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@ Image restoration, deconvolution
o Motivating examples: medical, astrophysical, industrial, vision,. ..
e Various problems: deconvolution, Fourier synthesis, denoising. . .
o Missing information: ill-posed character and regularisation

@ Three types of regularised inversion

@ Quadratic penalties and linear solutions
@ Closed-form expression
o Computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Non-quadratic penalties and edge preservation
o Half-quadratic approaches, including computation through FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

© Constraints: positivity and support
@ Augmented Lagrangian and ADMM, including computation by FFT
o Optimisation (e.g., gradient), system solvers (e.g., splitting)

@ Bayesian strategy: a few incursions
o Tuning hyperparameters, instrument parameters,. . .
o Hidden / latent parameters, segmentation, detection,. ..
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Inversion: standard question

y=H(x)+e=Hx+e=hxxz+e

= X(y)

Restoration, deconvolution-denoising

@ General problem: ill-posed inverse problems, i.e., lack of information
@ Methodology: regularisation, i.e., information compensation

e Specificity of the inversion / reconstruction / restoration methods
o Trade off and tuning parameters

@ Limited quality results
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Example due to Hunt (“square” response) [1970]

@ Convolutive model: y =hx*xx +¢
@ Samples averaging J
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Example: brain (“square” response)

@ Convolutive model: y=h*xx +¢
@ Pixels averaging

@ Think also about the Fourier domain

Spatial response h Observation y
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Example: brain (“motion blur")

@ Convolutive model: y=h*xx +¢
@ Pixels averaging

@ Think also about the Fourier domain

True x Spatial response h Observation y
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Convolution

@ Examples of response

Square Motion Gaussian Diffraction Point

e Convolutive model (1D, 2D and also 3D,...)

+P
> h(p)z(n—p)

p=—P
+P

Z th7 n_pvm_Q)

p=—Pq¢=-Q

z(n)

z(n,m)

@ Response: h(p) or h(p,q)

e impulse response, convolution kernel,. ..
e ...point spread function, stain image
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Matrix form: 1D convolution

@ Linear ~» matricial relation: z = Hx

@ Shift invariance ~ Toeplitz structure
@ Short response ~~ band structure

Zn—1 =
zn, = hpxp_p+--+hizp_1+hor, +h_1Tpt1+ - +h_pTpip
Zn+1 =
hp ... ho L. h_p 0 0 0 0 0
0 hp ho N h_p 0 0 0 0
o 0 0 hp ... ho . h.p 0 0 0
- 0 0 0 hp .. ho h_p 0 0
0 0 0 0 hp ho . h_p 0
0 0 0 0 0 hp ho h_p
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Dealing with side effects
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Circulant case / Circulant approximation

@ Extend convolution matrix into a circulant matrix
@ Approximation “periodic objects” J
0 0 0 0 0 0 0 hp  hp_q !
0 0 0 0] 0] 0] 0 0 hp l;
0 0 0 0 0 0 0] 0 l;
0 hp hg ... h_p O 0 0 0
0 0 hp ... hg h_p O 0 0
0 0 0 hp . hg - h_p 0 0
0 0 0 0 hp ... ho .. h_p O
hp o o o
h_py1 h_p 0 0 .
h_pys h_py1 h_p O 0
Never compute that. Never. J

10/39



Circulant case: diagonalization

@ Circulant matrices diagonalization. ..
H=F'ALF
@ ...in the Fourier basis

_ n—1/2 [ —j2r(k—1)(1-1)/N
F=N e

k,l€l,...,N
@ Reminder of properties
F* = F
F'F = FF' = Iy
F' = F' = F*
Fxr = FFT(x)

Ffz = IFFT(x)
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Circulant case: eigenvalues

o Eigenvalues ~ frequency response

5 .
ho 0
;)Ll ‘h_P

h=|: =VNF| ho = £ft(h,N)
'O .
thg hP
o
hn—1 o

o Eigenvalues “read” on the frequency response graph

JET

70‘.5 —0‘.4 —0‘.3 —0.‘2 —011 6 0‘.1 0‘.2 0.‘3 0.‘4 0‘.5
@ Comment: conditioning of H and low pass character
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Circulant case: convolution through FFT

@ Matricial form of the convolution through FFT

z = Hx = F'A,Fx
Fz = A, Fx

z = Mz

S = haxa

05 -04 03 -02 01 0 01 02 03 04 05

o Frequency attenuation, lowpass character, ill-conditioned character
@ Possibly non-invertible system

@ Remark: exact convolution calculus always possible by FFT but. ..
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Example: photographed photographer (“square” response)

o Convolutive model (pixels averaging): y =hxx + €
e Fourier domain: (V) - h(oy) - 2@) + 6(01/)
= h .x x + €

Spatial response  Frequency response

Observation (y)
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Example: photographed photographer (“motion blur")

|

Spatial response  Frequency response

Observation (y)
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First approach for restoration
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First restoration: least squares

@ Compare observations y and model output Hx
o Unknown: x
e Known: H and y

Comparison experiment — model

@ Quadratic criterion: distance observation — model output
2
Jus(z) = |ly — Hz||
@ Least squares solution

Tps = argmin Jps(x)
X

o Solution Z1s: the best one to reproduce data
o Faut que “¢a colle”, it must fit, it must match
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Calculational aspects

Linear model + least squares ~~ Quadratic criterion

Jis(@) = |ly—He|* = (y-He)'(y - He)
'H' Hx — 2y'Hzx + y'y

@ Gradient calculus ~ linear

g(x) = ('957;33 =2H'Hx —-2H'y = —2H"'(y — Hzx)
@ And Hessian calculus ~~ constant
2
Q= 88555 =2H'H (>0 or >0)

@ Gradient nullification ~~ linear system ~~ matrix inversion

(H'H)Z,s = H'%
Z.s = (H'H) 'H'y
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Computational aspects and implementation

Various options and many relationships. . .

@ Direct calculus, compact (closed) form, matrix inversion

@ Algorithms for linear system

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o gradient descent ...and various modifications
o Pixel wise, pixel by pixel

@ Diagonalization

o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
e Kalman smoother or filter (and fast versions)
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Computations through FFT

z = (H'H) 'H'y
(H'H)"'H'y
= (FTALFFIA,F)"'FTA] Fy
= F'A;'Fy
Fz = A,'Fy
T = A
io?n = ? pourn=1,...,N
hn
It is just inverse filtering !! )

Matlab Pseudo-code

ObjetEstLS = IFFT( FFT(Data) ./ fft(IR) )
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Least squares solution (Hunt and Brain)

True Observation LS solution

Advantages / Disadvantages

@ Very general, hyper-fast, no parameter to tune

@ ... but does not work ... (exceptif...)
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Default of the least squares solution

@ Unacceptable solution, explosive, noise dominated

@ Three analyses: signal-image, numerical, statistical

o Bandwidth, non-observed or badly-observed frequencies
o Badly-scaled matrix, eigenvalues, numerical instabilities
o Strong variance (even if minimal variance and unbiased)

@ lll-posed problem

o Missing information
o Regularisation
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Least squares solution: well conditioned problem

Frequency
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True Observation LS solution
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Regularisation: generalities

o Data insufficiently informative
~~ Account for prior information

@ Question of compromise, of competition
@ Specificity of methods

~» Here: smoothness of images, ideally edge preserving
~~ Explicitation of prior information

@ Regularisation

o Through penalty, constraint, re-parametrisation
o ...or other ideas ... but regularisation anyhow

@ Regularisation by penalty

jPLS(w) = Hy - lelz + NP<1")

@ Restored image

ZTpps = arg min Jps(x)
x

25 /39



Quadratic penalty (1)

o Differences, higher order derivatives, generalizations,. . .

P(x) = Z(ﬂfnﬂ—ﬂﬁn)Q

n

P(@) = Y (wni1— 20 +a01)’

n

Plx) = Z(a Tpi1 — Tp +a T, 1)>

@ Linear combinations (wavelet, other-truc-en-et,. . . dictionaries,. . . )

P(x) = 25:2(105;33)2 = :g:: (:ZE:: 1Un7nfv7n:)

n n m

o Redundant or not
o Link with Haar wavelet and other
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Quadratic penalty (2)

@ 2D aspects: derivative, finite differences, gradient approximations

Plx) = Z(xp_xq)2

p~q
= Z(anrl,m - mn,m)Q + Z(:En,m+1 - xn,m)Z
n,m n,m

@ Norms of filtered images
o Through rows and columns

@ Remark

o Notion of neighborhood and Markov field

o Any highpass filter, contour detector (Prewitt, Sobel,...)

o Linear combinations: wavelet, contourlet and other
truc-en-et,. . . dictionaries,. . .

27 /39



Quadratic penalty (3)

@ Other possibilities (slightly different)

o Enforcement towards a known shape o
P(z) = (x — o) (x — o)
o Usual Euclidean norm (separable terms)
Plx) =x'z
@ More general form
P(x) = (x — xo)"' M (x — )
@ In the following development

Pi(@) = (¢, —z,)° = | Da|* = «'D' Dz

p~q

und D = ...
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Penalised least squares restoration

@ Remind the criterion. ..
2
Tos(@) = |ly— Hz|*+ p || Dz|
@ ...and its gradient. ..

glz) = ag:s = 2H'(y — Hzx) +2u D'Dx

@ ...and its Hessian. ..

a jl”LS

Q= =2H'H +2uD'D
@ ...the normal system of equation. ..
(H'H +uD'D)Z,,s = H'y
@ ...and the minimiser ...
Zors = (H'H+uD'D) 'H'y
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Computational aspects and implementation

Various options and many relationships. . .

@ Direct calculus, compact (closed) form, matrix inversion

@ Algorithms for linear system

o Gauss, Gauss-Jordan
o Substitution
o Triangularisation,. . .

@ Numerical optimisation

o gradient descent. ..and various modifications
o Pixel wise, pixel by pixel

@ Diagonalization

o Circulant approximation and diagonalization by FFT

@ Special algorithms, especially for 1D case

o Recursive least squares
e Kalman smoother or filter (and fast versions)
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Circulant form

@ Circulant approximation

o for H as previously
o for D in addition

@ One extra-term of interaction

1 -1 0 0
0

o

=

|

-

o o

D= ' ' _. ) (N x N)

0 0 1 -1 o
0 o 0 1 -1
- 00 0 1

e Diagonalization of D )
D=FA,F

o Eigenvalues by FFT

o

d=fft([-1,1])
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Computations by FFT

Z = (H'H+uD'D)'H'y
(FTA FFIALF + FIA FFIAFp) ' FT A, Fy
= FYAJ AL+ pAlAY)TIAL Fy

T = (AjAn+pAjA) T ALY
9\ }OL* o
Ty = #yn forn:1,...N
‘th'+l”an
This is just Wiener filtering !! )

Matlab pseudo-code

Gain = fft(IR)* ./ (I£f£t(IR) |2+ mux* |££t([-1,1]1)(?)
ObjetEstPLS = IFFT( FFT(Data) .* Gain )
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Solutions by quadratic penalties (Hunt)

o Evolution with

i R e, e
, : ,..'W'.‘:'.'.‘.*W WWM AAAIINA et
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Brain example

True Observation Quadratic penalty
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Frequency analysis: equalisation

\ \ = \ n \ =
|. /”I IR
M } ‘
| b 5'” V/‘ I ‘l‘ ‘\\/' \
| \ \ \
o) | \
VYA |
p=0 uw=10"3 w=10"1 =101

@ Depending on the considered frequency

o equalisation in the correctly observed bandwidth
o nullification in the uncorrectly observed bandwidth
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Bias / Variance (1)

Bias (normalized) Bias
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Bias / Variance (2)

Bias
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Photographed photographer: circulant or not

Observation PLS

(circulant) (non-circulant)
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Conclusions

@ Image deconvolution
@ Quadratic penalties and smoothness of solution
o Gradient of gray level and extensions (and other transforms)

@ Closed-form expression and linear w.r.t. the data

@ Numerical computations
o Circulant case (diagonalization) ~~ FFT only
o Numerical optimisation, system solvers,. ..

\,

Extensions (next lectures)

@ Also available for
e non-invariant linear direct model
e colour images, multispectral and hyperspectral

e also signal, 3D and more, video, 3D+t. ..
@ Extension to non-quadratic ~ better image resolution

@ Including constraints ~~ better image resolution

\,

@ Hyperparameters estimation, instrument parameter estimation,. . .
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