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Bayesian Texture and Instrument Parameter
Estimation From Blurred and Noisy

Images Using MCMC
Cornelia Vacar, Jean-François Giovannelli, and Yannick Berthoumieu

Abstract—This letter addresses an estimation problem based
on blurred and noisy observations of textured images. The goal is
jointly estimating the 1) image model parameters, 2) parametric
point spread function (semi-blind deconvolution) and 3) signal
and noise levels. It is an intricate problem due to the data model
non-linearity w.r.t. these parameters. We resort to an optimal
estimation strategy based on Mean Square Error, yielding the best
(non-linear) estimate, namely the PosteriorMean. It is numerically
computed using a Monte Carlo Markov Chain algorithm: Gibbs
loop including a RandomWalk Metropolis-Hastings sampler. The
novelty is double: i) addressing this fully parametric threefold
problem never tackled before through an optimal strategy and
ii) providing a theoretical Fisher information-based analysis
to anticipate estimation accuracy and compare with numerical
results.

Index Terms—Bayes, myopic deconvolution, parameter estima-
tion, sampling, texture.

I. INTRODUCTION

T HIS letter proposes an advance in image deconvolution,
by extending the conventional estimation capabilities to

textured images in a semi-blind and unsupervised context.
Deconvolution is a problem of major interest in image

processing and has been widely explored (see the [1], [2]
overviews). The vast majority of the previous works regularize
the problem through stochastic image models, such as Markov,
Simultaneous Auto-Regression, Student’s t, or deterministic
penalties such as L2, L2-L1, L1, Total Variation (TV). These
approaches use different representations: spatial domain [3],
[4], wavelet domain [5], [6] or Fourier [7] and are essentially
appropriate for piecewise-smooth and piecewise-constant
images. This limitation can be addressed using more adapted
image models, this being one of our objectives.
The proposed approach considers a textured image model,

based on stationary Gaussian Random Fields (GRF) [8], [9].
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Fig. 1. Observation system and corresponding hierarchical model.

This model is described by a parametric power spectral density
(PSD), driven by the unknown set (shape parameters) and
(scale parameter). This model successfully describes various

texture patterns and encodes the image information in a reduced
number of variables, whose estimation however is not trivial due
to the cumbersome dependency.
From the instrument response viewpoint, the literature is

mostly oriented towards the non-parametric point spread func-
tion (PSF), i.e., blind deconvolution [2]–[6], [10].
Nevertheless, in numerous applications, for instance as-

tronomy or microscopy, the PSF is parametric, driven by the
parameters (myopic or semi-blind deconvolution). The letter
[7] and the contributions in astronomy [11], [12] tackle this
problem based on a low frequency model for the image, as
opposed to our textural content preserving model. The my-
opic deconvolution has also been applied to microscopy [13],
[14], however, in a noiseless case, and in [15] using a TV
regularization for the image, thus being primarily adapted for
piecewise-smooth images.
Let us formalize our problem as:

(1)

where is the data and is the parametric PSF. and
are the unknown image and noise, both with parametric PSDs.
The PSF and the image PSD are driven by and , respectively
and and are the hyperparameters. Fig. 1 shows the corre-
sponding observation system and the hierarchical dependency.
A threefold problem is tackled, by jointly estimating:
1. image model parameters, ,
2. instrument parameters, , (myopic or semi-blind),
3. signal and noise levels, , , (unsupervised),
in addition to the original image . The difficulty is due to the
non-linear, very intricate dependency of the data w.r.t. and ,
this leading to a challenging estimation problem. To the best of
our knowledge, no other method to solve this threefold decon-
volution problem exists in the literature.
Moreover, for certain parameter values, the data may con-

tain very little information, augmenting the problem difficulty.
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Based on the Fisher information, a detailed analysis of the avail-
able information for each unknown is provided.
The letter is structured as follows: Section II gives themodels,

Section III analyses the Fisher information and Section IV de-
tails our method. Sections V and VI are devoted to the numerical
results and conclusions, respectively.

II. NOISE, TEXTURE AND PSF MODELS

Let be the image size and the number of
pixels. from (1) are the vectorized data, image
and noise. are the unknown parameters.
The original image and the noise, and , are modeled by

independent zero-mean, stationary GRFs, with covariances
and . The fields are stationary, thus the

matrices have Toeplitz-block-Toeplitz structure. Moreover, for
computational efficiency, a Whittle approximation is made,
i.e., Circulant-block-Circulant covariance matrices, diagonal-
izable by Discrete Fourier Transform (DFT), computable by
Fast Fourier Transform (FFT). Using a similar approximation,

is also considered Circulant-block-Circulant. Hence, the
convolution is circulant, separable in the Fourier domain:

(2)

where , , and are the DFT of the data, the PSF,
i.e., the Transfer Function (TF), the image and the noise. Let

be the index of the vectorized Fourier coefficients,
so that index indicates the 2D position . To exploit the
separability in the mathematical developments, the PSF, image
and noise PSDs are written in the frequency domain. From (2)
and the noise law Gaussianity, it follows:

(3)

(4)

where , and are the eigenvalues of ,
and .
An important point is the method adaptedness to any TF and

any PSD for image and noise. However, for the mathematical
illustration and numerical evaluation, we chose:
• TF–low pass filter (Dirichlet kernel), of width :

(5)

• noise–white noise of covariance , with
precision parameter.

• image–exponential model for the PSD:

(6)

with . The parameters are
the central frequencies, are the PSD widths.

The variables are the continuous re-
duced frequencies, while are the discretized reduced

frequencies. We associate the frequency pair to coef-
ficient . Then .

In (5) and (6), the dependency of and w.r.t. the un-
known parameters and is highly non-linear and intricate,
this representing the main problem difficulty.

III. INFORMATION QUANTITATIVE ASSESSMENT

The data may carry different amounts of information, this
affecting directly the estimation performance, depending on the
Signal to Noise Ratio (SNR ) and the parameter values.
The mean available information on is quantified by the Fisher
information matrix. We focus on each parameter (any one of
elements), through its diagonal elements, i.e., the expectation

of the log-likelihood second derivative:

(7)

is obtained from (1), (3) and (4) and writes:
, with . The

matrix is Circulant-block-Circulant, due to the form of
, and . Thus, it is diagonalizable by DFT,

with entries , namely the variance of :

(8)

where .

In (7), since , the second order deriva-
tives cancel out when taking the expectation. Thus:

(9)

being the derivative of w.r.t. . Then, regarding :

(10)

It is a decreasing function, hence, the smaller the (the higher
the noise level), the easier its estimation. Similarly, is also
a decreasing function.
For a texture parameters , element of :

(11)

As expected, the lower the SNR, the smaller each term, thus,
the less information on . For a central frequency , the
information is higher when:
• is close to 0, due to the low-pass filter,
• the corresponding width is small.
For a width , is higher when:
• is smaller,
• the corresponding is closer to 0.
Another interesting case is the noiseless one ( ):

. The information on depends
only on the texture model and its parameters, but not at all on
the TF (when the TF is known).
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Fig. 2. Fisher information, in logarithmic scale, for the noise level , a PSD
central frequency and a PSD width (a) (b) (c) .

Fig. 3. Different relative positioning and widths for TF and PSD. On the ab-
scissa, the reduced frequency domain is represented (a) Narrow TF (b) Wide TF
(c) Partial overlap.

The same considerations hold for the TF parameter :

(12)

For low SNR, is small and, in the noiseless case, only
depends on the TF, with (when the
PSD is known).
Fig. 2 illustrates the evolution of the Fisher information for
, and , for four SNR levels. A more quantitative analysis

of from (10), for instance, can be done from Fig. 2(a):
we observe that , while ,
meaning that the gain of an order of magnitude for the noise
level implies the gain of two orders of magnitude in information
amount. Consequently, we should expect the same trend in the
numerical results.
Different scenarios are illustrated by Fig. 3, as 1D cross-sec-

tions of the 2D frequency domain:
a. for narrow TFs (small ) and high frequency PSDs (large

), the spectral contents cancel each other, i.e., the
data is informative on , but not on and ;

b. for wide TFs and narrow PSDs, the input stimulus is inca-
pable to induce an adequate system perturbation, i.e., the
information is insufficient to estimate ;

c. ideal situation information-wise, i.e., partial overlap. The
information available for the estimation depends on this
overlap.

Section V provides a numerical evaluation of the method per-
formances, related to the Fisher information study.

IV. BAYESIAN FORMULATION

The addressed problem is challenging since it consists in
jointly estimating the PSD and TF parameters, the hyperparam-
eters and, in addition, the image. This problem is tackled in a
Bayesian approach, all the unknowns being probabilized and
assigned a prior. Let us denote the prior for .
From Bayes rule and Fig. 1, the joint law writes:

(13)

and the posterior law is proportional to the joint law:

(14)

We are considering a situation of poor available information
about the parameters, not indicating prior dependency between
the unknowns.We thus use a separable prior, i.e.,

, each factor being diffuse.
The forms for the prior laws can be judiciously chosen by ana-

lyzing (14). It can thus be noticed that and intervene as in-
verse variance parameters in a Gaussian law, hence the Gamma
law is a conjugate form:

(15)

Furthermore, since we have very little prior information on these
parameters, uninformative Jeffreys priors is used, by setting

.
For and , the dependency of the likelihood w.r.t. the pa-

rameters is very complicated, meaning that there is no conjugate
form. Moreover, the lack of prior information suggests the use
of the uniform law:

(16)

Remark: The uninformative priors might give the wrong im-
pression that our ill-posed problem is not regularized. In fact,
this is done through highly structured models for the TF and
image and not through the priors on .
The Posterior Mean (PM) estimator is chosen due to its mean

square error (MSE) optimality. It consists in calculating the in-
tegral . The complicated parameter depen-
dencymakes it intractable, thus numerical methods are required.
Among the various options, we chose stochastic sampling, more
specifically expectation approximation by empirical mean of
posterior samples. Since direct joint sampling is impossible, we
use a Gibbs loop consisting in iterative conditional sampling.
Remark: In this context, could be marginalized to avoid its

sampling, but this would lead to complicated laws for the other
parameters and thus to increased sampling complexity.
The conditional law for the image is Gaussian and separable

in the Fourier domain, a key feature of the proposed method,
since it allows fast parallel sampling of the image Fourier co-
efficients. The hyperparameters have Gamma conditional laws,
thus sampling is straightforward. However, and have non-
standard laws, thus more complex sampling strategies must be
used.We chose to include a Random-WalkMetropolis-Hastings
(RWMH) stepwithin the Gibbs loop. This strategy is convergent
since i) the Metropolis within Gibbs sampler provides samples
from the posterior law [16] and ii) the empirical mean of these
samples converges to the posterior expectation. The RWMH
jump amplitude is tuned so that the acceptance rate is approxi-
mately 24% [17].
Our algorithm then consists of:
1. Initialization phase: , , , ,
2. For
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Fig. 4. Examples of original images (first column), corresponding blurred and noisy observations (second column) and the deconvolution results (third column).

TABLE I
PARAMETER ESTIMATION MSE–PERFORMANCE IN VARIOUS SCENARIOS, SUCH

AS THOSE IN FIG. 3, AND FOR VARIOUS SNR LEVELS

in parallel

with

with

RWMH step with target

RWMH step with target

Remark: The conditional law of the image has as maximizer
the image obtained through Wiener filtering. In the noiseless
case, the maximizer is obtained by inverse filtering.
The stopping condition is that the variations of the recursive

empirical mean from one iteration to the next are less than 0.1%
for all the parameters.
The algorithm requires only two Fourier transforms, at the be-

ginning and at the end, all the intermediary computations being
done in the Fourier domain, in parallel. This makes the algo-
rithm very efficient, the running time being less than one minute
for size images, for the roughly iterations
needed to reach convergence and compute the PM.

V. RESULTS

The tests were performed on 20 realizations of each scenario
(narrow TF, wide TF, partial overlap) for different parameter

values. The SNR quantifies the original signal to noise ratio,
nevertheless, the Blurred SNR (used in [3] to quantify the
problem difficulty) is significantly smaller and depends on the
relative positioning of the TF and PSD.
Table I lists the mean relative error (%). The data is more or

less informative depending on the parameter (see Section III),
and this explains the estimation error difference. As anticipated
by the Fisher information in Fig. 2, the are better es-
timated as compared to and . Moreover, the estima-
tion accuracy increases with the SNR for all the parameters, ex-
cept . However, for too low SNR, even the error is high,
due to the higher estimation errors for the other parameters. We
have also tested the method in a partial overlap configuration
and dB, when and . The
estimation errors for were 2.3% and 1.9%, respectively, co-
herent with the considerations on the available information in
Section III.
Moreover, we must stress that, despite the problem difficulty,

overall, the method yields small errors in all cases. This is a
direct consequence of the approach’s reliability and the MSE
estimator optimality.
In addition, Fig. 4 presents visual results concerning our

method performance on two textured images by showing the
original, observed and reconstructed images. The blur and
noise were eliminated, these results illustrating the method’s
ability to restore a significantly degraded textured image.

VI. CONCLUSION

A fully Bayesian method for the threefold problem of esti-
mating the textured image parameters, instrument parameters
and hyperparameters has been presented. It also provides the
deconvolved textured image, accurately restoring both textural
content and intensity scale. To the best of our knowledge, no
other method tackles this difficult problem. The Metropolis
within Gibbs strategy provides posterior samples and their
mean converges to the expectation. Moreover, the PM esti-
mator guarantees that, at least from the MSE view-point, it
cannot be outperformed by any concurrent method.
In addition, to aid in the comprehension of the problem and

of the numerical results, we also presented a detailed analysis
of the Fisher information.
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