Image restoration

- Introduction and examples

Jean-François Giovannelli
Groupe Signal - Image
Laboratoire de I'Intégration du Matériau au Système
Univ. Bordeaux - CNRS - BINP

Topics

- Image restoration, deconvolution
- Motivating examples: medical, astrophysical, industrial,...
- Various problems: Fourier synthesis, deconvolution,...
- Missing information: ill-posed character and regularisation
- Three types of regularised inversion
(1) Quadratic penalties and linear solutions
- Closed-form expression
- Computation through FFT
- Numerical optimisation, gradient algorithm
(2) Non-quadratic penalties and edge preservation
- Half-quadratic approaches, including computation through FFT
- Numerical optimisation, gradient algorithm
(3) Constraints: positivity and support
- Augmented Lagrangian and ADMM, including computation by FFT
- Optimisation (e.g., gradient), system solvers (e.g., splitting)
- Bayesian strategy: a few incursions
- Tuning hyperparameters, instrument parameters,...
- Hidden / latent parameters, segmentation, detection,...

Interferometry: principles of measurement

Physical principle [Thompson, Moran, Swenson, 2001]

- Antenna array \rightsquigarrow large aperture
- Frequency band, e.g., 164 MHz
- Couple of antennas interference \rightsquigarrow one measure in the Fourier plane

Picture site (NRH)

Fourier plane

- Knowledge of the sun, magnetic activity, eruptions, sunspots,...
- Forecast of sun events and their impact,...

Interferometry: illustration

Dirty beam

Dirty map ES

Dirty map PS
Dirty map PS + ES

MRI: principles of measurement

Physical principle [Alaux 92]

- High / Ultra-high magnetic field $\boldsymbol{B} \rightsquigarrow$ spin precession, $f \propto\|\boldsymbol{B}\|$
- Gradient $\boldsymbol{B}=\boldsymbol{B}_{0}+B(x) \rightsquigarrow$ coding space - frequency
- Proton density \rightsquigarrow signal amplitude
- Tissue, motion (physiological, perfusion, diffusion),...
- Sequence and system parameters (times, magnetic field,...)

GE Phantom

Frequency coverage

Other acquisition schemes

- Medical imaging, morphological and functional, neurology,...
- Fast MRI, cardiovascular applications, flow imaging,...

MRI: illustration

Instrument response

Phantom (true)

X-ray tomography (scanner): principles of measurement

Physical principle

- X-rays absorption \rightsquigarrow radiography
- Rotation around the objet \rightsquigarrow a set of radiographies (sinogram)
- Radon transform

- Materials analysis and characterization, airport security,. . .
- Medical imaging: diagnosis, therapeutic follow-up,...

X-ray tomography: illustration

Hydrogeology and source identification

Physical principle

- Source: chemical, radioactive, odor,...
- Transport phenomena in porous media
- Groundwater sensors (drilling)

- Monitoring: electricity generation, chemical industry,...
- Knowledge for its own sake: subsoils, transportation, geology,...

Ultrasonic imaging

Physical principle

- Interaction: ultrasonic wave \leftrightarrow medium of interest
- Acoustic impedance: inhomogeneity, discontinuity, medium change

- Industrial control: very-early cracks detection (nuclear plants,...)
- Non destructive evaluation: aeronautics, aerospace,...
- Tissue characterisation, medical imaging,...

Seismic reflection method

Physical principle

- Interaction: mechanical wave \leftrightarrow medium of interest
- Acoustic impedance: inhomogeneity, discontinuity, medium change

- Mineral and oil exploration,...
- Knowledge of subsoils and geology,...

Optical imaging (and infrared, thermography)

Physical principle

- Fundamentals of optics (geometrical and physical) \rightsquigarrow stain
- CCD sensors or bolometers \rightsquigarrow spatial and time response

- Public space surveillance (car traffic, marine salvage,...)
- Satellite imaging: astronomy, remote sensing, environment
- Night vision, smokes / fogs / clouds, bad weather conditions

Digital photography and demosaicing

Physical principle

- Matrix / filter / Bayer mosaic: red, green, blue
- Chrominance and luminance

- Holiday pictures
- Surveillance (public space, car traffic,... .)

The case of super-resolution

Physical principle

- Time series of images \rightsquigarrow over-resolved images
- Sub-pixel motion \sim over-sampling
- Motion estimation + Restoration

- Same applications. . . with higher resolution

And other imaging. . . fields, modalities, problems,. . .

Fields

- Astronomy, geology, hydrology,...
- Thermography, fluid mechanics, transport phenomena,...
- Medical: diagnosis, prognosis, theranostics,...
- Remote sensing, airborne imaging,...
- Surveillance, security,...
- Non destructive evaluation, control,...
- Computer vision, under bad conditions,...
- Augmented reality, computer vision \& graphics,...
- Photography, games, recreational activities, leisures,...
- . .
\rightsquigarrow Health, knowledge, leisure,...
\rightsquigarrow Augmented Reality, Computer Vision \& Graphics,. . .
\rightsquigarrow Aerospace, aeronautics, transport, energy, industry,...

And other imaging. . . fields, modalities, problems,. . .

Modalities

- Interferometry (radio, optical, coherent,...)
- Magnetic Resonance Imaging
- Tomography based on X-ray, optical wavelength, tera-Hertz,...
- Ultrasonic imaging, sound, mechanical
- Holography
- Polarimetry: optical and other
- Synthetic aperture radars
- Microscopy, atomic force microscopy
- Camera, photography
- Lidar, radar, sonar,...
- ...
\rightsquigarrow Essentially "wave \leftrightarrow matter" interaction

And other imaging. . . fields, modalities, problems,. . .

"Signal - Image" problems

- Denoising
- Edge / contrast enhancement
- Missing data
- inpainting / interpolation
- outpainting / extrapolation
- Deconvolution
- Inverse Radon
- Fourier synthesis
- ...
- And also:
- Segmentation
- Detection of impulsions, salient points,...
- ...
\rightsquigarrow In the following lectures: deconvolution-denoising

Inversion: standard question

$$
\boldsymbol{y}=\mathcal{H}(\boldsymbol{x})+\boldsymbol{\varepsilon}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{\varepsilon}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}
$$

$$
\widehat{\boldsymbol{x}}=\widehat{\mathcal{X}}(\boldsymbol{y})
$$

Restoration, deconvolution-denoising

- General problem: ill-posed inverse problems, i.e., lack of information
- Methodology: regularisation, i.e., information compensation
- Specificity of the inversion / reconstruction / restoration methods
- Trade off and tuning parameters
- Limited quality results

Inversion: advanced question

$$
\boldsymbol{y}=\mathcal{H}(\boldsymbol{x})+\boldsymbol{\varepsilon}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{\varepsilon}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}
$$

$$
\begin{gathered}
\widehat{\boldsymbol{x}}=\widehat{\mathcal{X}}(\boldsymbol{y}) \\
{[\widehat{\boldsymbol{x}}, \widehat{\gamma}, \widehat{\boldsymbol{\theta}}, \widehat{\ell}]=\widehat{\mathcal{X}}(\boldsymbol{y})}
\end{gathered}
$$

More estimation problems

- Hyperparameters, tuning parameters: unsupervised
- Instrument parameters (resp. response): myopic (resp. blind)
- Hidden variables: edges, regions, singular points,.... : augmented
- Different models for image, noise, response,. . . : model selection

Issues and framework

Inverse problems

- Instrument model, direct / forward model
- Involves physical principles of
- the phenomenom at stake
- the acquisition system, the sensor
- Inverse
- undo the degradations, surpass natural resolution
- from consequences to causes
- restore / rebuild / retrieve
- III-posed / ill-conditioned character and regularisation

Framework of this course

- Direct model
- linear and shift invariant, i.e., convolutive
- including additive error (model and measurement)
- Regularisation through penalties and constraints
- Criterion optimisation and convexity
- Quadratic approaches and linear filtering ~ 60
- Phillips, Twomey, Tikhonov
- Kalman
- Hunt (and Wiener ~40)
- Extension: discrete hidden variables ~ 80
- Kormylo \& Mendel (impulsions, peaks,...)
- Geman \& Geman (lines, contours, edges,...)
- Besag, Graffigne, Descombes (regions, labels,...)
- Convex penalties (also hidden variables,...) ~ 90
- $\mathrm{L}_{2}-\mathrm{L}_{1}$, Huber, hyperbolic: Sauer, Blanc-Féraud, Idier...
- . . . et les POCS
- L_{1} : Alliney-Ruzinsky, Taylor ~ 79, Yarlagadda $\sim 85 \ldots$
- And. . . L L_{1}-boom ~ 2005
- Back to more complex models ~ 2000
- Unsupervised, myopic, semi-blind, blind
- Stochastic sampling (MCMC, Metropolis-Hastings. . .)

Example due to Hunt ("square" response) [1970]

- Convolutive model: $\boldsymbol{y}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}$
- Samples averaging

Response \boldsymbol{h}

Observation \boldsymbol{y}

- Convolutive model: $\boldsymbol{y}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}$
- Pixels averaging
- Think also about the Fourier domain

True \boldsymbol{x}

Spatial response h

Observation \boldsymbol{y}

Example: brain ("square" response)

- Convolutive model: $\boldsymbol{y}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}$
- Pixels averaging
- Think also about the Fourier domain

True \boldsymbol{x}

Spatial response \boldsymbol{h}

Observation \boldsymbol{y}

Example: brain ("motion blur")

- Convolutive model: $\boldsymbol{y}=\boldsymbol{h} \star \boldsymbol{x}+\boldsymbol{\varepsilon}$
- Pixels averaging
- Think also about the Fourier domain

True \boldsymbol{x}

Spatial response \boldsymbol{h}

Observation \boldsymbol{y}

Convolution equation (discrete time / space)

- Examples of response

- Convolutive model

$$
\begin{aligned}
z(n) & =\sum_{p=-P}^{+P} h(p) x(n-p) \\
z(n, m) & =\sum_{p=-P}^{+P} \sum_{q=-Q}^{+Q} h(p, q) x(n-p, m-q)
\end{aligned}
$$

- Response: $h(p)$ or $h(p, q)$
- impulse response, convolution kernel,...
- ... point spread function, stain image

Convolution equation (discrete time, 1D): matrix form

- Linear \rightsquigarrow matricial relation: $\boldsymbol{z}=\boldsymbol{H} \boldsymbol{x}$
- Shift invariance \rightsquigarrow Tœplitz structure
- Short response \rightsquigarrow band structure

$\boldsymbol{H}=\left[\begin{array}{cccccccccccc}\vdots & \vdots & \vdots & \\ & h_{P} & \ldots & h_{0} & \ldots & h_{-P} & 0 & 0 & 0 & 0 & 0 & \\ \cdots & 0 & h_{P} & \ldots & h_{0} & \ldots & h_{-P} & 0 & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & h_{P} & \ldots & h_{0} & \ldots & h_{-P} & 0 & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 0 & h_{P} & \ldots & h_{0} & \cdots & h_{-P} & 0 & 0 & \cdots \\ \cdots & 0 & 0 & 0 & 0 & h_{P} & \ldots & h_{0} & \cdots & h_{-P} & 0 & \cdots \\ & 0 & 0 & 0 & 0 & 0 & h_{P} & \cdots & h_{0} & \cdots & h_{-P} & \\ \vdots & & \vdots & \end{array}\right]$

See exercise regarding Tœplitz and circulant matrices.

- More realistic modelling of physical phenomenon
- Continuous variable convolution (1D, 2D and 3D,...)
- Observations
- Sampling (discretization) of output
- Finite number of samples
- Decomposition of unknown object
- Again "discrete" convolution

Convolution equation: continuous variable

Convolutive integral equation

$$
\begin{aligned}
z(t) & =\int x(\tau) h(t-\tau) \mathrm{d} \tau \\
z(u, v) & =\iint x\left(u^{\prime}, v^{\prime}\right) h\left(u-u^{\prime}, v-v^{\prime}\right) \mathrm{d} u^{\prime} \mathrm{d} v^{\prime} \\
z(u, v, w) & =\iiint x\left(u^{\prime}, v^{\prime}, w^{\prime}\right) h\left(u-u^{\prime}, v-v^{\prime}, w-w^{\prime}\right) \mathrm{d} u^{\prime} \mathrm{d} v^{\prime} \mathrm{d} w^{\prime}
\end{aligned}
$$

More generally: Fredholm integral equation (first kind)

$$
\begin{aligned}
z(t) & =\int x(\tau) h(t, \tau) \mathrm{d} \tau \\
z(u, v) & =\iint x\left(u^{\prime}, v^{\prime}\right) h\left(u, u^{\prime}, v, y^{\prime}\right) \mathrm{d} u^{\prime} \mathrm{d} v^{\prime} \\
z(u, v, w) & =\iiint x\left(u^{\prime}, v^{\prime}, w^{\prime}\right) h\left(u, u^{\prime}, v, y^{\prime}, w, w^{\prime}\right) \mathrm{d} u^{\prime} \mathrm{d} v^{\prime} \mathrm{d} w^{\prime}
\end{aligned}
$$

Continuous convolution and discrete observations

- Convolutive integral equation

$$
\text { for } t \in \mathbb{R}: \quad z(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) \mathrm{d} \tau
$$

- Measurement
- Discrete data (just sampling, no approximation)...

$$
z_{n}=z\left(n T_{\mathrm{s}}\right)=\int_{-\infty}^{+\infty} x(\tau) h\left(n T_{\mathrm{s}}-\tau\right) \mathrm{d} \tau
$$

- and finite number of data: $n=1,2, \ldots, N$.
- Unknown object remains "continuous variable": $x(t)$, for $t \in \mathbb{R}$

Object "decomposition-recomposition"

- "General" decomposition of continuous time object

$$
x(\tau)=\sum_{k} x_{k} \varphi_{k}(\tau)
$$

- Fourier series and finite time extend (finite duration)
- Cardinal sine and finite bandwidth
- Spline, wavelets, Gaussian kernel. . .
- ...
- Infinite dimensional linear algebra
- Hilbert spaces, Sobolev spaces...
- Basis, representations. ..
- Inner products, norms, projections...

Object "de / re-composition" : example of finite bandwidth

- "General" decomposition of continuous time object

$$
x(\tau)=\sum_{k} x_{k} \varphi_{k}(\tau)
$$

- Case of shifted version of a basic function φ_{0}

$$
\varphi_{k}(\tau)=\varphi_{0}(\tau-k \delta)
$$

- Special case with cardinal sine

$$
\varphi_{0}(\tau)=\operatorname{sinc}[t / \delta] \quad \text { with } \operatorname{sinc}[u]=\frac{\sin \pi u}{\pi u}
$$

- That is the Shannon reconstruction formula

$$
x(\tau)=\sum_{k \in \mathbb{Z}} x_{k} \varphi_{0}(\tau-k \delta)=\sum_{k \in \mathbb{Z}} x_{k} \operatorname{sinc}\left[\frac{\tau-k \delta}{\delta}\right]
$$

- ... and there is no approximation, no error if
- the signal is
- and with $x_{k}=\bullet$

Object "de / re-composition" : example of finite bandwidth

- "General" decomposition of continuous time object

$$
x(\tau)=\sum_{k} x_{k} \varphi_{k}(\tau)
$$

- Case of shifted version of a basic function φ_{0}

$$
\varphi_{k}(\tau)=\varphi_{0}(\tau-k \delta)
$$

- Special case with cardinal sine

$$
\varphi_{0}(\tau)=\operatorname{sinc}[t / \delta] \quad \text { with } \operatorname{sinc}[u]=\frac{\sin \pi u}{\pi u}
$$

- That is the Shannon reconstruction formula

$$
x(\tau)=\sum_{k \in \mathbb{Z}} x_{k} \varphi_{0}(\tau-k \delta)=\sum_{k \in \mathbb{Z}} x_{k} \operatorname{sinc}\left[\frac{\tau-k \delta}{\delta}\right]
$$

- and there is no approximation, no error if
- the signal is of finite bandwidth
- and with $x_{k}=x\left(k T_{\mathrm{s}}\right)$ with T_{s} -

Object "de / re-composition" : example of finite bandwidth

- "General" decomposition of continuous time object

$$
x(\tau)=\sum_{k} x_{k} \varphi_{k}(\tau)
$$

- Case of shifted version of a basic function φ_{0}

$$
\varphi_{k}(\tau)=\varphi_{0}(\tau-k \delta)
$$

- Special case with cardinal sine

$$
\varphi_{0}(\tau)=\operatorname{sinc}[t / \delta] \quad \text { with } \operatorname{sinc}[u]=\frac{\sin \pi u}{\pi u}
$$

- That is the Shannon reconstruction formula

$$
x(\tau)=\sum_{k \in \mathbb{Z}} x_{k} \varphi_{0}(\tau-k \delta)=\sum_{k \in \mathbb{Z}} x_{k} \operatorname{sinc}\left[\frac{\tau-k \delta}{\delta}\right]
$$

- ... and there is no approximation, no error if
- the signal is of finite bandwidth
- and with $x_{k}=x\left(k T_{\mathrm{s}}\right)$ with T_{s} small enough: $F_{\mathrm{s}}>2 F_{\mathrm{M}}$

Convolution: continuous \rightsquigarrow discrete

- Given that (discrete observation at time $n T_{\mathrm{s}}$)

$$
z_{n}=\int_{-\infty}^{+\infty} x(\tau) h\left(n T_{\mathrm{s}}-\tau\right) \mathrm{d} \tau \quad \text { for } n=1,2, \ldots, N
$$

- and that (case of shifted version of a basic function φ_{0})

$$
x(\tau)=\sum_{k} x_{k} \varphi_{0}(\tau-k \delta) \quad \text { for } \tau \in \mathbb{R}
$$

- By substitution, we have

$$
\begin{aligned}
z_{n} & =\int_{-\infty}^{+\infty}\left[\sum_{k} x_{k} \varphi_{0}(\tau-k \delta)\right] h\left(n T_{\mathrm{s}}-\tau\right) \mathrm{d} \tau \\
& =\sum_{k} x_{k} \int_{-\infty}^{+\infty} \varphi_{0}(\tau-k \delta) h\left(n T_{\mathrm{s}}-\tau\right) \mathrm{d} \tau \\
& =\sum_{k} x_{k} \underbrace{\int_{-\infty}^{+\infty} \varphi_{0}(\tau) h\left(\left[n T_{\mathrm{s}}-k \delta\right]-\tau\right) \mathrm{d} \tau}
\end{aligned}
$$

Convolution: continuous \rightsquigarrow discrete

- Let us denote: $\bar{h}=\varphi_{0} \star h$

$$
\bar{h}(u)=\int_{-\infty}^{+\infty} \varphi_{0}(\tau) h(u-\tau) \mathrm{d} \tau
$$

- We then have

$$
\begin{aligned}
z_{n} & =\sum_{k} x_{k} \int_{-\infty}^{+\infty} \varphi_{0}(\tau) h\left(\left[n T_{\mathrm{s}}-k \delta\right]-\tau\right) \mathrm{d} \tau \\
& =\sum_{k} x_{k} \bar{h}\left(n T_{\mathrm{s}}-k \delta\right)
\end{aligned}
$$

- The z_{n} are given as a function of the x_{k}
- It is a "discrete linear" transform
- There is no apprximation

Convolution: continuous \rightsquigarrow discrete

- A specific case when $\delta=T_{\mathrm{s}} / K$

$$
\begin{aligned}
z_{n} & =\sum_{k} x_{k} \bar{h}\left[n T_{\mathrm{s}}-k \delta\right] \\
& =\sum_{k} x_{k} \bar{h}[n K \delta-k \delta] \\
& =\sum_{k} x_{k} \bar{h}[(n K-k) \delta]
\end{aligned}
$$

- Subsampled discrete convolution
- A specific case when $\delta=T_{\mathrm{s}}$, i.e., $K=1$

$$
z_{n}=\sum_{k} x_{k} \bar{h}[(n-k) \delta]
$$

- A standard discrete convolution

