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Topics

Image restoration, deconvolution
Motivating examples: medical, astrophysical, industrial,. . .
Various problems: Fourier synthesis, deconvolution,. . .
Missing information: ill-posed character and regularisation

Three types of regularised inversion

1 Quadratic penalties and linear solutions
Closed-form expression
Computation through FFT
Numerical optimisation, gradient algorithm

2 Non-quadratic penalties and edge preservation
Half-quadratic approaches, including computation through FFT
Numerical optimisation, gradient algorithm

3 Constraints: positivity and support
Augmented Lagrangian and ADMM, including computation by FFT
Optimisation (e.g., gradient), system solvers (e.g., splitting)

Bayesian strategy: a few incursions
Tuning hyperparameters, instrument parameters,. . .
Hidden / latent parameters, segmentation, detection,. . .
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Interferometry: principles of measurement

Physical principle [Thompson, Moran, Swenson, 2001]

Antenna array  large aperture

Frequency band, e.g., 164 MHz

Couple of antennas interference  one measure in the Fourier plane

Picture site (NRH) Antenna positions Fourier plane
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Knowledge of the sun, magnetic activity, eruptions, sunspots,. . .

Forecast of sun events and their impact,. . .
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Interferometry: illustration
True map ES True map PS

Dirty beam

Dirty map ES Dirty map PS Dirty map PS + ES
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MRI: principles of measurement

Physical principle [Alaux 92]

High / Ultra-high magnetic field B  spin precession, f ∝ ‖B‖
Gradient B = B0 +B(x)  coding space - frequency

Proton density  signal amplitude

Tissue, motion (physiological, perfusion, diffusion),. . .

Sequence and system parameters (times, magnetic field,. . . )
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Medical imaging, morphological and functional, neurology,. . .

Fast MRI, cardiovascular applications, flow imaging,. . .
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MRI: illustration

Phantom (true)
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X-ray tomography (scanner): principles of measurement

Physical principle

X-rays absorption  radiography

Rotation around the objet  a set of radiographies (sinogram)

Radon transform

Materials analysis and characterization, airport security,. . .

Medical imaging: diagnosis, therapeutic follow-up,. . .
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X-ray tomography: illustration
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Hydrogeology and source identification

Physical principle

Source: chemical, radioactive, odor,. . .

Transport phenomena in porous media

Groundwater sensors (drilling)
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Monitoring: electricity generation, chemical industry,. . .

Knowledge for its own sake: subsoils, transportation, geology,. . .
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Ultrasonic imaging

Physical principle

Interaction: ultrasonic wave ↔ medium of interest

Acoustic impedance: inhomogeneity, discontinuity, medium change
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Industrial control: very-early cracks detection (nuclear plants,. . . )

Non destructive evaluation: aeronautics, aerospace,. . .

Tissue characterisation, medical imaging,. . .
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Seismic reflection method

Physical principle

Interaction: mechanical wave ↔ medium of interest

Acoustic impedance: inhomogeneity, discontinuity, medium change
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Mineral and oil exploration,. . .

Knowledge of subsoils and geology,. . .
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Optical imaging (and infrared, thermography)

Physical principle

Fundamentals of optics (geometrical and physical)  stain

CCD sensors or bolometers  spatial and time response

Public space surveillance (car traffic, marine salvage,. . . )

Satellite imaging: astronomy, remote sensing, environment

Night vision, smokes / fogs / clouds, bad weather conditions
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Digital photography and demosaicing

Physical principle

Matrix / filter / Bayer mosaic: red, green, blue

Chrominance and luminance

Holiday pictures

Surveillance (public space, car traffic,. . . )
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The case of super-resolution

Physical principle

Time series of images  over-resolved images

Sub-pixel motion ∼ over-sampling

Motion estimation + Restoration

Same applications. . . with higher resolution
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And other imaging. . . fields, modalities, problems,. . .

Fields

Astronomy, geology, hydrology,. . .

Thermography, fluid mechanics, transport phenomena,. . .

Medical: diagnosis, prognosis, theranostics,. . .

Remote sensing, airborne imaging,. . .

Surveillance, security,. . .

Non destructive evaluation, control,. . .

Computer vision, under bad conditions,. . .

Augmented reality, computer vision & graphics,. . .

Photography, games, recreational activities, leisures,. . .

. . .

 Health, knowledge, leisure,. . .
 Augmented Reality, Computer Vision & Graphics,. . .
 Aerospace, aeronautics, transport, energy, industry,. . .

15 / 37



And other imaging. . . fields, modalities, problems,. . .

Modalities

Interferometry (radio, optical, coherent,. . . )

Magnetic Resonance Imaging

Tomography based on X-ray, optical wavelength, tera-Hertz,. . .

Ultrasonic imaging, sound, mechanical

Holography

Polarimetry: optical and other

Synthetic aperture radars

Microscopy, atomic force microscopy

Camera, photography

Lidar, radar, sonar,. . .

. . .

 Essentially “wave ↔ matter” interaction
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And other imaging. . . fields, modalities, problems,. . .

“Signal – Image” problems

Denoising

Edge / contrast enhancement

Missing data

inpainting / interpolation
outpainting / extrapolation

Deconvolution

Inverse Radon

Fourier synthesis

. . .

And also:

Segmentation
Detection of impulsions, salient points,. . .
. . .

 In the following lectures: deconvolution-denoising
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Inversion: standard question

y = H(x) + ε = Hx+ ε = h ? x+ ε

x
H +

y

ε

x̂ = X̂ (y)

Restoration, deconvolution-denoising

General problem: ill-posed inverse problems, i.e., lack of information

Methodology: regularisation, i.e., information compensation

Specificity of the inversion / reconstruction / restoration methods
Trade off and tuning parameters

Limited quality results
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Inversion: advanced question

y = H(x) + ε = Hx+ ε = h ? x+ ε

x,γ, `
H,θ +

y

ε,γ

x̂ = X̂ (y)[
x̂, γ̂, θ̂, ̂̀ ] = X̂ (y)

More estimation problems

Hyperparameters, tuning parameters: unsupervised

Instrument parameters (resp. response): myopic (resp. blind)

Hidden variables: edges, regions, singular points,. . . : augmented

Different models for image, noise, response,. . . : model selection
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Issues and framework

Inverse problems

Instrument model, direct / forward model

Involves physical principles of

the phenomenom at stake
the acquisition system, the sensor

Inverse

undo the degradations, surpass natural resolution
from consequences to causes
restore / rebuild / retrieve

Ill-posed / ill-conditioned character and regularisation

Framework of this course

Direct model

linear and shift invariant, i.e., convolutive
including additive error (model and measurement)

Regularisation through penalties and constraints

Criterion optimisation and convexity
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Some historical landmarks

Quadratic approaches and linear filtering ∼ 60

Phillips, Twomey, Tikhonov
Kalman
Hunt (and Wiener ∼ 40)

Extension: discrete hidden variables ∼ 80

Kormylo & Mendel (impulsions, peaks,. . . )
Geman & Geman (lines, contours, edges,. . . )
Besag, Graffigne, Descombes (regions, labels,. . . )

Convex penalties (also hidden variables,. . . ) ∼ 90

L2 − L1, Huber, hyperbolic: Sauer, Blanc-Féraud, Idier. . .
. . . et les POCS
L1: Alliney-Ruzinsky, Taylor ∼ 79, Yarlagadda ∼ 85 . . .
And. . .L1-boom ∼ 2005

Back to more complex models ∼ 2000

Unsupervised, myopic, semi-blind, blind
Stochastic sampling (MCMC, Metropolis-Hastings. . . )
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Example due to Hunt (“square” response) [1970]

Convolutive model: y = h ? x+ ε

Samples averaging
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Example: photographed photographer (“square” response)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y
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Example: brain (“square” response)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y
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Example: brain (“motion blur”)

Convolutive model: y = h ? x+ ε

Pixels averaging

Think also about the Fourier domain

True x Spatial response h Observation y
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Convolution equation (discrete time / space)

Examples of response

Square Motion Gaussian Diffraction Point

Convolutive model

z(n) =

+P∑
p=−P

h(p)x(n− p)

z(n,m) =

+P∑
p=−P

+Q∑
q=−Q

h(p, q)x(n− p,m− q)

Response: h(p) or h(p, q)

impulse response, convolution kernel,. . .
. . . point spread function, stain image
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Convolution equation (discrete time, 1D ): matrix form

Linear  matricial relation: z = Hx

Shift invariance  Tœplitz structure

Short response  band structure
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See exercise regarding Tœplitz and circulant matrices. . .
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Short and important incursion in “continuous statement“

More realistic modelling of physical phenomenon

Continuous variable convolution (1D, 2D and 3D,. . . )

Observations

Sampling (discretization) of output
Finite number of samples

Decomposition of unknown object

Again “discrete” convolution
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Convolution equation: continuous variable

Convolutive integral equation

z(t) =

∫
x(τ)h(t− τ) dτ

z(u, v) =

∫∫
x(u′, v′)h(u− u′, v − v′) du′dv′

z(u, v, w) =

∫∫∫
x(u′, v′, w′)h(u− u′, v − v′, w − w′) du′dv′dw′

More generally: Fredholm integral equation (first kind)

z(t) =

∫
x(τ)h(t, τ) dτ

z(u, v) =

∫∫
x(u′, v′)h(u, u′, v, y′) du′dv′

z(u, v, w) =

∫∫∫
x(u′, v′, w′)h(u, u′, v, y′, w, w′) du′dv′dw′
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Continuous convolution and discrete observations

Convolutive integral equation

for t ∈ R : z(t) =

∫ +∞

−∞
x(τ)h(t− τ) dτ

Measurement

Discrete data (just sampling, no approximation). . .

zn = z(nTs) =

∫ +∞

−∞
x(τ)h(nTs − τ) dτ

. . . and finite number of data: n = 1, 2, . . . , N .

Unknown object remains “continuous variable”: x(t), for t ∈ R
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Object “decomposition-recomposition”

“General” decomposition of continuous time object

x(τ) =
∑
k

xk ϕk(τ)

Fourier series and finite time extend (finite duration)
Cardinal sine and finite bandwidth
Spline, wavelets, Gaussian kernel. . .
. . .

Infinite dimensional linear algebra

Hilbert spaces, Sobolev spaces. . .
Basis, representations. . .
Inner products, norms, projections. . .
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Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =
∑
k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc
[
t/δ
]

with sinc
[
u
]

=
sinπu

πu

That is the Shannon reconstruction formula

x(τ) =
∑
k∈Z

xk ϕ0(τ − kδ) =
∑
k∈Z

xk sinc
[τ − kδ

δ

]
. . . and there is no approximation, no error if

the signal is •
and with xk = •
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Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =
∑
k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc
[
t/δ
]

with sinc
[
u
]

=
sinπu

πu

That is the Shannon reconstruction formula

x(τ) =
∑
k∈Z

xk ϕ0(τ − kδ) =
∑
k∈Z

xk sinc
[τ − kδ

δ

]
. . . and there is no approximation, no error if

the signal is of finite bandwidth
and with xk = x(kTs) with Ts •
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Object “de / re - composition”: example of finite bandwidth

“General” decomposition of continuous time object

x(τ) =
∑
k

xk ϕk(τ)

Case of shifted version of a basic function ϕ0

ϕk(τ) = ϕ0(τ − kδ)

Special case with cardinal sine

ϕ0(τ) = sinc
[
t/δ
]

with sinc
[
u
]

=
sinπu

πu

That is the Shannon reconstruction formula

x(τ) =
∑
k∈Z

xk ϕ0(τ − kδ) =
∑
k∈Z

xk sinc
[τ − kδ

δ

]
. . . and there is no approximation, no error if

the signal is of finite bandwidth
and with xk = x(kTs) with Ts small enough: Fs > 2FM
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Convolution: continuous  discrete

Given that (discrete observation at time nTs)

zn =

∫ +∞

−∞
x(τ)h(nTs − τ) dτ for n = 1, 2, . . . , N

and that (case of shifted version of a basic function ϕ0)

x(τ) =
∑
k

xk ϕ0(τ − kδ) for τ ∈ R

By substitution, we have

zn =

∫ +∞

−∞

[∑
k

xk ϕ0(τ − kδ)

]
h(nTs − τ) dτ

=
∑
k

xk

∫ +∞

−∞
ϕ0(τ − kδ)h(nTs − τ) dτ

=
∑
k

xk

∫ +∞

−∞
ϕ0(τ)h([nTs − kδ]− τ) dτ︸ ︷︷ ︸
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Convolution: continuous  discrete

Let us denote: h̄ = ϕ0 ? h

h̄(u) =

∫ +∞

−∞
ϕ0(τ)h(u− τ) dτ

We then have

zn =
∑
k

xk

∫ +∞

−∞
ϕ0(τ)h([nTs − kδ]− τ) dτ

=
∑
k

xk h̄(nTs − kδ)

The zn are given as a function of the xk
It is a “discrete linear” transform
There is no apprximation
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Convolution: continuous  discrete

A specific case when δ = Ts/K

zn =
∑
k

xk h̄ [nTs − kδ]

=
∑
k

xk h̄ [nKδ − kδ]

=
∑
k

xk h̄ [(nK − k)δ]

Subsampled discrete convolution

A specific case when δ = Ts, i.e., K = 1

zn =
∑
k

xk h̄ [(n− k)δ]

A standard discrete convolution
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