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oint target detection and subpixel position
stimation in optical imagery

incent Samson, Frédéric Champagnat, and Jean-François Giovannelli

We address the issue of distinguishing point objects from a cluttered background and estimating their
position by image processing. We are interested in the specific context in which the object’s signature
varies significantly relative to its random subpixel location because of aliasing. The conventional
matched filter neglects this phenomenon and causes a consistent degradation of detection performance.
Thus alternative detectors are proposed, and numerical results show the improvement brought by
approximate and generalized likelihood-ratio tests compared with pixel-matched filtering. We also
study the performance of two types of subpixel position estimator. Finally, we put forward the major
influence of sensor design on both estimation and point object detection. © 2004 Optical Society of
America

OCIS codes: 040.1880, 100.5010, 100.0100.
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. Introduction

e tackle the problem of subpixel object detection in
mage sequences that arises, for instance, in infrared
earch-and-track applications. In this context the
arget signature is proportional to

s��i, j� � �
i�0.5

i�0.5

�
j�0.5

j�0.5

ho�u � �1, v � �2�dudv, (1)

here s��i, j� represents the percentage of light in-
ensity at pixel �i, j�, � 	 ��1, �2� refers to the object’s
andom subpixel position, and ho is the optical point-
pread function �PSF�. According to common sensor
esign, the energy of the signal component, s 	 
s�,
s almost entirely concentrated on a single pixel.
owever, unlike for amplitude 
, which is unknown

oo, its dependence on location parameter � is highly
onlinear. Its influence in our application is rather
ignificant because of aliasing and, unless a velocity
odel is available, an object’s subpixel position is

ardly predictable from frame to frame. Common
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ensor design leads to an image spot that is down-
ampled by almost a factor of 5. We can see from
ig. 1 the energy loss at the central pixel relative to
ubpixel location and the random change in spatial
attern that is due to aliasing. This phenomenon
as a major effect on detection performance, as we
how below. To our knowledge, this pitfall has not
een addressed yet in the literature. The prevailing
pinion is that there is no signature information on
ubpixel objects. Indeed, the various authors who
ealt with small-object detection concentrated on
lutter removal,1–3 multispectral or hyperspectral fu-
ion,4,5 and multiframe tracking methods.6–8 We fo-
us here on the processing of a single frame. In
ection 2 we formulate the detection problem in the
lassic model of a signal in additive Gaussian noise.9
hen the signal is deterministic, Neyman–Pearson

trategy yields the conventional matched filter. In
he present case, the signal from the target depends
n unknown parameters, and we have to deal with a
omposite hypothesis test. A common procedure is
iven by the generalized likelihood-ratio test. But
o-called nuisance parameters 
 and � can also be
onsidered random variables with known distribu-
ions �some a priori density functions in the Bayesian
erminology�; then the straightforward extension of
he likelihood-ratio test is to integrate the conditional
istribution over 
 and �. When we were modeling
he signal component as a sample function we could
lso think of the class of random signal in noise-
etection problems, which have been studied primar-
ly in the Gaussian case. Unfortunately, when s is
�
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considered a random vector, its empirical distribution
proves to be highly non-Gaussian when � is uniformly
sampled.

For instance, the histogram of the central pixel
depicted in Fig. 2 shows that a Gaussian fit is not
satisfactory at all. In Section 3 we define more pre-
cisely the optical system model used in our numerical
experiments. We consider both Gaussian white
noise and fractal noise of unknown correlations gen-
erated by a standard technique of spectral synthesis.
Section 4 is devoted to the position-estimation prob-
lem, i.e., estimation of parameter �. We propose two
estimators that take into account the fact that signal
amplitude 
 is also unknown. We demonstrate the
performance of these estimators in terms of mean-
square errors �MSEs�. As for the detection problem,
we finally illustrate the expected improvement in
quality brought by correctly sampled optics compared
with common sensor design.

2. Detection Problem

We consider a local detection window sliding across
the image. The problem is to decide whether an
object is present at the window’s central pixel. Its
solution involves a binary test that typically reads as
follows:

H0 : z � n,

H1 : z � 
s� � n, (2)

where z is the vector that collects the window data,
s 	 
s� is the object response �signal vector�, and n is

Fig. 2. Empirical distribution of the image-spot central pixel s��0,
0� for a uniformly random position � � � 2.
��0.5,0.5�
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the additive Gaussian noise. The signature shape is
known and deterministic, so s depends only on the
two unknown parameters, 
 � � and � � ε 	 ��0.5,
0.5�2. Noise vector n is assumed to be centered �in
practice we first remove the empirical mean from the
data� with a known or previously estimated covari-
ance matrix R. Thus, if we assume that n is inde-
pendent of s, the following conditional distributions
are Gaussian:

p�z� H0� � ��0, R�,

p�z� H1, 
, �� � ��
s�, R�. (3)

Let us first assume that parameters 
 and � are
given. The problem amounts to a simple hypothesis
test, which is to detect a deterministic signal in
Gaussian noise. The Neyman–Pearson strategy, or
likelihood-ratio test, is given by

p�z� H1, 
, ��

p�z� H0�

H1

�
H0

threshold. (4)

It is equivalent to classical matched filtering, which
simply compares the statistic 
���z� 	 
s�

tR�1z with
some threshold.

A. Pixel-Matched Filtering

As the exact object location is unknown in practice,
we could assume by default that � 	 �0 	 �0, 0�, i.e.,
that the object is at the center of the pixel, whereas
the true location would correspond to � 	 �*. Thus
the detector, which consists in thresholding the pixel-
matched filter �PMF� 
��0

�z�, is optimum, provided
that �* 	 �0. Otherwise it is mismatched and there-
fore suboptimum. Because the conditional distribu-
tions of ��0

�z� under each assumption are Gaussian,
we easily get the expression for the probability of
detection Pd and of false alarm Pfa. The correspond-
ing receiver operating characteristic �ROC� curves for
critical values of �* are depicted in Fig. 3. They
clearly show that the PMF performance worsens sig-
nificantly as �0 differs from �*. But, beyond extreme
situations �related to a true target location between
two or four pixels instead of the center�, the mean
curve represents the average statistics over uni-
formly random positions. We can see that the price
Fig. 1. Examples of image spots for several cross-marked sub-
pixel positions �windows of size 5 � 5 pixels�. Sensor design
parameter r is set to its common value of 2.44 �see Section 3�.
Fig. 3. Examples of PMF theoretical ROC curves for several true
subpixel positions �SNR, 15 dB�: the ideal case, where �* 	 �0 	
�0, 0�; �* 	 �0.5, 0�; and the worst case, where �* 	 �0.5, 0.5�. The
mean curve was drawn for uniformly sampled �*.
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aid for deviation from the ideal curve, if one neglects
he random location, is rather high even at a favor-
ble signal-to-noise �SNR� ratio. For a SNR of 15 dB
nd at a Pfa of 10�4, the probability of detection de-
reases from nearly 1 to 0.8.

The object response also depends �linearly this
ime� on amplitude 
, which is generally unknown.
et, assuming strictly positive amplitude, we can see

hat, whenever 
  0, thresholding 
��0
�z� gives the

ame ROC curve as thresholding ��0
�z�. Without

ny assumption about 
, a classical solution is to
stimate it by maximum-likelihood �ML� theory. In-
eed under the assumption of Gaussian noise, the
ptimum value of 
 for a given � is explicit:


̂��� � arg max

��

p�z� H1, 
, ��

� arg min

��

�z � 
s��
tR�1�z � 
s��

�
s�

tR�1z
s�

tR�1s�

; (5)

hen the generalized PMF �GPMF� is equal to


̂��0���0
�z� �

�s�0

t R�1z�2

s�0

t R�1s�0

. (6)

. Subpixel Detectors

ur aim is to build refined detectors that improve the
erformance of the GPMF by taking into account the
ariability of the object’s signature owing to its ran-
om subpixel location. Several solutions may be
sed. We recall the most popular one first.

. Generalized-Likelihood-Ratio Test
ML estimation of the two unknown parameters

eads to the generalized-likelihood-ratio test �GLRT�:

�g�z� �
max�
,��p�z� H1, 
, ��

p�z� H0�

�
p�z� H1, 
̂ML, �̂ML�

p�z� H0�
� threshold. (7)

t consists in estimating amplitude 
 and possible
bject location � by computing

�̂ML � arg max
��ε

p�z� H1, 
̂���, ��

� arg max
��ε

�s�
tR�1z�2

s�
tR�1s�

. (8)

hen thresholding the estimated filter 
̂ML��̂ML
�z�,

here 
̂ML 	 
̂��̂ML� is given by Eq. �5�, yields


̂ML��̂ML
�z� �

�s�̂ML

t R�1z�2

s�̂ML

t R�1s�̂ML

. (9)

. Exact-Likelihood-Ratio Test
n a Bayesian approach, we propose to consider the
wo unknown parameters 
 and � as manifestations
f independent random variables with given
robability-density functions p�
� and p���. Then
he optimal procedure is the exact-likelihood-ratio
est �ELRT�.

To compute the density function of data under H1
nd to get the likelihood ratio, we have to integrate
he conditional density p�z�H1, 
, �� over prior distri-
utions of nuisance random parameters 
 and �.
he likelihood ratio can be expressed as

��z� �
p�z� H1�

p�z� H0�
�

�
ε
�

�

p�z� H1, 
, �� p�
� p���d
d�

p�z� H0�
.

(10)

iven prior distributions p�
� and p���, ��z� is the
ptimal Neyman–Pearson test whenever 
 and � re-
lly satisfy the models p�
� and p���. By default we
hoose a noninformative prior distribution for 
 and
dopt a uniform distribution inside the pixel for �,
hich seems to be quite a reasonable assumption for

he subpixel target position. So we get

��z� � �
ε

1
�s�

tR�1s��
1�2 exp��s�

tR�1z�2

2s�
tR�1s�

�d�. (11)

Unfortunately, because of the intricate nonlinear
ependence of s� on �, explicit integration over � ap-
ears not to be tractable, and the probability distri-
ution of ��z� is not as simple as that of ��0

�z�. A
uadrature approximation is required for computing
�z�, whereas derivation of its density requires
onte Carlo simulations.

. Approximate Likelihood-Ratio Test
n relation �11�, we can approximate the double inte-
ral over � to any desired accuracy by using some
uadrature rule and evaluating integrand f ���z� at
iscrete samples �k � � 	 ��0.5, 0.5�2. But, for the
ake of computational efficiency, we propose to use a
oarse approximation of likelihood ratio �a�z� based
n a bidimensional trapezoidal rule that involves only
ine positions: the center of the pixel �0 	 �0, 0�; the
our half-pixel positions �0, �0.5� and ��0.5, 0�, de-
oted �k, k 	 1, . . . , 4; and the four corners ��0.5,
0.5�, denoted �k, k 	 5, . . . , 8:

�a�z� � 1⁄4 � f ��0�z� � 1⁄2 �
k	1

4

f ��k�z� � 1⁄4 �
k	5

8

f ��k�z�� .

(12)

. Subspace Model
n alternative to this probabilistic viewpoint can be
uilt on a geometric approach that restricts signal
ector s 	 
s� to vary in some P-dimensional sub-
pace, with P less than the vector size.10 The ob-
erved data under H1 are rewritten as

z � Sa � n � �
p	1

P

apsp � n, (13)
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 259



and slice along a diameter �rc 	 2.44�.

2

where structural matrix S is formed by P indepen-
dent vectors sp. Coefficients ap of the linear combi-
nation are the new parameters that describe the
signal’s variability. As a result of linearity, the ML
estimation of vector a has an explicit solution �which
is identical to the least-squares estimator�:

âML � �StR�1S��1StR�1z, (14)

and the GLRT amounts to threshold the following
statistic:

��z� � ztR�1S�StR�1S��1StR�1z. (15)

Matrix S depends only on �. 
 is a scale parameter;
in practice, one identifies it by discretizing ε, making
a singular value decomposition, and retaining singu-
lar vectors sp that correspond to the P greatest sin-
gular values. We chose P 	 1, which gives better
results than higher orders. Therefore, under hy-
pothesis H1, z � a1s1 � n, and ��z� is identical to the
GPMF with s�0

replaced by s1.

3. Application to Optical Imagery

A. Optical System

In our application we can model the imaging system
by a diffraction-limited, unaberrated optics with
circular aperture and incoherent illumination.11,12

Object signal pattern s� is then given by the inte-
gration of ho on each pixel �see Eq. �1��, where ho is
the radial point-spread function �PSF� defined by
the Airy disk:

ho�u, v� �
1
� �J1���rc�

� �2

, � � 	u2 � v2. (16)

J1 is a Bessel function of the first kind, and rc 	
vc�vs designates the normalized cutoff frequency �vs
is the sampling frequency and vc 	 D�� is the radial
cutoff frequency defined by the ratio of the lens’s
60 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
aperture diameter D to wavelength ��. Figure 4
depicts the two-dimensional PSF and a slice along
one diameter as well as their Fourier transform.
Common sensor design uses rc 	 2.44, so the pixel
size is equal to the width of the main lobe of the
PSF. However, this implies a downsampling fac-
tor vn�vs 	 2rc 	 4.88 �where vn 	 2vc is the Nyquist
frequency�. In Subsection 3.B below, we present
some numerical results of detection performance
that resulted from using this classical sensor de-
sign. Examples of image spots s� are shown in Fig.
1 for various values of �.

Remark 1. We have the following property:

�
�i, j���2

s��i, j� � �
�2

ho�u, v�dudv � 1.

B. Numerical Results

The performance of the five classes of detector, the
GPMF and the GLRT of 
 and �, the ELRT, the
approximate-likelihood ratio test �ALRT�, and finally
the GLRT with the subspace model �denoted the SM-
GLRT�, were compared in terms of ROC curves. We
deduced the probabilities of detection and false alarm
from the empirical distributions of these statistics
under each hypothesis by generating samples of
Gaussian noise n and uniformly distributed � in ε 	
��0.5, 0.5�2. The amplitude was assumed to be un-
known but set to a constant value 
 in the simula-
tions because we had no information about a reliable
prior distribution p�
�.

We considered first the Gaussian white noise n �
��0, �2�. The SNR was then defined by

SNR � 10 log10�
2E
�2 � , E � �

ε
�

�i, j���2

�s��i, j��2d�.

(17)

For common sensor design �rc 	 2.44�, the average
energy of the image spot was E � 0.52. The ROC
curves are depicted in Fig. 5 for two SNRs. The
figure shows that the GLRT, the ELRT �actually, a
refined approximation of it�, and the coarse approx-
imation ALRT exhibit significantly better perfor-
mance than the SM-GLRT and the GPMF. We can
also see that the performance gain is greater for
high SNR, whereas it tends to be rather small for
low SNR and low probability of false alarm. Con-
versely, if provision of the GPMF, the SM-GLRT,
and the ALRT is computationally cheap, pro-
vision of the GLRT and the ELRT is much more
intensive.

As complementary tests, we tested the five detec-
tors on a fractal background image generated by a
variant of the ppmforge software.13

The synthesis algorithm depends on autosimilarity
parameter H, called the Hurst parameter, which was
set to 0.7 in this experiment. The resultant image
depicted in Fig. 6 is a realistic simulation of a cloud
Fig. 4. Left, radial PSF ho�u, v� �top� and slice along a diameter
�bottom�. Right, corresponding optical transfer function h̃o��u, �v�



scene. Covariance matrix R of this stationary back-
ground was estimated by empirical correlations of the
whole image. We then computed the performance of
the various detectors for a given target amplitude as
illustrated in Fig. 7. The ROC curves look quite
different from those for the white-noise case, but we
can see again that the GLRT, the ELRT, and the
ALRT exhibit similar performance and provide a sig-
nificant gain in detection compared with the GPMF
and the SM-GLRT.

Fig. 5. Empirical ROC curves in the Gaussian white-noise case
with common sensor design �rc 	 2.44� for two different SNRs.
These curves were obtained for 9 � 104 instances of noise.
C. Influence of the Optics

Besides a desire to perfect and evaluate subpixel de-
tectors, one additional motivation for this research
was a wish to analyze the influence of aliasing on
detection performance. This is why we also tested
the detectors on correctly sampled optics to compare
their performance with that obtained by use of a
common sensor design. In the correctly sampled de-
sign, the focal plane is sampled at the Nyquist fre-
quency �implying a denser sensor array or a smaller
lens diameter� such that aliasing is suppressed. Pa-
rameter rc of the PSF is equal to 0.5, and the signal
energy is now spread over several pixels. By com-
parison, Fig. 8 presents examples of image spots that
correspond to such a design. Detection performance
is depicted in Fig. 9 for a SNR of 15 dB. We can see
that the choice of detection algorithm is just a mod-
erate factor in this situation. The five detectors ex-
hibit quite similar behavior, but at the same SNR
they perform much better than in the aliased case.
The gain in Pfa amounts at least to a factor of 10 for
all the detectors. Such a result speaks in favor of
using a denser focal plane for point target detection.

Remark 2. In the presence of aliasing, term
s tR�1s depend on �, even when the noise is white.

Fig. 7. Empirical ROC curves obtained for the fractal image of
Fig. 6 for a true �but assumed unknown� target amplitude 
 	 60
gray levels. The standard deviation of the correlated noise on the
whole image is �104 gray levels, and the estimated innovation
standard deviation is �4.6. The following generalized definition
of the SNR, 10 log10�
2�ε s�

tR�1s�d��, leads to an estimated SNR
value of 18.1 dB.
� �
Fig. 6. Simulation of a cloud fractal image of 200 � 200 pixels
�Hurst parameter, H 	 0.7�.
Fig. 8. Examples of image spots corresponding to a correctly sam-
pled optics �r 	 0.5� to be compared with those of Fig. 1.
c

10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 261



F
e
t
c

4

S
a
g
t
a
o
S
h
f
o
t
t
I
i
t

p


t
d

w

S
a
a
p
r

t
z
n
�

F
w
r
T

F
w
p
m

2

or example, in a common sensor design, signal en-
rgy E� 	 s�

ts� varies from 0.21 to 0.72. Such is not
he case for the correctly sampled optics where E� is
onstant and equal to E � 0.08.

. Performance of Subpixel Position Estimators

o far we have focused on the detection strategy. In
second step, once a potential target is detected on a

iven pixel we are interested also in accurate estima-
ion of its subpixel position. Such a problem has
lready been addressed, in particular for estimation
f positions of stars in astronomical applications.14

everal types of estimator are possible. We consider
ere the maximum likelihood �ML� estimator and,

ollowing the Bayesian approach introduced previ-
usly, the posterior mean. It is important to note
hat signal amplitude 
 is also unknown and that
herefore we have to estimate it or integrate over it.
ndeed, it is not valid to suppose that the amplitude
s known in the context of the infrared search-and-
rack algorithm.

The ML estimator of � is given in Eq. �8� by re-
lacement of 
 with its estimate �̂. In fact, �̂ML and

ˆ ML 	 
̂��̂ML� are identical to joint maximum a pos-
eriori �MAP� estimators with noninformative prior
istributions on the two parameters.

ig. 9. Empirical ROC curves in the Gaussian white-noise case
ith common sensor design �top, rc 	 2.44� compared with cor-

ectly sampled optics �bottom, rc 	 0.5� for the same SNR of 15 dB.
hese curves were obtained for 4 � 105 instances of noise.
62 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
The PM estimator is defined as

�̂PM � �
ε

�p��� H1, z�d�, (18)

here the posterior law is deduced from Bayes’s rule:

p��� H1, z� �
p�z� H1, �� p���

p�z� H1�

�
p���

p�z� H1� �
�

p�z� H1, 
, �� p�
�d
. (19)

o we have to integrate over 
 and then over �. As
bove, we consider a diffuse prior law on � for 
 and
uniform law on ε for �. We get the following ex-

ression in the same way as for the likelihood ratio in
elation �11�:

p��� H1, z� �
1

�s�
tR�1s��

1�2 exp� �s�
tR�1z�2

2s�
tR � 1s�

� . (20)

We studied the performance of these two estima-
ors in terms of average MSE. In practice, optimi-
ation or integration over � is approximated
umerically for a finite discrete grid of 20 � 20 values
k � ε. Given a true position �*, we can estimate

ig. 10. Average MSEs of position estimators in the Gaussian
hite-noise case with common sensor design �top, rc 	 2.44� com-
ared with correctly sampled optics �bottom, rc 	 0.5�. MAP,
aximum a posteriori.
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ias and variance of an estimator �̂ by using Monte
arlo simulations. We consider Gaussian white
oise, and we vary the SNR. Figure 10, left, com-
ares ML and PM estimators to the pixel estimator;
t is assumed by default that the target location is at
he center of the pixel ��̂ 	 �0, 0��, whose MSE is 1�12.
t a favorable SNR the two subpixel estimators are

ar better than the default estimator, but the gain
ecreases when noise becomes important. For a
NR of 15 dB, the ML yields an error similar to that
f the default estimator, whereas the PM notably has
twice smaller error. By comparison, Fig. 10, right,

hows the estimation performances obtained in the
naliased case �rc 	 0.5� for equivalent SNRs. ML
nd PM logically perform better because the signal is
orrectly sampled.

. Conclusions and Directions for Future Research

e have presented the problem of detection of sub-
ixel objects embedded in additive Gaussian noise.
ubpixel location and signal amplitude were as-
umed to be unknown. Unknown subpixel location
as shown to have a great influence on detection
erformance in the aliased case, whereas the conven-
ional matched filter neglects it. Thus we derived
our types of improved detector, the GLRT, the ELRT,
he ALRT, and the SM-GLRT, from the likelihood
atio. We illustrated their performance in compar-
son with the classic GPMF. Numerical results for
oth white and correlated noise show that the ELRT,
he ALRT, and the GLRT are competitive, whereas
he SM-GLRT does not reach the same quality but
lightly improves the performance of the GPMF.
se of the ALRT seems to be a good trade-off because

t is not so computationally demanding as the ELRT
nd the GLRT; moreover, the performance gain
roves to be only moderate for unaliased optics.
his conclusion has important consequences for sen-
or design. It suggests that the popular design of a
ixel that covers the main lobe of the Airy disk ex-
ctly is not optimum for point object detection. Fu-
ure research will consist in studying the robustness
f these detectors to real data and ways in which we
an take into account non-Gaussian distributions of
ackground noise. As far as the position-estimation
roblem is concerned, we have demonstrated pro-
pective gains that must also be confirmed with more-
ealistic data.
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