non-quadratic penalties and edge preservation
o Half-quadratic approaches, including computation through FFT
@ Numerical optimisation, gradient algorithm

© Constraints: positivity and support
@ Augmented Lagrangian and ADMM, including computation by FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Bayesian strategy: a few incursions
o Tuning hyperparameters, instrument parameters,. . .
o Hidden /latent parameters, segmentation, detection,. ..

2/37



Interferometry: principles of measurement

Physical principle [Thompson, Moran, Swenson, 2001]

@ Antenna array ~» large aperture
@ Frequency band, e.g., 164 MHz

@ Couple of antennas interference ~> one measure in the Fourier plane
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@ Knowledge of the sun, magnetic activity, eruptions, sunspots,. . .
@ Forecast of sun events and their impact,. .. J
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Interferometry: illustration

True map ES True map PS

Dirty map ES Dirty map PS Dirty map PS + ES

Dirty beam
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MRI: principles of measurement

Physical principle [Alaux 92]
e High / Ultra-high magnetic field B ~~ spin precession, f o || B]|
e Gradient B = By + B(z) ~ coding space - frequency

Proton density ~~ signal amplitude

Tissue, motion (physiological, perfusion, diffusion),. ..

Sequence and system parameters (times, magnetic field,. . .)

GE Phantom Frequency coverage Other acquisition schemes

@ Medical imaging, morphological and functional, neurology,. ..
@ Fast MRI, cardiovascular applications, flow imaging,. ..
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MRI: illustration

Instrument response
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X-ray tomography (scanner): principles of measurement

Physical principle
@ X-rays absorption ~~ radiography
@ Rotation around the objet ~~ a set of radiographies (sinogram)

@ Radon transform

@ Materials analysis and characterization, airport security,. . .
@ Medical imaging: diagnosis, therapeutic follow-up,. ..
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X-ray tomography: illustration
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Hydrogeology and source identification

Physical principle

@ Source: chemical, radioactive, odor,. ..
@ Transport phenomena in porous media

e Groundwater sensors (drilling)
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@ Monitoring: electricity generation, chemical industry,. . .
@ Knowledge for its own sake: subsoils, transportation, geology,. .. J
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Ultrasonic imaging

Physical principle

@ Interaction: ultrasonic wave <+ medium of interest

@ Acoustic impedance: inhomogeneity, discontinuity, medium change
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@ Industrial control: very-early cracks detection (nuclear plants,...)
@ Non destructive evaluation: aeronautics, aerospace,. ..

@ Tissue characterisation, medical imaging,. . .
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Seismic reflection method

Physical principle

@ Interaction: mechanical wave <> medium of interest

@ Acoustic impedance: inhomogeneity, discontinuity, medium change
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@ Mineral and oil exploration,. ..
o Knowledge of subsoils and geology,. .. J
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Optical imaging (and infrared, thermography)

Physical principle

e Fundamentals of optics (geometrical and physical) ~~ stain
@ CCD sensors or bolometers ~~ spatial and time response
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@ Public space surveillance (car traffic, marine salvage,. . .)
o Satellite imaging: astronomy, remote sensing, environment

@ Night vision, smokes / fogs / clouds, bad weather conditions
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Digital photography and demosaicing

Physical principle

e Matrix / filter / Bayer mosaic: red, green, blue

@ Chrominance and luminance

@ Holiday pictures
@ Surveillance (public space, car traffic,...) J
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The case of super-resolution

Physical principle

@ Time series of images ~~ over-resolved images
@ Sub-pixel motion ~ over-sampling

@ Motion estimation + Restoration

@ Same applications. . . with higher resolution J
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And other imaging. . . fields, modalities, problems,. ..

Astronomy, geology, hydrology,. ..

Thermography, fluid mechanics, transport phenomena,. . .
Medical: diagnosis, prognosis, theranostics,. . .

Remote sensing, airborne imaging,. . .

Surveillance, security,. . .

Non destructive evaluation, control,. ..

Computer vision, under bad conditions,. ..

Augmented reality, computer vision & graphics,. ..
Photography, games, recreational activities, leisures,. . .

®© 6 6 6 6 6 o6 o o o

~> Health, knowledge, leisure,. ..
~> Augmented Reality, Computer Vision & Graphics,. ..
~> Aerospace, aeronautics, transport, energy, industry,. ..
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And other imaging. . . fields, modalities, problems,. ..

o Interferometry (radio, optical, coherent,...)

Magnetic Resonance Imaging

Tomography based on X-ray, optical wavelength, tera-Hertz,. . .
Ultrasonic imaging, sound, mechanical

Holography

Polarimetry: optical and other

Synthetic aperture radars

Microscopy, atomic force microscopy

Camera, photography

Lidar, radar, sonar,. ..

~ Essentially “wave <> matter” interaction
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And other imaging. . . fields, modalities, problems,. ..

“Signal — Image” problems

@ Denoising
o Edge / contrast enhancement
o Missing data

e inpainting / interpolation
e outpainting / extrapolation

Deconvolution
Inverse Radon

Fourier synthesis

And also:

o Segmentation
o Detection of impulsions, salient points,. ..
o ...

~> In the following lectures: deconvolution-denoising
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Inversion: standard question

y=H(x)+e=Hx+e=hxxz+e

= X(y)

Restoration, deconvolution-denoising

@ General problem: ill-posed inverse problems, i.e., lack of information
@ Methodology: regularisation, i.e., information compensation

e Specificity of the inversion / reconstruction / restoration methods
o Trade off and tuning parameters

@ Limited quality results

18/37



Inversion: advanced question

y=H(x)+e=Hx+e=hxxz+e

&€,

@ Hyperparameters, tuning parameters: unsupervised

@ Instrument parameters (resp. response): myopic (resp. blind)
@ Hidden variables: edges, regions, singular points,...: augmented
°

Different models for image, noise, response,...: model selection
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Issues and framework
Inverse problems

@ Instrument model, direct / forward model
@ Involves physical principles of

o the phenomenom at stake
o the acquisition system, the sensor

@ Inverse

e undo the degradations, surpass natural resolution
o from consequences to causes
o restore / rebuild / retrieve

o lll-posed / ill-conditioned character and regularisation

Framework of this course

@ Direct model

o linear and shift invariant, i.e., convolutive
e including additive error (model and measurement)

@ Regularisation through penalties and constraints

o Criterion optimisation and convexity

€
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Some historical landmarks

@ Quadratic approaches and linear filtering ~ 60
o Phillips, Twomey, Tikhonov

e Kalman
e Hunt (and Wiener ~ 40)

@ Extension: discrete hidden variables ~ 80
o Kormylo & Mendel (impulsions, peaks,...)
o Geman & Geman (lines, contours, edges,...)
o Besag, Graffigne, Descombes (regions, labels,. . .)

o Convex penalties (also hidden variables,...) ~ 90

L2 — L1, Huber, hyperbolic: Sauer, Blanc-Féraud, Idier. ..
...et les POCS

Li: Alliney-Ruzinsky, Taylor ~ 79, Yarlagadda ~ 85 ...
And. .. Li-boom ~ 2005

@ Back to more complex models ~ 2000
o Unsupervised, myopic, semi-blind, blind
o Stochastic sampling (MCMC, Metropolis-Hastings. . .)
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Example due to Hunt (“square” response) [1970]

@ Convolutive model: y =hx*xx +¢
@ Samples averaging J
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Example: photographed photographer (“square” response)

@ Convolutive model: y=h*xx +¢
@ Pixels averaging

@ Think also about the Fourier domain

Spatial response h Observation y
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Example: brain (“square” response)

@ Convolutive model: y =h*xx +¢
@ Pixels averaging
@ Think also about the Fourier domain

Spatial response h Observation y
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Example: brain (“motion blur")

@ Convolutive model: y=h*xx +¢
@ Pixels averaging

@ Think also about the Fourier domain

True x Spatial response h Observation y
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Convolution equation (discrete time / space)

@ Examples of response

Square Motion Gaussian Diffraction Point

@ Convolutive model

+P
z(n) = Y h(p)z(n—p)

p=—P
+P

Z(n7m) = Z Z hp7 n_pvm_Q)

p=—Pq¢=-Q

@ Response: h(p) or h(p,q)

e impulse response, convolution kernel,. ..
e ...point spread function, stain image
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Convolution equation (discrete time, 1D ): matrix form

@ Linear ~» matricial relation: z = Hx
@ Shift invariance ~~» Toeplitz structure

@ Short response ~~ band structure

Zn—1 =
Zn = hpxpn_p+- -+ hixn_1+horn +h_1Tny1+ - +h_pTnip

Zn+1 =

hp ... ho ... h_p O 0 0 0 0

0 hp ho ... h_p 0 0 0 0

H— 0 0 hp ... hg .. h_p 0 0 0

- 0 0 0 hp ho h_p 0 0

0 0 0 0  hp ho ... h_p O

0o 0 0 0 0 hp ...  ho h_p
See exercise regarding Toeplitz and circulant matrices. . . )
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Short and important incursion in “continuous statement”

@ More realistic modelling of physical phenomenon
e Continuous variable convolution (1D, 2D and 3D,...)

@ Observations

e Sampling (discretization) of output
o Finite number of samples

@ Decomposition of unknown object

@ Again “discrete” convolution
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Convolution equation: continuous variable

) = [olryht—r)dr
= // x(u',v") h(u —u',v — ') du'dv’
z(u,v,w) = ///x(u',v’,w’) h(u—u',v — v, w—w'") du'dv'dw’

N
—~
RS

S
N

I

: Fredholm integral equation (first kind)

() = /()h(t 1) dr

z(u,v) // o', v") h(u, v’ v,y du'dv’
2(u,v,w) = ///x(u’m',w') h(u, v/ v,y w,w') du'dv’dw’
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Continuous convolution and discrete observations

e Convolutive integral equation

forteR :  2z2(t) = /+OO x(r)h(t —7) dr

— 0o

@ Measurement

o Discrete data (just sampling, no approximation). ..

+o00
o = nT) = [ an) T~ 1) dr

o ...and finite number of data: n =1,2,..., N.

o Unknown object remains “continuous variable”: z(t), for t € R

30/37



Object “decomposition-recomposition”

@ “General” decomposition of continuous time object

2(r) = Y wrew(r)
k

o Fourier series and finite time extend (finite duration)
o Cardinal sine and finite bandwidth

o Spline, wavelets, Gaussian kernel. ..

]

@ Infinite dimensional linear algebra

o Hilbert spaces, Sobolev spaces. ..
o Basis, representations. ..
o Inner products, norms, projections. . .
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Object “de /re-composition”: example of finite bandwidth

@ “General” decomposition of continuous time object

2(r) = Y wrok(T)
k

@ Case of shifted version of a basic function ¢

Pr(T) = @o(T — k)

@ Special case with cardinal sine

@o(7) = sinc[t/6]  with sinc[u]| = Sy
™
@ That is the Shannon reconstruction formula
. T— kb
z(r) = Z x 0o(T — k6) = Z ), sinc | 5 ]

kEZ keZ

o ...and there is no approximation, no error if
o the signal is e
o and with z; = e
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Object “de /re-composition”: example of finite bandwidth

@ “General” decomposition of continuous time object

2(r) = Y zkpk(T)
k

@ Case of shifted version of a basic function ¢

r(T) = wo(r — kd)

@ Special case with cardinal sine

@o(T) = sinc[t/6]  with sinc[u]| = S
™
@ That is the Shannon reconstruction formula
e 1)
x(r) = Z xp po(T —kd) = Z xksmc[ 5 ]

keZ keZ

o ...and there is no approximation, no error if
o the signal is of finite bandwidth
o and with zy = z(kTs) with Ty e
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Object “de /re-composition”: example of finite bandwidth

@ “General” decomposition of continuous time object

2(r) = Y zkpk(T)
k

@ Case of shifted version of a basic function ¢

r(T) = wo(r — kd)

@ Special case with cardinal sine

@o(T) = sinc[t/6]  with sinc[u]| = S
™
@ That is the Shannon reconstruction formula
e 1)
x(r) = Z xp po(T —kd) = Z xksmc[ 5 ]

keZ keZ

o ...and there is no approximation, no error if

o the signal is of finite bandwidth
o and with z; = z(kTs) with Ty small enough: Fy > 2F)\
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Convolution: continuous ~ discrete

@ Given that (discrete observation at time nTy)
“+ o0
Zn = / z(T)h(nTy — 1) dr forn=1,2,...,N

— 00

@ and that (case of shifted version of a basic function ¢g)

= Z X, o (T — ko) for Te R

@ By substitution, we have

“+o0
Zn = / [Z g o(T — kb)) | h(nTy — 1) dr
—eo |5
—+o0
= Zxk/ o(T — k) h(nTy — 1) dr
k} o0
+oo
= Zxk/ h([nTy — ké] — ) dr
k — 00
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Convolution: continuous ~ discrete

o Let us denote: h = g+ h

@ We then have

Zn =

e The z, are given as a function of the zj
o It is a “discrete linear” transform
o There is no apprximation
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Convolution: continuous ~ discrete

o A specific case when § = T,/ K
Zn = Z xy, h [nTy — kd]
k
= Z xy h [nK§ — ké]

k
= > aph[(nK - k)]
k

o Subsampled discrete convolution

@ A specific case when § =T, ie., K =1

Zn = Zxkﬁ[(n—k)é]

k

o A standard discrete convolution
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