
Practical work on image restoration
Convex regularisation and contour aware image restoration

Prerequisite: prepare in advance the answer to the questions no. 1 through 5.

The present practical work is devoted to image deconvolution. Let us consider a scene captured through
a real observation system (of limited resolution that is): the image of a point is not a point but a spot. The
observed image is blurred because it results from the superposition of the spots generated by each point from
the real scene. Knowing the shape of the spot, i.e., the point spread function of the imaging system, and the
blurred image, the practical work seeks to recover the underlying sharp image, that is to invert the blurring. A
previous work has been devoted to the Wiener-Hunt method and the present one proposes an extension in order
to improve image resolution.

1 Wiener-Hunt Solution

We use the following mathematical model to describe the acquisition process:

y = Hx + e

where the vector y represents the observed data (the blurred image), the vector x represents the unknown true
image (the sharp image), H is the convolution matrix and e is the vector accounting for the measurement and
modelling errors.

To regularise the deconvolution problem, we include additional information regarding the spatial regularity
of the true image. The most straightforward approach consists in introducing a penalty of the difference between
the grey level of neighbouring pixels. We define the following penalized criterion:

JQ(x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕQ(xp − xq) (1)

with ϕQ(δ) = δ2. We can rewrite the above criterion as follows:

JQ(x) = ‖y −Hx‖2 + µ ‖Dx‖2 ,

where D is a difference matrix. The reconstructed image x̂Q is taken as the minimizer of this criterion:

x̂Q = arg min
x

JQ(x) .

As we are dealing with a quadratic criterion in x, we have an analytic expression for the minimizer:

x̂Q = (HtH + µDtD)−1Hty . (2)

By introducing a circulant approximation, we can diagonalise all the matrices involved in (2) in the Fourier
basis. In turn, this enables us to compute the solution for a marginal computational cost, that is Wiener-Hunt
solution. We shall further exploit this circulant approximation in the non-quadratic case dealt within this work.

Given a well chosen value for µ, we are able to truly see a deconvolution effect. That said, the resolution
and the ability to restore sharp edges, to allow for abrupt changes in grey levels of the restored image, is limited.
The object of this practical work is to overcome this limitation.
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2 Convex Regularisation

2.1 Huber Potential Function

As a mean to further enhance the resolution and have better edge preserving properties, we reconsider the
potential function ϕ, taking for example:

ϕH(δ) =

{
δ2 if | δ | ≤ T
2T | δ | − T 2 if | δ | ≥ T

which is referred to as the Huber potential function. It has a quadratic behaviour up to a given threshold T and
a linear behaviour afterwards (see the following figure).
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Figure 1: Huber function (threshold T = 0.5), solid line. Quadratic function, dotted line.

1. Determine (theoritically) and trace (on your paper) the first two derivatives of ϕH. Trace
as well the first and second derivative of ϕQ for comparison purposes.

Starting from the Huber potential function ϕH, we define a new criterion similar to the one given in (1):

JH(x) = ‖y −Hx‖2 + µ
∑
p∼q

ϕH(xp − xq) , (3)

and we define the restored image x̂H as the minimizer of the above new criterion

x̂H = arg min
x

JH(x) . (4)

2. Intuition and qualitative analysis

2a. Explain in your own words how this new potential function ϕH enables better
edge preserving properties compared to the previous potential function ϕQ.

2b. What is the influence of the threshold T ?

Remark 1 — The chosen ϕH function is convex and so is the adequation to the data term. We deduce that
the criterion JH as a whole is also convex: it thus has a unique minimum. We can also prove that it is strictly
convex and that it has a unique minimizer.

For an algorithmic reason that will be made explicit later on, we introduce an extra-parameter denoted α, a
strictly positive real number. The penalty term is multiplied and divided by α so that:

JH(x) = ‖y −Hx‖2 + µ′
∑
p∼q

αϕH(xp − xq) ,

with µ′ = µ/α.

Practical Matlab work subjects Convex regularisation and contour aware image restoration



Imaging and inverse problems: the example of deconvolution 3 / 6

2.2 Optimisation

The problem we are facing now is how to actually compute the minimizer (4) of the new criterion (3). Unlike
JQ given by (1), it is not quadratic: we do not have an analytic formula for its minimizer, as in (2). Nonetheless,
it has a unique minimizer and there are numerical iterative algorithms allowing us to compute it, see for example
[1–3]. In the following we shall study one of the available options.

2.2.1 Extended criterion and auxiliary variables

In order to reuse the previous result from the quadratic case under the circulant approximation, i.e., the Wiener-
Hunt solution, we introduce a new set of variables called auxiliary variables. More specifically, we introduce a
variable apq for each pair of neighbouring pixels ( p , q ) and we collect all these new variables in the vector a.

We proceed with the construction of a so called extended criterion

J̃H(x,a) = ‖y −Hx‖2 + µ′

[∑
p∼q

1

2
[(xp − xq)− apq]2 + ζ̃α(apq)

]
(5)

which is a function of the unknown image x and of the auxiliary variables a. It comprises three terms:

1. the least squares term (adequation to the data),

2. a quadratic term involving the differences between pixels, linked to the auxiliary variables, and

3. a term dealing only with the auxiliary variables involving a new function ζ̃α, called auxiliary function.

The keystone of the construction is to minimize the initial criterion (3) by minimizing the extended criterion (5)
instead, that is to say, a desired property is:

min
a
J̃H(x,a) = JH(x) . (6)

In order to meet this property, reading (5), the function ζ̃α can be clearly chosen so that:

αϕ(δ) = inf
a

[
1

2
(δ − a)2 + ζ̃α(a)

]
. (7)

Unsurprisingly, the design of ζ̃α in order to satisfy this property is paramount. It relies on theoretical consid-
erations as for example convex duality and Legendre-Fenchel transform (see [4–7], the lecture notes and the
exercices) for more details. It is proved that ζ̃α is a Huber function as well:

ζ̃α(a) = α


1

1− 2α
a2 if | a | ≤ (1− 2α)T

2T | a | − (1− 2α)T 2 if | a | ≥ (1− 2α)T

(8)

Remark 2 — The parameter α ∈]0, 1/2[ enables a fine-tuning of the algorithm. It does not alter the solution
itself, i.e., the restored image, instead it influences the inner workings of the optimisation algorithm, particularly
its convergence speed.

2.2.2 Algorithm

The results from the previous section, in particular equation (6), show that we can obtain the minimizer of
JH(x) with respect to x by minimizing J̃H(x,a) with respect to both x and a:

x̂H = arg min
x

JH(x) = arg min
x

{
min
a
J̃H(x,a)

}
.
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From a practical stand point, we will compute the joint minimizer of J̃H(x,a) with respect to both x and a:

(x̃H, ãH) = arg min
x,a

J̃H(x,a) ,

and we clearly have: x̂H = x̃H.

3. Take time to properly digest the news and make sense of it.

Then, the computation of the joint minimizer of J̃H(x,a) with respect to (x,a), will be achieved by
iterating a two stage process until convergence.

À Minimize J̃H(x,a) with respect to x for fixed a; this yields x(a) = arg minx J̃H(x,a).

Á Minimize J̃H(x,a) with respect to a for fixed x; in turn this yields a(x) = arg mina J̃H(x,a).

4. Give the explicit solution to À. Show how it can be computed in an efficient manner as
a Wiener-Hunt solution by using a circulant approximation. What’s happen if a = 0 ?

5. Regarding step Á.

5a. Examine criterion (5) and explain why it is possible to update the set of apq’s
in an independent and parallel manner.

5b. This point makes explicit the update of any of the auxiliary variables apq as a
function of the inter-pixel difference δpq = xp − xq. To options are available.

1. By minimization of (7) given (8) and you should find

apq =


δpq − 2αT if δpq ≥ T
(1− 2α) δpq if | δpq | ≤ T
δpq + 2αT if δpq ≤ −T

2. As expected from the lecture notes:

apq = δpq − αϕ′H(δpq)

You could check that the two are identical. For your implementation, you can
take it as it is.

The advantage of this half-quadratic approach is that both steps À and Á are explicit, whereas the direct
minimization of JH(x) is not. The algorithm can also be given in the following form.

• Initialize a[0] = 0

• For k = 1, 2, . . . repeat

1. Update x: x[k] = arg minx J̃H(x,a[k−1]) = . . .

2. Update a: a[k] = arg mina J̃H(x[k],a) = . . .
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2.2.3 Practical implementation

This section deals with the practical implementation in Matlab and the analysis of the results.

6a. Implement the optimisation method from the previous section. Take time to
properly structure and comment your code.

6b. Compare the results to the ones obtained using the Wiener-Hunt method.
Comment upon the influence of the two parameters of the method (µ and T ).

6c. Analyse the results in the frequency domain as well.

6d. Analyse and comment upon the speed of convergence of the algorithm as a
function of α. By trial and error determine a good value for α.

Please, keep in mind that α does not impact the restored image itself but it only influences the optimisation
algorithm, particularly its convergence speed.

3 Further analysis (optional) : interpretation in terms of line variables

This section proposes a new interpretation of the previous solution (and not a new solution). It is an alternative
interpretation of the criterion (3) and its minimizer (4). It makes use of the so called line variables that, in a way,
reveal the discontinuities in the reconstructed image. To this end, we introduce a second extended criterion:

J̄H(x, `) = ‖y −Hx‖2 + µ

[ ∑
p∼q

`pq (xp − xq)2 +
∑
p∼q

ζ̄(`pq)

]
. (9)

The line variables `pq ∈ [0, 1] are unobserved and they are introduced between neighbouring pixels to break
or attenuate inter-pixel interactions. The idea of using line variables, binary valued at the origin, was first
introduced in the 1980s by [8] (see also [9, 10]).

7. Intuition and qualitative analysis, a second time.

7a. Explain in your own words how this new criterion allows for a contour aware
image restoration. What value of `pq allows for a strong discontinuity between
neighbouring pixels ( p , q ) ?

7b. What happens if all `pq are equal to 0 ? And all equal to 1 ?

7c. What is the role of the ζ̄ function? What would happen if it were absent (i.e.,
if ζ̄ is the null finction)?

As before, the function ζ̄ can be constructed by making use of the convex duality framework, see for
example [4–7] (and your lecture notes). As in the previous section, we directly give the result:

ζ̄(`) = s2 (1/`− 1)

and we will show that this choice enable to connect the extended criterion (9) to the initial one (3).

8a. We introduce a function of ` denoted ψδ(`) having δ as parameter: ψδ(`) =
`δ2+ ζ̄(`) . Prove that by minimizing ψδ(`) with respect to `we obtain ϕH(δ):

ϕH(δ) = min
`

ψδ(`) .

We denote the minimizer by ` = θ(δ) = arg min` ψδ(`). Study and graph the
function θ.
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8b. Deduce that the criterion (3) is obtained from the criterion (9) by minimizing
the latter with respect to the auxiliary variables :

JH(x) = min
`
J̄H(x, `) . (10)

It should now be clear that JH(x) can be minimized with respect to x by
minimizing J̃H(x, `) with respect to both x and `. Do you confirm ?

Thus, the solution constructed by minimizing (9) with respect to both x and ` is:

(x̂, ̂̀) = arg min
(x,`)

J̄H(x, `)

and it consists of the reconstructed image x̂ and an image of the lines ̂̀. According to (10), the reconstructed
image x̂ is the same as the one obtained in the previous part: x̂ = x̂H.

9. Draw the lines corresponding to the solution x̂H.
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