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Abstract. The paper deals with the construction of images from visibilities acquired using aperture synthesis instruments:
Fourier synthesis, deconvolution, and spectral interpolation/extrapolation. Its intended application is to specific situations in
which the imaged object possesses two superimposed components: (i) an extended component together with (ii) a set of point
sources. It is also specifically designed to the case of positive maps, and accounts for a known support. Its originality lies
within joint estimation of the two components, coherently with data, properties of each component, positivity and possible sup-
port. We approach the subject as an inverse problem within a regularization framework: a regularized least-squares criterion is
specifically proposed and the estimated maps are defined as its minimizer. We have investigated several options for the numer-
ical minimization and we propose a new efficient algorithm based on augmented Lagrangian. Evaluation is carried out using
simulated and real data (from radio interferometry) demonstrating the capability to accurately separate the two components.
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1. Introduction

Radio interferometers can be seen as instruments measuring a
set of 2D-Fourier coefficients (visibilities) of the brightness dis-
tribution of a region in the sky. Visibilities are measured in the
Fourier domain (the (u, v)-plane) by means of different base-
lines (projected distance between cross-correlated antennas).
Practically, there are two principal deficiencies (Thompson
et al. 2001) in the visibilities

1. the limited coverage of the (u, v)-plane;
2. measurements errors (especially in millimeter range).

Regarding point 1, three limitations are encountered.

– Usually the central part of the aperture (up to the antenna
diameter) is not observed. From this stand point, interfer-
ometers behave as high pass filters.

– Information above the longest baseline is unavailable. In
this sense the instruments behave as low pass filters.

– The (u, v)-plane coverage is irregular, especially when
there is a small number of antennas. This results in dirty
beam (Fourier transform of visibility weights) with intri-
cate structure and strong sidelobes.

Thus, such instruments can be seen as band pass filters with an
intricate impulse response (dirty beam), and noisy output. As
a consequence, the available data is relatively poor for imag-
ing objects with various spatial structures extended over the
whole frequency domain. In order to compensate for these de-
ficiencies, a large number of methods (from model fitting to
non parametric deconvolution) has been continuously proposed
(see review in Starck et al. 2002) and specialized for different
types of maps. The present paper deals with a particular type
of map consisting of the superimposition of two components.

– Point Source (PS), or nearly black objects: essentially null-
component, with a few strong point sources.

– Extended Sources (ES): spatially extended, smooth
components.

The problem at hand is to build reliable and accurate estimates
of two distinct maps (one for PS, one for ES) from a unique
given set of visibilities. The question arises e.g. for radio imag-
ing of the solar corona at meter wavelength where very strong
storms are superimposed over a more stable and large quiet Sun
radio-emission (see Sect. 4.1).

Remark 1. From a statistical standpoint, PS/ES can be mod-
elized as set of uncorrelated/correlated pixels, respectively.
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Fig. 1. a) The solid line with squares (resp. dashed line with cir-
cles) shows spectral content for ES (resp. PS). Both of them have
low frequencies components. b) The two lines show spectral con-
tents of correlated components (ES), with different level of correla-
tion. c) Elementary decomposition for wavelet transform. The solid
line with squares (resp. dashed line with circles) shows low (resp.
high) frequency content.

In the Fourier plane they are respectively characterized by an
extension over the whole frequency domain (PS) and an exten-
sion reduced to the low frequencies domain (ES). In particular,
both of them have significant components in the low frequen-
cies domain (see Fig. 1a).

1.1. General bibliographical analysis

In order to compensate for the deficiencies in the available data,
additional information is (implicitly or explicitly) accounted
for. Practically, most existing methods are founded on specific
expected properties of observed and reconstructed sources. The
proposed analysis relies on underlying decompositions of un-
known image.

PS based methods – A first part of existing methods re-
lies on PS properties. Into this category fall original versions
of CLEAN (Hogbom 1974; Fomalont 1973), which iteratively
withdraw the PS contribution to the dirty map. Early Maximum
Entropy Methods (MEM) (Ables 1974) are also founded on the
properties of PS: in a regularized context, they introduce sep-
arable penalization terms (without pixel interaction) and favor
high-amplitude PS.

ES based methods – Two main classes of methods have
been proposed to account for the correlation of ES.

– The correlation structure is introduced by a convolu-
tion kernel. This is the case in MEM with an Intrinsic

Correlation Function (ICF) (Gull 1989) and Pixon meth-
ods (Dixon et al. 1996; Puetter & Yahil 1999).

– The other class of method relies on pixel interactive
penalty. The early versions involve quadratic penalties
(Tikhonov & Arsenin 1977). Extensions to other penalties
have also been widely developed (O’Sullivan 1995; Snyder
et al. 1992; Mugnier et al. 2004).

Mixed ES+SP model – The case of an explicit model mix-
ing ES and PS has also been addressed; however, literature in
this case is poor. To our knowledge, two papers have been pub-
lished: (Magain et al. 1998) and (Pirzkal et al. 2000). They in-
troduced the decomposition of the search map as the sum of a
PS map and an ES map. From a spectral standpoint, PS /ES
are respectively characterized as shown in Fig. 1a (see also
Rem. 1). The present paper is founded on this approach (see
Sect. 1.2).

Multi-resolution / subband methods – Another class of
method received a large attention, namely the multi-resolution
and subband approaches.

– The approach proposed by (Weir 1992; Bontekoe et al.
1994) introduces structure by means of different ICF. The
unknown map is the sum of several ES, with different level
of correlation, i.e. several low frequency components. The
underlying decomposition is shown in Fig. 1b in the case
of two components.

– We also have witnessed the development of multi-
resolution extensions of CLEAN (Wakker & Schwarz
1988) as well as more subtle approaches based on wavelet
decomposition and MEM (Starck et al. 1994; Pantin &
Starck 1996; Starck et al. 2001). These methods are less
specific and widely used for general deconvolution. They
aim at reconstructing maps with different scales by splitting
the Fourier plane into various zones. They basically rely on
(recursive) decomposition in low and high frequencies as
shown in Fig. 1c.

1.2. PS plus ES: proposed developments

As mentioned above, the present paper is devoted to the esti-
mation of two distinct maps (one for ES and one for PS) from
a unique set of visibilities. We then naturally resort to the work
of Magain et al. (1998) and Pirzkal et al. (2000). In both cases
the PS map is written in a parametric manner founded on po-
sitions and amplitudes of peaks. Smoothness of the ES is in-
cluded by means of Gaussian ICF and MEM penalty (Pirzkal
et al. 2000) and Tikhonov penalty (Magain et al. 1998).
Nevertheless, they both have several limitations. On the one
hand, (Pirzkal et al. 2000) relies on the knowledge of the posi-
tion of the PS which is not available to us. On the other hand,
the drawback of (Magain et al. 1998) is twofold.

1. It does not deconvolve with the total PSF.
2. The optimized criterion is intricate w.r.t. the PS positions

so, it is not always possible to find the global minimum of
the criterion (Magain et al. 1998, p. 474).
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On the contrary, our approach achieves a complete deconvo-
lution. Moreover, our work introduces properties so that an
optimal solution is properly defined and practically attainable.
In a unique coherent framework, the proposed method simul-
taneously accounts for intricate dirty beam, noise, the exis-
tence of point sources superimposed onto a smooth compo-
nent, positivity, and the possible knowledge of a support. The
estimated maps are defined as the constrained minimizer of a
penalized least-squares criterion specifically adapted to this sit-
uation. So that, the method assigns a coherent value to unmea-
sured Fourier coefficients. The basic ideas developed here have
already been partly presented within spectral analysis (Ciuciu
et al. 2001), spectrometry (Mohammad-Djafari et al. 2002) and
satellite imaging (Samson et al. 2003).

The paper is organized as follows. In Sect. 2, we define no-
tations and state the problem in three classical forms: Fourier
synthesis, spectral extrapolation / interpolation and deconvolu-
tion. All three cases concern rank-deficient linear inverse prob-
lems with additive noise. The proposed method is presented
in Sect. 3. Section 3.1 introduces the regularization principles
used in the subsequent sections; Sects. 3.2 and 3.3 respectively
deal with PS and ES map; Sect. 3.4 is devoted to the main
contribution: the reconstruction of two maps simultaneously,
one consisting of PS, and the other of ES. Simulation and real
data computations are presented throughout Sect. 4. From a nu-
merical optimization viewpoint, the proposed method reduces
to a constrained quadratic programming problem and various
options have been studied and compared. The proposed algo-
rithm founded on augmented Lagrangian principle is presented
in Sect. 5. In Sect. 6 we set out conclusions and perspectives.

2. Problem statement and least squares solution

The usual model1 for the instrument writes as a weighted
truncated noisy Fourier transform (discrete and regular):

y =WTFx + b, (1)

where x ∈ �N is the unknown map and y and b ∈ �M are
the Fourier coefficient and noise (N unkown parameters for
M measurements). F is the N × N normalized FFT matrix
and T is a 0/1 - binary truncation (or sampling) M × N ma-
trix (T discards frequencies outside the (u, v)-plane coverage).
W is a M×M diagonal matrix accounting for visibility weights.
For the sake of simplicity and in accordance with real data pro-
cessed in Sect. 4.3, the subsequent developments are devoted
to unitary weights W = IM; they can easily be extended to in-
clude non unitary ones. Appendix B gives useful properties of
these matrices. The reconstruction of x from y, i.e. the inver-
sion of (1), is a Fourier synthesis problem.

In formulation (1), the data y are in the (u, v)-plane while
the map x is in the image plane. Two other statements are usu-
ally given: one regarding the (u, v)-plane only and the other the
image plane exclusively.

1 In terms of an usual approximation, after calibration, regridding,
. . . Moreover, for the sake of readability, equations are given in 1D and
computation results are presented in 2D.

1. In the Fourier domain, (1) becomes a simple truncation by
an invertible change of variable

◦x = Fx:

y = T ◦x +b . (2)

Its inversion becomes a problem of extrapolating / interpo-
lating “missing” Fourier coefficients.

2. Furthermore, denoting ȳ = Tty the zero-padded data, and
◦
ȳ = F†ȳ the dirty map, (1) becomes a convolution

◦
ȳ = Hx + b̃ (3)

where H = F†TtTF is a (circulant) convolution matrix and
b̃ = Ttb. (Superscripts “t” and “†” respectively denotes ma-
trix transpose and conjugate-transpose). The instrument re-
sponse (the dirty beam) is read in any one line of H, up
to a circular shift. The inversion becomes a deconvolution
problem.

Remark 2. It should be noted, however, that the correla-
tions of b and b̃ differ from one another, and that in this
sense, the two problems are not equivalent.

Whichever formulation is envisaged, the tackled problem is
a rank-deficient linear inverse problem with additive noise.
Indeed, the number of observed Fourier coefficient is far less
than the number of pixels (M � N) and the operators TF
for (1), T for (2) or H for (3) have N −M singular values equal
to 0, and M singular values equal to 1. Consequently, the least-
squares criterion

JLS(x) = ‖y − TFx‖2 (4)

possesses an infinite number of minimizers. The dirty map is
one such solution since it cancels out JLS, and the other ones are
obtained by adding maps with frequency components outside
the (u, v)-plane coverage only.

3. Regularization

So, the selection of a unique solution requires a priori informa-
tion on the searched maps to be taken into account. In order
to achieve this, we resort to regularization techniques (Idier
2001a; Demoment 1989; Tarantola 1987), allowing diverse
types of information to be considered, in order to exclude or
avoid non desirable solutions.

3.1. Criterion, penalization and constraints

• Positivity and support. This information is naturally en-
coded by hard constraints for the pixels. Let us noteM, the
collection of pixels on the map, S the collection of pixels
on a support, and S̄ its complement inM.

– (Cs): support
∀p ∈ S̄ , xp = 0.
The proposed method takes into account the knowledge
of a support (S is known and S �M) but remains also
valid if S =M.
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– (Cp): positivity
∀p ∈ M , xp ≥ 0.
This information is taken to be valid in the following
sections of this paper and all reconstructed maps will
be positive.

– (Ct): template
∀p ∈ M , t−p ≤ xp ≤ t+p .
It is also possible account for a known template but it is
not numerically investigated in the paper.

• Correlation structure. Here, we are concerned with the
a priori correlation (ES) or non-correlation (PS) of the
searched map. In the image plane, this information is natu-
rally coded by penalization terms R(x), as a sum of poten-
tial functions φ which addresses the pixels.

– (Pc): the smooth map (ES) is favored by the introduc-
tion of interaction terms between pixels
Rc(x) =

∑

p∼q

φc

[

xq, xp

]

, (5)

where p ∼ q symbolizes neighbor pixels.
– (Ps): on the other hand, separable terms favor PS

Rs(x) =
∑

φs

[

xp

]

. (6)
These terms independently shrink the pixels to zero and
therefore favor quasi-null maps.

– (Pm): in the following section, we will also need to
penalize the average level of the maps
Rm(x) = φm

[∑

xp

]

(7)
so as to specifically compensate for the absence of
Fourier coefficient at null-frequency.

– (Pd): it is also possible account for a known default
map x̄ through a specific penalization term such as
Rd(x) =

∑

φd

[

xp, x̄p

]

(8)
but this is not numerically investigated here.

A criterion J is then introduced as a combination of some pe-
nalization terms (5)−(8) and the data based one (4) accord-
ing to the objective: PS component (Sect. 3.2), ES component
(Sect. 3.3) and both of them simultaneously (Sect. 3.4). In ev-
ery case, the solution x̂ is defined as the minimizer of J under
constraints Cp and Cs:

(P)





min J(x)

s.t.

{
xp = 0 for p ∈ S̄
xp ≥ 0 for p ∈ M

(9)

that is to say, as the solution of problem (P). One property then
becomes crucial to the construction of J:

– (P1): J is strictly convex and differentiable.

Indeed, under this hypothesis,

1. the problem (P) possesses a unique solution x̂, which
allows the proper definition of the estimated map;

2. the solution in question is continuous with respect to the
data and to the tuning parameter values;

3. a broad class of optimization algorithms is available.

As JLS is itself (large sense) convex and differentiable, the prop-
erty (P1) can be assured if the potential functions are them-
selves convex and differentiable. Therefore, we resort to this
kind of potential.

Remark 3. Non-convex potentials have been introduced in
image reconstruction in the 1980s (Geman & Geman 1984;
Blake & Zisserman 1987). As they are richer, they allow a
sharper description of the searched images. For example, they
can integrate binary variables, allowing contour detection to
be carried out, at the same time as image reconstruction. As
a counterpart, the involved criteria can possess numerous lo-
cal minima. The computational cost for optimization then in-
creases drastically, and sometimes without guarantee against
local minima.

In Sect. 5, several optimization schemes have been investi-
gated within the recommended convex framework. Various it-
erative algorithms solving (P) are concerned, all of them con-
verging to the unique solution x̂ whatever the initialization. The
only question at stake is computation time. An other property
of J is therefore crucial.

– (P2): J is quadratic and circular-symmetric.

This property allows fast optimization algorithms to be put
into practice taking advantage of the FFT algorithm: fast cri-
terion calculations, explicit intermediate solutions,... Since JLS

is itself quadratic and circulant, (P2) is satisfied if the regu-
larization terms are circulant and the potential functions φ are
Quadratic (Q) or Linear (L).

Remark 4. Mixed convex potentials, generally quadratic
about the origin and linear above a certain threshold, are
used in image processing (Bouman & Sauer 1993) and espe-
cially in astronomical imaging (Mugnier et al. 2004) in or-
der to preserve possible edges. From the optimization strategy
stand point, recent works (Idier 2001b; Allain et al. 2004) al-
low to reduce the convex optimization problem to a partially
quadratic one. This would make possible the development of
an FFT and Lagrangian based algorithm for our PS+ES prob-
lem. We regard these forms as perspectives and we will see that
forms Q and L are sufficiently rich and adapted to the envisaged
contexts.

3.2. Point sources and separable linear penalty

This section is devoted to PS: the proposed penalization term
is of type (6) where φs is a potential of�+ or�∗+ onto�, to be
specified.

Usual MEM (Nityananda & Narayan 1982; Narayan &
Nityananda 1984, 1986; Komesaroff et al. 1981; Gull &
Skilling 1984; Bhandari 1978; Le Besnerais et al. 1999) come
into play, when, for example, φs [x] = − log x, φs [x] =
x log x or φs [x] = −x + x̄ + x log x/x̄ where x̄ is a de-
fault map (O’Sullivan 1995; Snyder et al. 1992). They have
been widely used in the domain and in image reconstruc-
tion (Mohammad-Djafari & Demoment 1988). They have the
advantage of ensuring the property (P1) on�∗+, so the problem
is properly regularized and (P) possesses a unique solution.
They also enjoy the advantage of ensuring (strict) positivity,
thanks to the presence of an infinite derivative at the origin
φ′s(0+) = −∞.
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However, these functions prohibit null-pixels and this can
be seen as a flaw when the searched maps are largely made
up of null-pixels. On the other hand, null-pixels are favored by
the introduction of a potential φs which possesses at its ori-
gin (Soussen 2000)

– a minimum value; and
– a strictly positive derivative.

Without loss of generality we set: φs(0) = 0 and φ′s(0+) = 1,
while two possibilities allow property (P2) to be respected: the
form L and the more general form Q.

L: φs(x) = x

Q: φs(x) = αx2 + x.

The penalization is then written as:

R(x) = λs

∑

xp + εs

∑

x2
p . (10)

The strict convexity property (P1) imposes εs > 0: the L term
ensures a positive derivative at the origin, while the Q term
ensures strict convexity.

Remark 5. In order to favor high amplitude peaks, a least pe-
nalization function is desirable, i.e. εs = 0. In this case, it is
possible that J remains unimodal or strictly convex, although
we have no proof of this. This property could depend on the
value of λs, on the knowledge and form of the support, on the
(u, v)-plane coverage or on the data in each particular case.

3.3. Extended sources and correlated quadratic
penalty

This section is devoted to ES: the penalty term of type (5) in-
troduces interactions between neighboring pixels.

O’Sullivan (1995) proposes the use of an I-divergence:
φc [x, x′] = −x + x′ + x log x/x′or an Itakura-Saito distance:
φc [x, x′] = − log x/x′ − 1 + x/x′ in the symmetrized version.
As in the case of Sect. 3.2, these allow property (P1) and posi-
tivity to be ensured. However, they prohibit null-pixels and do
not ensure property (P2).

We resort to classical terms of image processing based on
finite differences between neighboring pixels. In the simplest
case, first order differences yield

φc
[
x, x′
]
= φc
[
x − x′

]

where φc is a potential of� onto� to be specified. In order to
effectively favor smooth and correlated maps, and due to rea-
sons of symmetry, φc is chosen to be minimal in 0 and even. In
order to ensure property (P2), we are led to choose φc in class
Q and to reject class L: φc(x) = x2 and

R(x) = λc

N∑

p=0

[

xp+1 − xp

]2

with the hypothesis x0 = xN in order to ensure circularity.
We are here dealing with early regularization techniques,

that appeared in the 1960s (Phillips 1962; Twomey 1963;
Tikhonov 1963) and were developed in the mid-1970s in works

by Tikhonov & Arsenin (1977) in a continuous context and by
Hunt (1977) in a discrete context. They are also related to the
well-known Wiener filter.

In this form, the strict convexity condition (P1) is not re-
spected. Indeed, JLS is not sensitive to constant maps (since
null-frequency is not observed) and neither is the regulariza-
tion term (since it is only a function of the difference be-
tween pixels). Several options are available for dealing with
this indetermination.

1. Support constraint Cs: as soon as the support constraint is
valid, if at least one of the pixels is zero (S � M), J is
strictly convex on�S.

2. In the absence of support information, it is sufficient to
penalize the mean of the map by a term such:

Rm(x) =
[∑

xp

]2
.

Intuitively, it reduces the mean of the map towards 0 and is
counterbalanced by the positivity constraint.

3. It is also possible to penalize the quadratic norm of the map
by a term such as that introduced in Sect. 3.2.

The penalization thus reads

R(x) = λc

∑[

xp+1 − xp

]2
+ εm

[∑

xp

]2
. (11)

Under this form, properties (P1) and (P2) are satisfied if (εm >
0 , λc > 0) in the case S =M and (εm ≥ 0 , λc > 0) in the case
S �M.

3.4. Mixed model

The present paper is devoted to maps composed of both types
of component simultaneously: ES and PS. Following (Magain
et al. 1998) and (Pirzkal et al. 2000), we introduce two maps xe

and xp which describe each component respectively. The direct
model (1) becomes:

y = TF(xe + xp) + b , (12)

and the least-squares term

JLS
Mix(xe, xp) = ‖y − TF(xe + xp)‖2,

where the subscript “Mix” stand for Mixed map. This form
raises new indeterminates as it now concerns the estimation of
2N variables, still from a single set of M Fourier coefficients.
However, it allows the explicit introduction of characteristic in-
formation about each map through two adapted regularization
terms.

1. A separable term for xp, identical to that in Sect. 3.2

Rs(xp) =
∑

xp(p),

minimum at 0 and with a strictly positive derivative.
2. An interaction term between neighboring pixels of the

map xe, identical to that in Sect. 3.3

Rc(xe) =
∑[

xe(p + 1) − xe(p)
]2 .
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Fig. 2. Left figure shows instantaneous (u, v)-plane coverage (EW ar-
ray is along vertical direction and NS array is along horizontal di-
rection). Right figure gives the dirty beam, defined as the 2D Fourier
transform of the (u, v)-plane coverage with a unitary weight for each
visibility.

So as to ensure property (P1), the same terms as in Sects. 3.2
and 3.3 are added, and the regularized criterion takes the form:

JReg
Mix(xe, xp) = JLS

Mix(xe, xp) (13)

+ λs

∑

xp(p) + εs

∑

xp(p)2

+ λc

∑[
xe(p + 1) − xe(p)

]2
+ εm

[∑

xe(p)
]2
,

where superscript “Reg” stands for Regularized. Regulariza-
tion parameters (hyperparameters) λc and λs tune the smooth
and spiky character of maps xe and xp.

In this form, properties (P1)−(P2) are satisfied if (λs ≥
0, λc > 0, εs > 0) and εm > 0 when S � M or εm ≥ 0 when
S = M. The couple of maps (x̂e, x̂p) is properly defined as
the solution of problem (P) and the next section (Sect. 4) gives
the first practical results (simulated and real data processing).
Section 5 is devoted to a fast optimization algorithm.

4. Computation results

4.1. Nançay radioheliograph

Radio emission of the Sun at meter wavelength is known since
World War II. The Nançay radioheliograph (NRH) is a radio-
interferometer dedicated to imaging the solar corona and it
monitors the radio burst in solar atmosphere at such wave-
lengths with high temporal rate, adequate spatial resolution and
high dynamic.

At such frequencies, mainly two kinds of structures are ob-
served in the corona: (1) larger structures (ES) and (2) smaller
structures (PS). The quiet Sun (1-i) is the largest structure,
larger than the Sun size in the visible and slowly varying
on long term scale (years) (Lantos & Alissandrakis 1996).
Medium size structures (1-ii) are the radio counterpart of
coronal holes and magnetic loops (plateau) (Alissandrakis &
Lantos 1996), and are also observed simultaneously in soft
X-rays. The time scale for such structures is days to weeks.
They are clearly correlated to persistent structures observed
in other wavelength (optical and X-rays) and rotate on the
radio maps quasi simultaneously with their optical and X-
rays counterparts. The small structures (2) with very high
brightness, can often reach several tens of Millions Kelvin

(Kerdraon & Mercier 1983); they usually have a small life time
(few seconds) and are associated to energetic events in the mag-
netic loops in the Sun’s atmosphere. Correlation with structures
observed in other wavelengths is more difficult.

The NRH is composed by two arrays: one along Est-West
(EW) direction with 23 antennas, the other along North-South
(NS) with 19 antennas. The NRH is operating in the range
150−450 MHz at a time sampling rate of 1/10 s, about eight
hours a day, with favorable signal to noise ratio. Since the re-
furbishing of the instrument (Kerdraon & Delouis 1997) cross-
correlation between most of the antennas in both arrays are
available. As a consequence: (i) 569 non redundant instanta-
neous visibilities are now available2 (with unitary weights) and
moreover; (ii) the instantaneous coverage of the (u, v)-plane
(shown in Fig. 2) becomes much more uniform. Nevertheless,
due to the structure of the arrays, the coverage is not uni-
form. The central part of the (u, v)-plane essentially consists
of two rectangular domains: the central one is a 16× 16 square
and the larger one is a 32 × 46 rectangle. With this configu-
ration 2D instantaneous imaging (without Earth rotation aper-
ture synthesis) becomes possible despite strong sidelobes in the
dirty beam (see also Fig. 2). As far as the dirty beam is con-
cerned, the maximum value is normalized to 1 and located in
the middle of the map at (64, 64). A secondary important lobe
partly around (1, 64) and (128, 64) referred to as the aliasing
lobe has amplitude 0.70 and characterizes important aliased re-
sponse. The first negative lobe is −0.10 around the central lobe
and −0.23 around the aliasing lobe. Moreover, the first posi-
tive lobe is 0.14 near the central lobe and 0.12 near the aliasing
lobe. In addition, the FWHM is 4.5 (resp. 4) pixels for the cen-
tral (resp. aliasing) lobe.

At processed frequency (236 MHz), the field of view3

(FOV) related to the shortest baseline (55 m in NS, 50 m in EW)
is ∼1 ◦ 20 ′ and the size of the quiet sun is ∼40 ′, i.e. ∼1/2 FOV.
Since at observed frequencies (150−450 MHz) the FWHM of
the smallest antenna primary beam (few antennas are 15 m di-
ameter) is much wider than the FOV, a unitary primary beam
is appropriate. Moreover, the Shannon criterion is respected if
the pixel number is ∼60 for a FOV of 1 ◦.

With the given characteristics, ES/PS separation must be
achieved and reconstruction errors must be as small as pos-
sible for both maps, in order to strongly constrain physical
models and to monitor position, amplitude and separation of
bursts. But imaging the encountered context mixing PS and ES
remains difficult and standard methods such as CLEAN and
MEM (even in a multiresolution approach) are usually inef-
ficient due to the large background and the intricate mixing
of real structures and sidelobes (Coulais 1997). One possible
outcome of the present work is to provide to the solar radio
community accurate maps from NRH in order to achieve more
detailed scientific studies. The following computation study

2 Thanks to Hermitian symmetry 1138 Fourier coefficients are
available. The computed (u, v)-plane and map are 128 × 128.

3 For a declination 23 ◦ and null hour angle (the Sun at noon in
summer), the FOV is 87 ′ in EW and 86 ′ in NS, and the resolution is
3.27 ′ in EW and 2.17 ′ in NS, since main EW arm is 1600 m with step
50 m and NS arm is 2640 m with step 55 m.
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Fig. 3. Dirty maps typically encountered with NRH: simulated data
(top) and real data (bottom). Contour levels are −10−2 to 5×10−2, step
2.5 × 10−4 (they are used for all the shown maps).

(simulated and real data) is a typical case encountered with
NRH and provides a first element in this sense.

4.2. Simulation results

Simulated data
The true ES map x�e (Fig. 4a), is ranging in amplitude (ar-

bitrary units) from 0 to 5.5 × 10−3. The true Sun lies in a disk
centered in the middle of the image, i.e. (64, 64) with a 64 pix-
els diameter. The outer part of the disk is zero and the mean of
this component is 5.59 × 10−4. The true PS map x�p (Fig. 4b)
consists of two peaks: the first one is located at (60, 61)
with amplitude 5.0 × 10−2, and the second one overlaps pix-
els (57, 61) and (57, 62) with respective amplitudes 5.0 × 10−2

and 4.5 × 10−2. Data (in the (u, v)-plane) are simulated using
the direct model Eq. (12), i.e. FFT and truncature, and cor-
rupted by a white, zero-mean complex Gaussian noise with
variance 2 × 10−7. (This noise variance has been chosen in or-
der to mimic real data.) The dirty map is shown in Fig. 3. It is
clearly dominated by the PS, and the whole map is corrupted by
side lobes. Moreover, the two close peaks at location (60, 61)
and (57, 61)−(57, 62) are not resolved.

Reconstruction parameters
The supports have been deduced from the dirty map. It is

a disk centered at (64, 64) with a 70 pixels diameter for the

ES map. Regarding the PS map, the support consists of one
disk centered in (58, 61) with a 10 pixels diameter.

In practice, two hyperparameters have to be tuned: λc

and λs (εs is practically set to 10−10). λc must be set in the order
of magnitude of eigenvalues of the Hessian of the criterion and
is set to λc = 2. λs has been empirically selected after several
trials in order to visually achieve separation of PS and ES: it
has been set to λs = 10−3.

Reconstruction results
Figure 4 shows the reconstructed maps. A simple qualita-

tive comparison with the references xe and xp shows that the
two components x̂e and x̂p are efficiently separated and accu-
rately reconstructed.

The two peaks of x̂p shown in Fig. 4d are precisely located
at (60, 61) and (57, 61)−(57, 62) (overlapping). The estimated
amplitudes are 0.051, 0.048 and 0.043 respectively, i.e. an er-
ror of less than 5%. Moreover, the two close peaks are sep-
arated whereas they are not in the dirty map. This illustrates
the resolution capability of the proposed method resulting from
both data and accounted information (positivity, support, and
PS+ES hypothesis). It is also noticeable that the respective
part of flux in overlapped pixels (57, 61)−(57, 62) is correctly
restored.

Figure 4c gives the estimated ES map x̂e. Compared to
the true one of Fig. 4a the main structures are accurately es-
timated. The contour lines of Fig. 4c are very similar to the
one of Fig. 4a and the relative reconstruction error is less
than 2%. Moreover, the mean of the estimated ES map x̂e is
5.57 × 10−4 while the true mean is 5.59 × 10−4: the total flux
is correctly estimated. The maximum value is 5.4 × 10−3 in x̂e

whereas it is 5.5 × 10−3 in xe: the dynamic is also correctly
retrieved. Nevertheless, a slight distortion located around pixel
(65, 60) can be observed in the proposed ES map. It probably
results from an imperfect separation of the two components: a
slight trace of the dirty beam remains in the estimated ES map.
Moreover, the sharp edges of the true Sun are slightly smoothed
due to the lack of high frequencies in the available Fourier coef-
ficients incompletely enhanced by accounted prior information
(see Rems. 3 and 4).

4.3. Real data computations

This section is devoted to real data processing based on a data
set from the NRH4. The coverage is identical to the one of sim-
ulated data of the previous section.

The dirty beam is shown in Fig. 2 and the dirty map is
shown in Fig. 3. Both dirty beam and dirty map are typically
encountered with NRH and are similar to the one simulated
in the previous section. As expected, resolution is limited and
the quality of the map is entirely contingented upon sidelobes
around the brightest point sources (radio burst). Imaging such a
complex context mixing PS and ES suffers from intricate mix-
ing of real structures and sidelobes due the brightest ones.

The same supports have been used to compute the real data
and the simulated ones. It is a disk centered in the middle of

4 The eleventh of June, 2004, 13h00, at 236 MHz.
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a: True object x�e b: True object x�p
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c: Estimated object x̂e d: Estimated object x̂p

Fig. 4. Simulation results (see Sect. 4.2). Contour levels are the same than in Figs. 3 and 5 for all the maps: the true ES x�e a) and the estimated
one x̂e c) as well as for the true PS x�p b) and the estimated one x̂p d).
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a: Estimated object x̂e b: Estimated object x̂p

Fig. 5. NRH data processing from typical scientific observation at 236 MHz (see Sect. 4.3). Contour levels are the same than in Figs. 3 and 4.
The two components x̂e a) and x̂p b) are clearly separated and deconvolution of both component is clearly achieved. Both maps are positive
and the prescribed supports are respected.

the map with a 70 pixels diameter for the ES map and a disk
centered in (58, 61) with 10 pixels diameter for the PS map. The
same value of the parameters λc = 2 and λs = 10−3 have been
used to compute the real data and the simulated one (εs remains
set to 10−10).

Estimated maps are shown in Fig. 5a (ES component) and
Fig. 5b (PS component). The two components x̂e (Fig. 5a)
and x̂p (Fig. 5b) are clearly separated and both deconvolution
is clearly achieved. Both maps are positive and the prescribed
supports are respected. Moreover, the x̂e map presents a simi-
lar structure to the usual one of the Sun at meter wavelengths

without strong point sources (Coulais 1997; Lantos &
Alissandrakis 1996).

5. Numerical optimization stage

The estimated maps are defined as the unique solution of the
problem (P) given by (9) which involves the quadratic crite-
rion J given by (13). Up to an additive constant:

J(x) =
1
2

xt Q x + qt x,
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where x = [xe; xp] collects the two maps (Appendix C gives Q
and q). Thus, (P) is a convex quadratic program:

(P)





min
1
2

xt Q x + qt x

s.t.

{
xp = 0 for p ∈ S̄
xp ≥ 0 for p ∈ M

(14)

widely investigated in the optimization literature. The main dif-
ficulty is twofold. On the one hand, the non-separability of J
together with positivity constraint prevents from explicit opti-
mization. On the other hand, the number of variables is very
large. We have investigated most of the proposed methods in
the excellent reference book (Nocedal & Wright 2000):

– Constrained gradient.
– Gradient projection.
– Barrier and interior point.
– Relaxation (coordinate-by-coordinate).
– Augmented Lagrangian (method of multipliers),

and have selected the latter as the faster. It is based upon suc-
cessive optimizations of a Lagrangian function L founded on
Lagrange multipliers �, slack variables s and quadratic penalty.
It is computationally based on FFT and threshold, so it is, in
addition, very simple to implement.

5.1. Lagrangian function

The equality constraint xp = 0 (p ∈ S̄) is introduced by means
of a usual Lagrangian term −�pxp together with a penalty
term cx2

p/2. The entire term write:

−
∑

p∈S̄
�pxp +

1
2

c
∑

p∈S̄
x2

p. (15)

The inequality constraint xp ≥ 0 (p ∈ S) is converted into
the equality one sp − xp = 0 using the slack variable sp ≥ 0.
Lagrange and penalty terms then write:

−
∑

p∈S
�p(xp − sp) +

1
2

c
∑

p∈S
(xp − sp)2. (16)

In order to simultaneously process both equality (15) and in-
equality (16) constraints, we introduce extra slack variables
sp = 0 for p ∈ S̄. The Lagrangian then writes:

L(x, s, �) = J(x) − �t(x − s) +
1
2

c (x − s)t(x − s)

where s and � collect slack variables sp and multipliers �p.

5.2. Algorithm

The algorithm then iterates three steps:

1 unconstrained minimization of L w.r.t. x;
2 minimization of L w.r.t. s, s.t. sp ≥ 0;
3 update � and c.

The efficiency of the proposed algorithm relies on both slack
variables and property (P2). Roughly speaking, positivity is
transfered on slack variables, so, the non separable constrained
problem (P) is split in two subproblems: a non-separable but
unconstrained one computable by FFT (step 1 ) and a con-
strained but separable one (step 2 ).

Step 1 proceeds by fixing � and s to the current value
and then computes the unconstrained minimizer x̃ of L. It is
an unconstrained convex quadratic problem, so its solution is
explicit:

x̃ = −(Q + cIN)−1 (q + [� + cs]) ,

and computable by means of FFT, thanks to circularity.
Step 2 updates the slack variables sp for p ∈ S (by con-

struction, sp = 0 for p ∈ S̄) as the minimizer s̃p of L, subject
to sp ≥ 0.

s̃p =

{
max (0, cxp − �p)/c for p ∈ S
0 for p ∈ S̄.

This step is constrained but separable: the constrained mini-
mizer is the unconstrained one if positive and 0 if not.

Step 3 consists in updating the Lagrange multiplier �:

�̃p =

{
max (0, �p − cxp) for p ∈ S
�p − cxp for p ∈ S̄.

This step can also include an update of c (e.g. c̃ = 1.1c).
Practically, c is not updated (see next subsection).

Steps 1 to 3 are iterated until stopping condition is met,
e.g. relative variation smaller that 0.1%.

Remark 6. Constrained variables xp = 0 for p ∈ S̄ can also
be eliminated. This is a relevant strategy when using gradient
based or relaxation methods. It does not prevent from comput-
ing J and its gradient by means of FFT. On the contrary, such
a strategy is not relevant here: it would break circularity and
prevent from using FFT in step 1 .

5.3. Practical case and computations time

This section specializes the algorithm in the case of constant
coefficient c. In this case, step 2 - 3 reduces to:

�̃p + cs̃p =

{ |�p − cxp| for p ∈ S
�p − cxp for p ∈ S̄.

Moreover, Q + cIN can be inverted once for all and the al-
gorithm then requires 4 FFT per iteration. The algorithm has
been used in the previous computations with constant coeffi-
cient c = 10−3. Convergence is achieved after about 1000 iter-
ations and it takes half a minute5.

5 Algorithm has been implemented with the computing environ-
ments Matlab and IDL on a PC, with a 2 GHz AMD-Athlon CPU,
and 512 MB of RAM. Both codes are ∼50 lines long.
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6. Conclusions

The problem of incomplete Fourier inversion is addressed as it
arises in map reconstruction (deconvolution, spectral interpo-
lation/extrapolation, Fourier synthesis). The proposed solution
is dedicated to specific situations in which the imaged object
involves two components: (i) an extended component together
with (ii) a set of point sources. For this cases, new develop-
ments are given based on existing work of Magain et al. (1998)
and Pirzkal et al. (2000).

The main part of the paper deals with inversion in the
regularization framework. It essentially departs from usual
strategies by the way it accounts for (1) noise and indetermi-
nacies, (2) smoothness/sharpness prior and (3) positivity and
support, in a unique coherent setting. The presented develop-
ment can also include known template and default map. Thus,
a new regularized criterion is introduced and estimated maps
are properly defined as its unique minimizer. The criterion is
iteratively minimized by means of an efficient algorithm essen-
tially based on Lagrange multiplier which practically requires
FFT and threshold only. The minimizer is shown to be both
practically reachable and accurate. A first evaluation of the pro-
posed method has been carried out using simulated and real
data sets. We demonstrate ability to separate the two compo-
nents, high resolution capability and high quality of each map.
To our knowledge, such a development is an original contribu-
tion to the field of deconvolution.

Nevertheless, a further evaluation of the proposed method
is desirable. Future work will include systematic evaluation
of the capability of the proposed method as a function of
(u, v)-plane coverage, PS amplitudes versus ES ones, PS posi-
tion (especially in a subpixelic sense) and noise level. Such an
assessment concerns both simulated and real data. Moreover
evaluation of the potentiality of the method on large maps (e.g.
VLA images), high dynamic imaging (e.g. WSRT images) and
imaging using millimeter interferometers (e.g. IRAM PdBi and
ALMA) or optical instruments will be considered.

A part of future work in the field of SP+ES imaging, will
include convex non quadratic penalization of ES (see Rem. 4).
Another part of future work will particularize the proposed
method in order to produce maps of ES only and maps of PS
only.

A Bayesian interpretation of the proposed method involve
truncated Gauss-Markov models (ES component) and expo-
nential white noise (PS component) and formally provides like-
lihood tools in order to achieve automatic tuning of the hy-
perparameters. This is a more delicate aspect but it will be
addressed in future works.
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Appendix A: Notations

In this paper, IP denotes the P × P identity matrix and M†
(resp. Mt) denotes the complex conjugate transpose (resp.
transpose) of a given matrix M.

Let us note D the (circulant) first order difference matrix
and ΛD = FDF† the diagonalized matrix. Let us also note �
the ones column vector with N components and

◦
� = F� its

FFT (non-null at null frequency only).
We introduce now two matrices ∆E and ∆P useful to com-

pute ES and PS respectively:




∆E = ∆C + λc ΛD + εm
◦
�
† ◦
�

∆P = ∆C + εs IN

where ∆C = TtT. The three sub-matrices ∆E, ∆P and ∆C are
diagonal matrices.

Appendix B: Conventions and properties

This appendix gives several properties of F and T introduced
in Sect. 2.

– F†F = FF† = IN : orthonormality of the normalized FFT.
– T is a truncation operator, N × M, (eliminates coefficient

outside the coverage).
– Tt is a zero-padding operator, M ×N, (adds null coefficient

outside the coverage).
– ∆C = TtT is a projection matrix, N × N, (nullifies coeffi-

cients outside the coverage).
– TTt = IM .

Appendix C: Gradient and Hessian calculi

This appendix is devoted to the vector q and the matrix Q in-
volved in the minimized criterion.

q is a 2N components column vector based on the gradient
of criterion J, at x = 0. The first part is the dirty map and the
second one is the dirty map minus a constant map equal to λs/2.
In the Fourier domain, q reads:

◦q =
∂
◦
J

∂
◦x

∣
∣
∣
∣
∣
∣
∣
x=0

=




∂
◦
J

∂
◦xe

∂
◦
J

∂
◦xp




x=0

= −2

[
ȳ

ȳ − λs
◦
� /2

]

.

Q is a 2N × 2N matrix based on the Hessian of J. The two
anti-diagonal elements are the Hessian of the LS term and rely
on the dirty beam only. The diagonal elements are the Hessian
of J w.r.t. each map xp and xe. In the Fourier domain, Q reads:

◦
Q =

∂2 ◦
J

∂
◦x

2
=




∂2 ◦
J

∂
◦xe

2

∂2 ◦
J

∂
◦xe ∂

◦xp

∂2 ◦
J

∂
◦xp ∂

◦xe

∂2 ◦
J

∂
◦xp

2




=

[
∆E ∆C

∆C ∆P

]

.
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Table C.1. Functions, gradients and Hessian of encountered criteria (given as a function of map and their FFT).

ρ(x)
◦
ρ (

◦
x) ∂ρ/∂x ∂

◦
ρ /∂

◦
x ∂2ρ/∂x2 ∂2 ◦

ρ /∂
◦
x

2

‖y − TFx‖2 ‖y − T ◦x ‖2 −2 F†Tt(y − TFx) −2 Tt(y − T ◦x) 2 F†TtTF 2 TtT

xt Dt Dx
◦
x
†
Λ
†
DΛD

◦
x 2 Dt Dx 2Λ†DΛD

◦
x 2 Dt D 2Λ†DΛD

xt x
◦
x
† ◦
x 2 x 2

◦
x 2 IN 2 IN

(�t x)2 ◦
x (0)2 2��t x 2

◦
�
◦
�

† ◦
x 2��t 2

◦
�

† ◦
�

�
t x

◦
x (0) �

◦
� 0 0

Appendix D: Object updates

The present subsection gives details about the step 1 of the
proposed algorithm (Sect. 5): the unconstrained minimization
of L w.r.t. x, i.e. the update of xe and xp. Let us introduce the
two vectors




ze = ȳ + (
◦
�e +c

◦se)/2

zp = ȳ + (
◦
�p +c

◦sp)/2 − λs
◦
�

based on observed data ȳ and FFT of slack variables and

Lagrange multipliers
◦s = Fs and

◦
� = F� (for each map ES

and PS). Let us also introduce two diagonal matrices
{

ME = ∆E + c IN/2
MP = ∆P + c IN/2.

The update reads:




◦xe =
(

ME MP − ∆2
C

)−1 (
MP ze − ∆C zp

)

◦xp =
(

ME MP − ∆2
C

)−1 (
ME zp − ∆C ze

)

easily implemented since ME MP − ∆2
C is diagonal.
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