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Abstract

Combining fast MR acquisition sequences and high resolution imaging is a major issue in dynamic imaging. Reducing

the acquisition time can be achieved by using non-Cartesian and sparse acquisitions. The reconstruction of MR images

from these measurements is generally carried out using gridding that interpolates the missing data to obtain a dense

Cartesian k-space filling. The MR image is then reconstructed using a conventional fast Fourier transform (FFT). The

estimation of the missing data unavoidably introduces artifacts in the image that remain difficult to quantify.

A general reconstruction method is proposed to take into account these limitations. It can be applied to any sampling

trajectory in k-space, Cartesian or not, and specifically takes into account the exact location of the measured data, without

making any interpolation of the missing data in k-space. Information about the expected characteristics of the imaged

object is introduced to preserve the spatial resolution and improve the signal-to-noise ratio in a regularization framework.

The reconstructed image is obtained by minimizing a non-quadratic convex objective function. An original rewriting of

this criterion is shown to strongly improve the reconstruction efficiency. Results on simulated data and on a real spiral

acquisition are presented and discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In magnetic resonance imaging (MRI) the
acquired data are samples of the Fourier transform
of the imaged object [1]. Acquisition is often
e front matter r 2006 Elsevier B.V. All rights reserved
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discussed in terms of location in k-space and most
conventional methods collect data on a regular
Cartesian grid. This allows for a straightforward
characterization of aliasing and Gibbs artifacts, and
permits direct image reconstruction by means of
2D-fast Fourier transform (FFT) algorithms. Other
acquisition sequences, such as spiral [2], PROPEL-
LER [3], projection reconstruction, i.e. radial [4],
rosette [5], collect data on a non-Cartesian (NC)
grid. They possess many desirable properties,
including reduction of the acquisition time and of
.
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various motion artifacts. The gridding procedure
associated to an FFT is the most common method
for Cartesian image reconstruction from such
irregular k-space acquisitions.

Re-gridding data from NC locations to a
Cartesian grid has been addressed by many authors.
O’Sullivan [6] introduced a convolution-interpola-
tion technique in computerized tomography (CT)
which can be applied to MRI [2]. He suggested not
to use a direct reconstruction, but to perform a
convolution-interpolation of the data sampled
on a polar pattern onto a Cartesian k-space. The
final image was obtained by FFT. The stressed
advantage of this technique was the reduction of
computational complexity compared to the filtered
back-projection technique. Moreover, it can be
applied to any arbitrary trajectory in k-space.

More generally, the reconstruction process is four
steps:
1.
 data weighting for non-uniform sampling com-
pensation,
2.
 re-sampling onto a Cartesian grid, using a given
kernel,
3.
 computation of the FFT,

4.
 correction for the kernel apodization.

Jackson et al. [7] precisely discussed criteria to
choose an appropriate convolution kernel. This is
necessary for accurate interpolation and also for
minimization of reconstruction errors due to uneven
weighting of k-space. Several authors have sug-
gested methods for calculating this sampling den-
sity. Numerical solutions have been proposed that
iteratively calculate the compensation weights [3].
But, for arbitrary trajectories, the weighting func-
tion is not known analytically and must somehow
be extracted from the sampling function itself. A
possible solution is to use the area of the Voronoi
cell around each sample [8].

The gridding method is computationally efficient.
However, convolution-interpolation methods una-
voidably introduce artifacts in the reconstructed
images [8]. Indeed, for a given kernel the convolu-
tion modifies data in k-space and it is difficult to
know the exact effect of gridding in the image
domain. Moreover, this method tends to correlate
the noise in the measured samples and lacks solid
analysis and design tools to quantify or minimize
the reconstruction errors.

The principle of regularized reconstruction has
been described by several authors for parallel
imaging: [9,10] and more recently [11] proposed
the use of a general reconstruction method for
sensitivity encoding (SENSE) [12] which has been
applied with a quadratic regularization term and a
Cartesian acquisition scheme. In this paper, we
extend this work by: (1) giving a more general
formulation of the reconstruction term for NC
trajectories, (2) specifically using the exact non-
uniform locations of the acquired data in k-space,
without the need for gridding the data to a uniform
Cartesian grid and, (3) incorporate a non-quadratic
convex regularization term in order to maintain
edge sharpness compared to a purely quadratic
term. The regularization term represents the prior
information about the imaged object that improves
the signal-to-noise ratio (SNR) of the reconstructed
image as well as the spatial resolution.

In Section 2, we recall the basis of MRI signal
acquisition and the modelling of the MR acquisition
process. Then we address the image reconstruction
methods for different acquisition schemes and
develop the proposed method, in Section 3. The
reconstruction is based on the iterative optimiza-
tion of a discrete Fourier transform (DFT) regular-
ized criterion. Rewriting this criterion allows to
reduce the complexity of the computation and to
decrease the reconstruction time. Finally, Section 4
compares the proposed method and the gridding
reconstruction for simulated and real sparse data
acquired along interleaved spiral trajectories.
2. Direct model

MRI theory [1] indicates that the acquired signal s

is related to the imaged object f through:

sðkðtÞÞ ¼

Z Z
D

f ðrÞ ei2pkðtÞtr dr, (1)

in a 2D context. D is the field of view, i.e., the extent
of the imaged object, r is the spatial vector and
kðtÞ ¼ ½kxðtÞ; kyðtÞ�

t (‘‘t’’ denotes a transpose) is the
k-space trajectory. Thus, the received signal can be
thought as the Fourier transform of the object,
along a trajectory kðtÞ determined by the magnetic
gradient field GðtÞ ¼ ½GxðtÞ;GyðtÞ�

t:

kðtÞ ¼ g
Z t

0

Gðt0Þdt0.

The modulus of f ðrÞ is proportional to the spin
density function and the phase factor is influenced
by spin motions and magnetic field inhomogeneities.
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Remark 1. Eq. (1) presents a model for an ideal
signal. Actual signals also include terms for the
relaxation of the magnetic moments which will
cause the signal amplitude to decrease, as well as a
term for inhomogeneity within the image. By the
way, they could be easily incorporated in (1), but for
our purposes here we will ignore these effects.

Practically, the acquired signal is not a contin-
uous function of time but made of a finite number
of samples. This introduces the discretization
of the data, and the measured data set writes s ¼
½s0; s1; . . . ; sL�1�

t 2 CL, i.e., consists of L data
sampled along the discrete trajectory ½k0;k1;
. . . ;kL�1�, where kl ¼ ½k

l
x; k

l
y�
t. For a single sample,

Eq. (1) then reads

sl ¼

Z Z
D

f ðrÞ ei2pkt
l r dr.

Generally the object f is not reconstructed as a
continuous function of the spatial variables r but is
also discretized for practical considerations: to use
image visualization and also to perform fast
reconstruction techniques by means of FFT. This
introduces a discretization of the unknown object
and a common choice is a Cartesian grid of size
N �N. We note f n;m the unknown discretized
object evaluated at locations rnm ¼ ½n;m�

t with
n;m ¼ 0; 1; . . . ;N � 1.

The discrete model is then given by an approx-
imation of the integral of Eq. (1):

sl ¼
1

N

XN�1
n;m¼0

f n;m ei2pðk
l
xm=Fxþkl

yn=FyÞ,

where F ¼ ½Fx;F y�
t is the spatial sampling fre-

quency of the object. To comply with the Shannon
sampling frequency, F must be chosen such as
FxX2=Dx and F yX2=Dy, where Dx and Dy are the
dimensions of the field of view. For sake of
simplicity we assume here that F ¼ ½1; 1�t and the
spatial frequencies kl

x and kl
y are normalized and lie

in ½�0:5;þ0:5�.
In practice the acquired samples are corrupted by

a complex valued noise, denoted b ¼ ½b0; . . . ;
bL�1�

t 2 CL, which can be assumed to be additive
white and Gaussian [13].

We can then write, for one datum, the final
discretized model as

sl ¼
1

N

XN�1
n;m¼0

f n;m ei2pðk
l
xmþkl

ynÞ þ bl (2)
for l ¼ 0; . . . ;L� 1 or, more simply as

sl ¼ hlf þ bl ,

with f being a column vector, collecting the f n;m

rearranged column by column in one vector, and hl

a row vector

hl ¼
1

N
½ei2pkt

l r00 ; ei2pkt
l r01 ; . . . ; ei2pkt

l rN�1;N�1 �.

The whole data vector then writes

s ¼ Hf þ b, (3)

where H is the inverse Fourier matrix:

depending on the acquisition locations.
Eq. (3) is a linear model with additive Gaussian

noise. It has been extensively studied in literature
[14]. The aim of the reconstruction process is to
compute an estimate bf of the unknown object f from
the discrete, incomplete and noisy k-space samples s.
The problem is referred to as a Fourier synthesis
problem and consists of inversion of model (3).
3. Model inversion

A usual inversion method relies on a least squares
(LS) criterion, based on Eq. (3):

JLSðf Þ ¼ ks�Hf k2 ¼
XL�1
l¼0

jsl � hlf j
2. (4)

The reconstructed image is the minimizer of JLS:bf LS ¼ arg min
f

JLSðf Þ,

and minimizes the quadratic error between the
measured data and the estimated ones generated by
the direct model (3). The solution writes

bf LS ¼ ðH
yHÞ�1Hys,

if HyH is invertible, property that depends on the
acquisition scheme.
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3.1. Cartesian and complete acquisitions

In complete Cartesian (CC) acquisitions H is the
N �N inverse Fourier transform matrix, evaluated
on an uniform grid. We then have HyH ¼ I and the
LS solution simplifies tobf ¼ Hys. (5)

It is efficiently computed by the FFT of the raw data
and the compromise between acquisition time and
image characteristics depends only on the acquisi-
tion scheme.

This inversion method directly holds as long as a
CC k-space is available as for the conventional line
by line acquisitions where one line is acquired for
each successive radio-frequency (rf) excitation. It
holds also for multi-shot acquisitions when more
than a single k-space line is acquired for each rf
excitation. It can finally be applied to EPI sequences
when only one excitation is used to sample the
whole k-space domain.

The method remains convenient for time segmen-
ted acquisitions that update only partially k-space,
such as keyhole, BRISK or TRICKS techniques
[15–18] provided that a convenient filing of
k-space data has been made previously.

3.2. Incomplete and non-Cartesian acquisitions

Other acquisition schemes have been proposed in
order to reduce acquisition time. They can be
divided in two groups: incomplete Cartesian (IC)
ones and NC ones.
IC:
 Partial Cartesian filling of a k-space such as
the widely used ‘‘half Fourier’’ method [19] or
variable density phase encoding technique [20]
allow to reduce the number of acquired data
and thus the acquisition time. In this case, H is
a partial matrix and can still be computed with
the FFT.
NC:
 NC k-space filling (interleaved spirals, PRO-
PELLER sequence, radial, concentric circles,
rosettes. . .) conjugate a variable, non-uniform
density encoding with specific gradient se-
quences with the same objective of acquisition
time reduction. These acquisition schemes
often require a small number of rf pulses, take
advantage of the available gradient strength
and rising time, reduce motion artifacts and
lessen sensitivity to off-resonances and field
inhomogeneities [2].
From a mathematical standpoint, the main
difficulty of the NC acquisition schemes is

that (5) cannot be computed using the FFT
algorithm, since the samples are no longer on a
uniform grid. Current strategies force the re-use of
FFT reconstruction (5) by means of data pre-
processing.
IC:
 The missing data are completed beforehand
using Fourier symmetry properties of the
k-space [19] (see also the Margosian recon-
struction [21]), or a zero-padding extrapola-
tion. Conventional zero padding used to
construct a square image from a rectangular
acquisition matrix also belongs to this cate-
gory.
NC:
 The acquired data are interpolated and re-
sampled by means of a gridding method.
Thus a CC k-space is pre-computed from the
acquired data and the final image is obtained by
FFT. The wide availability of high-speed FFT
routines and processors have made the method by
far the most popular. But, such methods do not rely
on the physical model (3) nor on the true acquired
data: they introduce interpolated data resulting in
inaccuracies in the reconstructed images. On the
contrary, the proposed method accounts for exact
locations of the data in k-space. The methodology is
applicable for both IC and NC acquisition scheme
and we concentrate on the NC case i.e. the non-
uniform DFT model.

Other strategies rely on true DFT and LS
framework. The main problem here is that HyH is
not invertible: the unknown image pixels usually
outnumber the acquired data and the problem is
indeterminate, i.e., JLS does not have a unique
minimizer. From basic inverse problem theory,
several regularization approaches have been pro-
posed. Among the earliest are the truncated singular
value decomposition (TSVD) and the minimum
norm least squares (MNLS). They properly reg-
ularize the problem, alleviate the indeterminacy
and define a solution to (3). The TSVD and the
MNLS approaches have been proposed in MRI by
[20] for IC acquisition and by [22,23] for NC
acquisitions, respectively. Practically they both can
be extended for IC and NC acquisitions and behave
similarly.

In any case (TSVD, MNLS, gridding, zero-
padding), it is difficult to control the information
accounted for, in order to regularize the problem.



ARTICLE IN PRESS
R. Boubertakh et al. / Signal Processing 86 (2006) 2479–2494 2483
Moreover they cannot incorporate more specific
information such as pixel correlation, and edge
enhancement. The proposed method, described
below, accounts for known common information
about the expected images and exact locations of the
data in the k-space.

3.3. Regularized method

The proposed method relies on regularized least
squares (RLS) criterion:

JRegðf Þ ¼ JLSðf Þ þRðf Þ.

It is based on the LS term and a prior one R, that
only depends upon the object f . The proposed
solution writesbf Reg ¼ arg min

f
JRegðf Þ.

The choice of R depends on the information to be
introduced. In MR, there are a great variety of
image kinds, but at least two common character-
istics are observed.
1.
 The structure have usually smooth variations and
a good contrast compared to the surrounding
organs, more particularly when contrast agents
are used. These regions are separated by sharp
transitions representing the edges.
2.
 The regions outside the imaged object i.e. the
background is a region where f is expected to be
zero.

The proposed regularization term accounts for
these information and takes the following form:

Rðf Þ ¼ l1O1ðf Þ þ l0O0ðf Þ.

l1 and l0 are the regularization parameters (hyper-
parameters) that balance the trade-off between the
fit to the data and the prior. One can clearly see that
l1 ¼ l0 ¼ 0 gives the LS criterion, and no informa-
tion about the object is accounted for. On the
contrary, when l1; l0 !1 the solution is only
based on the a priori information.

The first term O1ðf Þ is an edge-preserving
smoothness term based on the first order pixel
differences in the two spatial directions:

O1ðf Þ ¼
X
n;m

ja1 ðf nþ1;m � f n;mÞ

þ
X
n;m

ja1ðf n;mþ1 � f n;mÞ,
and the second one O0ðf Þ introduces the penaliza-
tion for the image background:

O0ðf Þ ¼
X
n;m

ja0ðf n;mÞ.

The penalization functions ja parametrized by the
coefficient a (discussed below) determine the char-
acteristics of the reconstruction and has been
addressed by many authors [24–28].

Interesting edge-preserving functions are those
with a flat asymptotic behaviour towards infinity,
such as the Blake and Zisserman function [27] or
Geman and McClure [28]. However, these functions
are not convex and the resulting regularized
criterion may present numerous local minima. Its
optimization therefore requires complex and time-
consuming techniques. On the contrary, the quad-
ratic function proposed by Hunt [25]: jðxÞ ¼ x2 is
best suited to fast optimization algorithms. Never-
theless, it tends to introduce strong penalizations
for large transitions (see Fig. 1), which may over-
smooth discontinuities. An interesting trade-off can
be achieved by using a combination between a
quadratic function ðL2Þ to smooth small pixel
differences and a linear function ðL1Þ for large pixel
differences beyond a defined threshold a. The latter
part produces a lower penalization of large differ-
ences compared to a pure quadratic function. So, we
chose the Huber function [29] (see Fig. 1)

jaðxÞ ¼
x2 if jxjpa;

2ajxj � a2 elsewhere;

(
which is convex and gives an acceptable modelling
of the desired image properties. The a parameter
tunes the trade-off between the quadratic and the
linear part of the function.

The criterion JReg is convex by construction and
presents a unique global minimum: the optimization
can be achieved by iterative gradient-like optimiza-
tion techniques and we have implemented a pseudo-
conjugate gradient procedure with a Polak–Ribiéres
correction method [30].
3.4. Optimization stage

The optimization process requires numerous
evaluation of JReg and its gradient hence numerous
non-uniform DFT computations. In order to avoid
these computations, JLS is rewritten, without
changing the formulation of the problem. The new
expression is founded on Toeplitz property of HyH
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Fig. 1. Penalization functions j: quadratic (lhs) and Huber (rhs).
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and reads (see Appendix for details):

JLSðf Þ ¼
XL�1
l¼0

jsl j
2 � 2R

XN�1
n;m¼0

f �n;mDn;m

( )

þ
XN�1

u;v¼1�N

Cu;vGu;v, ð6Þ

where C is the image correlation matrix, compu-
table by FFT. D and G are given by

Dn;m ¼
1

N

XL�1
l¼0

sl e
�i2pðkl

xmþkl
ynÞ, (7)

Gu;v ¼
1

N2

XL�1
l¼0

ei2pðk
l
xuþkl

yvÞ (8)

for n;m ¼ 0; . . . ;N � 1 and u; v ¼ 1�N ; . . . ;N � 1
and can be precomputed before the optimization
stage.

The 2N � 1� 2N � 1 matrix G depends on the
k-space trajectory only and can be computed once
for all, given a trajectory. Moreover, it has a
Hermitian symmetry, Gy ¼ G, which allows to
compute only one half of the matrix. The N �N

matrix D depends on the k-space trajectory and on
the measured data. It can then be precomputed, but
must be recomputed with each new data set.

The new expression allows to reduce the
computational complexity of the optimization
stage: instead of one DFT computation at each
iteration, only one precomputed DFT is required,
the criterion and its gradient can be computed from
D and G by means of usual products and FFT.

The gradient using a matrix formulation, is given
then as (see also Appendix for details):

qJLSðf Þ

qf
¼ 2f %G � 2D,

where % is a bidimensional convolution efficiently
computed by FFT.

4. Simulation and acquisition results

In this section the proposed reconstruction
method is compared to the gridding method on a
mathematical model and a real phantom both
acquired using a spiral sequence.

4.1. Simulated model

The simulated model is a 128� 128 complex
valued image and mimics two vessels on a variable
background. The magnitude image includes homo-
geneous regions and sharp transitions, while the
phase image, related to the velocity image, corre-
sponds to a parabolic and a blunt flow profile on a
zero phase background (see Fig. 2).

For the direct problem, i.e. simulating the
acquired data, the exact model has been used
without any approximation, which allows to com-
pute the value of the k-space data along any
sampling trajectory. A data set of 6 spiral arms of
512 samples each have been simulated, thus the
number of samples ð6� 512Þ was 5 folds less than
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the number of pixels ð128� 128Þ. The reduced
number of samples and their very irregular density
makes the reconstruction problem non-invertible
and thus allowed to test the quality of the
regularized reconstruction in the case of sparse data.

The hyperparameters, chosen empirically to
obtain the best possible reconstruction, have been
set to following values: l1 ¼ 0:1, a1 ¼ 20, l0 ¼ 0:5
and a0 ¼ 10 and were then also used for the
phantom reconstruction. A 7� 7 Kaiser–Bessel
kernel, as introduced in [6], was used for the
gridding reconstruction.

It can be observed that the regularized recon-
struction offers a better visual quality than the
gridding (Figs. 3, 4) and that it is closer to the
reference image. Sharp edges are maintained and
enhanced while at the same time the noise level is
smoothed throughout the image. This trade-off is
achieved by the properties of the selected penaliza-
tion function. The reconstruction presents less
artifacts inside and outside the inner part of the
image while the spatial resolution is preserved.
These aliasing artifacts due to the undersampling
are greatly reduced but their structure is more
complex to analyze than for a Cartesian acquisition
due to the characteristics of the spiral sampling
trajectory [31].

The examination of the k-space of the recon-
structed images (FFT of the reconstructed images),
shown in Fig. 5, allows to compare the frequency
content of the two reconstructed images versus
the reference one. The proposed method restores a
k-space very close to the reference one, while the
gridding reconstruction still lets appear the under-
neath sampling trajectory. This shows that the a
priori introduced by the regularization is more
pertinent and helps to restore an image closer to the
original object.

Fig. 6 presents a quantitative validation of the
method, varying the number of spirals, the number
of samples per spiral and the SNR, using the
following criteria.
�
 The quadratic reconstruction error in ROI1 (see
Fig. 2) which gives a measure of the distance
between the reconstruction and the reference.

�
 The variance for the constant gray level region of
ROI2 (see Fig. 2) [13].

These figures confirm the former qualitative
results. The proposed method gives a quadratic
error 5–300 folds lower than the gridding, while the
variance is improved 3–10 folds whatever the
sampling or noise level.

Fig. 3 presents a quantitative evaluation of the
hyperparameter sensitivity computed as the varia-
tions of the squared reconstruction error in a
defined region of interest (ROI1). We note that
the selected values are very close to the ones
that minimize the errors when only one hyperpara-
meter is varied at a time. The intervals where these
parameters can be chosen are relatively large: this
ensures that the solution is robust with respect to
the hyperparameter values.

These results show that the quality of the image
can be maintained while using acquisition sequences
that sample a smaller number of data and then
reduce the acquisition time, proportionally to the
number of acquired spirals.
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4.2. Phantom acquisition

The method was then tested on the GEMS test
phantom with a 1.5 Tesla Signa system.1 The
sampling trajectory consisted in 24 interleaved
spirals each of 2048 samples and a 16 cm FOV.

Fig. 7 presents the reconstructed magnitude
images ð256� 256Þ for the gridding and the
regularized methods as well as a zoom in the comb
like ROI for the genuine acquisition geometry (24
1Acquisition are provided by M.J. Graves, University of

Cambridge and Addenbrooke’s Hospital, Cambridge, UK.
spirals). Fig. 8 presents the corresponding results
when one spiral over two has been discarded,
providing a gain of two in the acquisition time.

For the genuine acquisition geometry (Fig. 7) the
regularized image is very close to the gridding
reconstruction and it even shows a slight reduction
of the noise level in the background.

Undersampling strongly degrades the gridding
reconstruction (Fig. 8): only a small central region
remains free of all artifacts. As has been shown
for simulated data, our method applied to actual
measurements gives an image where the aliasing
artifacts are strongly reduced inside the object and
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where a very homogeneous background is pre-
served. The two comb-like ROIs (Fig. 8) show more
clearly the improvement provided by the proposed
method. The regularization also provides an image
with well defined edges, illustrating that the chosen
prior is well suited to achieve the compromise
between noise smoothing and contour preservation
constraints.

Characterization of aliasing artifacts can be
approached by studying the structure of the matrix
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G which can be interpreted as the point spread
function of the imaging system: the observed image
being the convolution of the true object with G.
Fig. 9 shows this matrix for the two sampling
schemes. The central white spot (resp. peak in the
1D figures) introduces a blurring effect proportional
to its diameter (resp. width), while the outer circles
(resp. peaks) are responsible for aliasing. The closer
these circles to the center the more important the
aliasing artifacts. The undersampling that shrinks
these circles was partially inverted by the proposed
method while it was kept unchanged by the gridding
reconstruction.

Beforehand computation of matrices D and G

considerably speeds up the optimization procedure.
However, if G can be computed once for all for a
given acquisition sequence, D must be computed
for each data set. The computational complexity
that arises in computing D is not a drawback
for clinical use of the method: it takes 30 s to
compute matrix D (12 spirals, 2048 samples
per spiral, image 256� 256) using a C-Program on
a PC computer with an AMD-Athlon 2.1GHz
processor.

The optimization was performed using the
computing environment Matlab in 3min, and 50
iterations were needed to converge to an accurate
solution. Each iteration requires one gradient and
three criterion calculations. The calculations of the
FFTs represent the main computational burden
during the minimization: every iteration involves
six 512� 512 2D-FFTs for the criterion and two
768� 768 2D-FFTs for the gradient. This time
could be considerably reduced by implementing
the algorithm on a dedicated processor. Indeed,
given the characteristics of the Texas Instruments
TMS320C64x series DSP, all of the FFTs could,
theoretically, be performed in about 18 s, leading to
an important decrease in the total optimization
time.

Moreover the computation of the criterion, the
gradient and the matrix D are highly amenable to
parallelization, and with a sufficient number of
processing elements, the reconstruction could be
done even faster, which could allow the use of the
method in a wide variety of clinical applications.

5. Discussion and conclusion

The proposed method differs from more conven-
tional ones insofar as it does not involve any
regridding of the acquired data and accounts for
edge preserving smoothing penalties. Utilization of
only the acquired data and integration of smooth-
ness and edge preservation penalization in the
reconstruction opens the way to strong improve-
ment in MRI.

From a computational standpoint, the original
formulation leads to the awkward situation of an
optimization algorithm permanently shifting from
Fourier to image domains requiring for numerous
heavy non-uniform Fourier transform computa-
tions. Rewriting the criterion allowed to perform
the whole optimization in the image domain
providing the pre-computation of two matrices.
The first one characterizes the geometry of acquisi-
tions in k-space and gives interpretation of aliasing
structures; the second can be seen as a DFT of the
acquired data.

Moreover, alternatives exist to still improve the
reconstruction efficiency of the method: substituting
non-uniform FFT algorithms for the non-uniform
Fourier transform in the pre-computations [32];
calculating a solution corresponding to a small ROI
only; substituting a Newton like [33] or a dual
optimization [34] method to the conjugate gradient
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could dramatically reduce the computational cost
and make the method available for clinical applica-
tions.

Finally, the inverted model could be improved by
integrating an exponential term that takes into
account the relaxation of the magnetic moments.
A Laplace inversion framework should then be
substituted for the present Fourier framework but
the overall inversion procedure will remain valid.
Acknowledgements

The authors express their gratitude to M.J.
Graves, University of Cambridge and Adden-
brooke’s Hospital, Cambridge, UK, for providing
the acquisitions, fundamental for proposed evalua-
tions.
Appendix A. Appendix

The appendix gives detailed calculi for the new
form of the fit to the data term JLS and its gradient,
required for efficient numerical optimization.
A.1. Criterion calculus

We have

JLSðf Þ ¼
XL�1
l¼0

jsl � yl j
2 ¼

XL�1
l¼0

jsl j
2 þ jylj

2

� 2Rfsl y�l g, ð9Þ

where yl ¼ hlf is the noise free model output given
by Eq. (2). It is the sum of quadratic terms over the
whole acquired data. The first term is simply the
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norm of the data, the second one is developed in
Section A.1.1 and the last one in Section A.1.2.

A.1.1. Term involving model output yl

Expansion of jyl j
2, given model (2) yields

jylj
2 ¼

1

N2

XN�1
p;q¼0

f p;q e
i2pðkl

xpþkl
yqÞ

�����
�����
2

¼
1

N2

XN�1
q;q;p0 ;q0¼0

f p;q f �p0 ;q0 e
i2p½kl

xðp�p0Þþkl
yðq�q0Þ�.

A change of the summation variable: u ¼ p� p0 and
v ¼ q� q0 gives

jylj
2 ¼

1

N2

XN�1
u;v¼1�N

Xq¼MðvÞp¼MðuÞ

p¼mðuÞ
q¼mðvÞ

f p;q f �p�u;q�v e
i2pðkl

xuþkl
yvÞ,
where mð�Þ and Mð�Þ are the index summation
bounds

mðwÞ ¼
jwj if wX0;

0 if wp0

(

and

MðwÞ ¼
N � 1 if wX0;

N � 1� jwj if wp0:

(

We then introduce the image correlation matrix:

Cu;v ¼
Xq¼MðvÞp¼MðuÞ

p¼mðuÞ
q¼mðvÞ

f p;q f �p�u;q�v



ARTICLE IN PRESS

100 200 300 400 500

100

200

300

400

500 −6

−5

−4

−3

−2

−1

100 200 300 400 500

100

200

300

400

500
−7

−6

−5

−4

−3

−2

−1

100 200 300 400 500
−4.5

−3.5

−2.5

−1.5

−0.5

100 200 300 400 500
−4.5

−3.5

−2.5

−1.5

−0.5

Fig. 9. Matrix G for 24 spirals (lhs) and 12 spirals (rhs) (Log scale). Sharp peaks denoted by arrows cause aliasing.

R. Boubertakh et al. / Signal Processing 86 (2006) 2479–24942492
which can be computed by FFT. So, jyl j
2 simply

writes

jyl j
2 ¼

1

N2

XN�1
v;u¼1�N

Cu;v e
i2pðkl

xuþkl
yvÞ.

The summation over l yields

XL�1
l¼0

jylj
2 ¼

1

N2

XL�1
l¼0

XN�1
v;u¼1�N

Cu;v e
i2pðkl

xuþkl
yvÞ

¼
1

N2

XN�1
v;u¼1�N

Cu;v

XL�1
l¼0

ei2pðk
l
xuþkl

yvÞ

after rearrangement of the summations. Let us state
for u; v ¼ 1�N ; . . . ;N � 1:

Gu;v ¼
1

N2

XL�1
l¼0

ei2pðk
l
xuþkl

yvÞ (10)
which only depends upon the k-space trajectory. We
finally have

XL�1
l¼0

jyl j
2 ¼

XN�1
v;u¼1�N

Cu;v Gu;v. (11)

A.1.2. Term involving model output yl and observed

data sl

Using (2), the involved term writes

sl y�l ¼ sl

1

N

XN�1
p;q¼0

f �p;q e
�i2pðkl

xpþkl
yqÞ

and summation over l yieldsXL�1
l¼0

sl y�l ¼
1

N

XL�1
l¼0

sl

XN�1
p;q¼0

f �p;q e
�i2pðkl

xpþkl
yqÞ

¼
1

N

XN�1
p;q¼0

f �p;q

XL�1
l¼0

sl e
�i2pðkl

xpþkl
yqÞ



ARTICLE IN PRESS
R. Boubertakh et al. / Signal Processing 86 (2006) 2479–2494 2493
after rearrangement. We then introduce the DFT,
for p; q ¼ 0; . . . ;N � 1:

Dp;q ¼
1

N

XL�1
l¼0

sl e
�i2pðkl

xpþkl
yqÞ (12)

which depends upon observed data and k-space -
trajectory. The current term then simply writes:XL�1
l¼0

sl y�l ¼
XN�1
p;q¼0

f �p;q Dp;q. (13)

Substitution of (13) and (11) in (9) yields the
announced form of Eq. (6).

A.2. Gradient of the criterion

The partial derivative of (13) with respect to f nm

clearly writes

q
qf nm

XL�1
l¼0

sl y�l ¼
q

qf nm

XN�1
p;q¼0

f �p;q Dp;q ¼ Dn;m.

The partial derivative of (11) with respect to f nm is
more complicated.

q
qf nm

XN�1
v;u¼1�N

Cu;v Gu;v

¼
2

N2

XL�1
l¼0

e�i2pðk
l
xmþkl

ynÞ
XN�1

n0 ;m0¼0

f n0;m0 e
i2pðkl

xm0þkl
yn0Þ

¼
2

N2

XL�1
l¼0

XN�1
n0;m0¼0

f n0 ;m0 e
i2p½kl

xðm
0�mÞþkl

yðn
0�nÞ�.

Finally, we can write, using the expressions of the
matrices D and G:

q
qf nm

XN�1
v;u¼1�N

Cu;v Gu;v

¼
2

N2

XL�1
l¼0

XN�1
u;v¼1�N

f n�v;m�u e
�i2pðkl

xuþkl
yvÞ

¼ 2
XN�1

u;v¼1�N

f n�v;m�u G�v;u,

where G� is the conjugate of G.
The total gradient using a matrix formulation, is

given then as

qJLSðf Þ

qf
¼ 2f %G � 2D,

where % is a bidimentional circular-convolution that
can be efficiently computed by FFT.
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