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a b s t r a c t

Recovering the origin of an incident after detection of a polluting substance in the envi-
ronment is crucial to start the remediation procedures. The lack of observations, the
measurement errors and the model uncertainties make the problem of source estimation
an ill-posed inverse problem that requires regularization to determine a solution. The two
most frequent methods of regularization are source parametrization and penalization of
undesirable solutions. In this paper, the proposed approach combines both methods in
order to obtain a strong regularization that is efficient in case of few and erroneous
observations. Point sources with parametric temporal releases and parameter penaliza-
tions are incorporated in a Bayesian framework where observations and prior information
are combined in a hierarchical probabilistic model and the posterior law is explored with
a Markov Chain Monte Carlo sampling algorithm. Estimation of the source parameters is
provided by the posterior mean and uncertainties are provided by the posterior variance.
To validate the method, several simulated cases with different emission events are
considered. Quality of the estimate as well as impact of source model errors are also
investigated. Then, a comparison with two existing least squares methods is conducted, in
various configurations of sensors and noise level. Finally, the behavior of the method is
described on a strongly underdeterminate real case where only one sensor recorded the
pollution.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of estimating the source of an emission
from measurements is generating extended interest in the
data processing community [1]. Among the numerous
applications, the most important are soil pollution [2,3],
atmospheric pollution [5] and odor emissions [4].

Specifically in groundwater pollution, the advantages of
using a source estimation tool are the possibility of
identifying responsibilities when the location and period
of dumping are known and the control and preservation of
the quality of the groundwater, one of the steps toward
sustainable development [6]. When a soil pollution plume
is detected, identifying the origin consists essentially in
estimating the spatial location of the source, its temporal
release and the quantity of pollutant leaked. Practical
constraints affect the quantity of recorded information:
the time delay before the first measurements and the
number and configurations of the sensors available. The
lack of observations requires the use of data processing
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methods to identify the source parameters. In this context,
the problem is ill-posed for three main reasons.

� The strong and quick diffusion of the pollution plume
acts as a low-pass filter on the point source. The source
is generally concentrated in space and time; the plume
is smoothed so that observations lack high-frequency
information about the source.

� The spatial sensor array leads to an important subsam-
pling of the whole pollution plume. In real applications,
there are generally few sensors (less than ten) and
sometimes only few observations per sensor.

� The observations are made in a difficult physical con-
text. The observation model is necessarily imperfect,
implying that errors (measurement errors, modeling
errors) must be accounted for.

Mathematically, a problem is considered to be ill-posed
when the solution is not unique or if it is not a continuous
function of the observations. In such problems, a minor
perturbation in the data can cause a large perturbation in
the solution ; this is due to a lack of information. To resolve
this difficulty, the general methods consist in introducing
additional information in order to compensate for the lack
of information contained in the observations. The initial
problem is then transformed into a well-posed problem
whose solution is deemed to be acceptable [7,8] and the
problem is said regularized.

In the case of the inverse transport problem, there are
two approaches to regularization: the penalized non-
parametric approach and the parametric approach. The
ideas behind these approaches differ and lead to different
methods. The method proposed in this paper enters into
the class of parametric methods. However, to be able to
tackle real applications in which very few observations
are available, the values of the parameters are penalized
according to the additional information about the source.
Accordingly, our approach is also inspired by penalized
non-parametric methods.

1.1. Parametric methods

The methods in this category regularize the problem by
reducing the number of unknowns [9]. The space of the
solutions is structured by the choice of a parametric model
describing the source. This type of approach generally
makes it possible to estimate both the location and the
temporal release, even with a small number of observa-
tions. Existing methods include numerical methods based
on minimum least squares [10–12,21], maximum like-
lihood [4,13,14,22], analytical methods based on the expli-
cit expression of concentrations in the environment
[15,16], methods based on the adjoint operator [17–19]
and more recently Bayesian methods [56,57].

Several source models have been investigated in the
literature. They share common points regarding the separa-
tion of space and time characteristics and the point location
modeling. To model the temporal release, the instantaneous
release modeling a brief incident is the focal point of most
of the work. Among other types of releases, a constant
endless temporal release is estimated by analytical methods

[16,20] or numerical methods [16,21]. Constant release on a
fixed period is used in [22] that estimates the source
characteristics and several parameters of the physical trans-
port model. However, the method is limited to bringing into
competition several possible locations and several release
periods. The case of the infinite constant release (steady
state) is dealt with by numerical optimization [23], adjoint
method [5] and Bayesian method [24]. More complex
releases consisting of multiple sources [55,58] or source
with several temporal release [25] have also been consid-
ered. In the works presented here, a set of functions
representing different temporal releases is defined. It
includes most of the simple temporal releases.

1.2. Penalized non-parametric methods

The penalized non-parametric approach consists in mod-
eling the source by a function that can vary in space and/or
time and in seeking the solution that complies with a number
of conditions. To restrict the space of the solutions, these
methods provide regularization by penalizing the undesirable
solutions. A state of the art of these methods can be found in
[26]. In theory, these methods can be applied for any type of
source. However, because the number of unknowns is far
greater than the number of observations, the problem is
highly underdetermined and some characteristics of the
source are usually assumed to be known.

The most often encountered problem involves the
temporal release estimation of a source with a known
location. In this case, penalization concerns the temporal
function and different types of penalization have been
proposed. In a deterministic framework, Tikhonov's reg-
ularization method [27] produces a smooth solution [28–
30]. In a stochastic framework, the method of the mini-
mum relative entropy (MRE) [31,32] has been developed.
A comparison of Tikhonov's method and MRE's method is
made in [33]. Other existing stochastic methods are the
geostatistic methods [34,35]; a discussion regarding the
positioning of this method within the Bayesian methods
can be found in [2,36].

Recently, some authors have extended the previous
works to source with unknown location. In [37,38], the
authors apply the Tikhonov regularization method while
also estimating the localization parameters of a point source.
In addition, [39] proposes a minimum relative entropy
method to estimate the location and the temporal release
of an atmospheric pollution source. Finally, [26] extends the
geostatistics method to estimating the space and time
contamination history by applying the adjoint operator
method [19,33]. However, the method that supplies source
location requires prior knowledge of the release period.

1.3. Our penalized parametric method

The approach presented in this paper belongs to the
class of the parametric approach: the source is a point
source and the temporal release is chosen among a set of
parametric functions. It is an extension of our work [40],
where only instantaneous release was processed in a
simpler manner. Unlike other methods, our approach is
not limited to a specific parametric function but is
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adaptable to various temporal releases. Unlike our work,
most of the existing methods estimate the source char-
acteristics by maximizing parameter likelihood without
regularizing the problem any further. In this paper, the
main purpose is to estimate the location, the temporal
release and the amplitude of a pollution source while
taking into account available information on the source.
The additional information is introduced by means of prior
probability densities. One advantage of the probabilistic
approach is to supply both the estimated source and the
uncertainties regarding the estimation. This framework
also allows to apply the method to difficult cases of
pollution, where only few noisy measurements are
available.

The paper is presented in the following manner. Section 2
describes the physical model used to formalize the source and
the observations. The proposed inverse approach is described
in detail in Section 3 (Bayesian strategy) and Section 4 (MCMC
algorithm). Section 5 outlines numerical applications and
through several simulated cases and one real underdetermi-
nated case.

2. Physical model

2.1. Source model

Because of the small spatial extent of the cases of interest,
the source is approximated by a point source. We consider in
this work non-moving point source assumed to occur at the
surface in z¼0, releasing a pollutant quantity q0 according to
a temporal release χðtÞ. The source is described by the term s
that formalizes a concentration of substance by unit of time
(concentration rate):

sðx; y; tÞ ¼ q0δðx�x0Þδðy�y0ÞχðtÞ ð1Þ

where δ represents the Dirac distribution. With this model,
the location is entirely defined by the two coordinates ðx0; y0Þ.

For the temporal release χðtÞ, we also define a parametric
function that depends on few parameters to enforce the
explicit structure (see 1.1): a time position parameter t0 and a
time spreading parameter τ0. The integral of the temporal
release is normalized to one, so the parameter q0 represents
the total quantity of pollutants. Accordingly, the source is
characterized by a set of P parameters: the quantity q0 and
the spatio-temporal parameters collected in the row vector
θ¼ ½x0; y0; t0; τ0�. For χðtÞ, various incidents are investigated
by the definition of seven parametric functions: Dirac, Step,
Window, Decreasing slope, Triangle, Laplacian, and Gaussian.
Simple temporal releases like instantaneous release (Dirac)
or constant release (Step) can sometimes lead to explicit
expressions of the direct model output.

The Dirac distribution models an instantaneous incident.
On the contrary, the Step distribution imitates a continuous
release with a starting time and no ending (steady state when
infinite time is considered). Same release with an ending time
is considered through the Window function. The Decreasing
slope models a linearly decreasing pollution event. The
Triangle function (isosceles triangle) models linearly increas-
ing and decreasing release. Laplacian and Gaussian functions
represent symmetrical more or less spiky releases. See Fig. 1
for a representation of the temporal releases with the para-
meters t0 = 10 days and τ0 = 5 days for a representation of the
Laplacian temporal release with the parameters t0 ¼ 10th day,
τ0 ¼ 5 days.

Except for the Step function, the temporal releases are
normalized. They depend on a single parameter t0 (Dirac
and Step) or on two parameters t0, τ0 (Window, Triangle,
Decreasing slope, Laplacian, and Gaussian). A common
feature of these functions is that they describe a single
pollution event. Methodologically, any parametric model
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Fig. 1. Example of temporal release with t0 ¼ 10th days, τ0 ¼ 5 days. Except for Dirac and Step, the releases are normalized.
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(even with multiple events) can be used but the present
paper is devoted to a single event.

2.2. Direct model

The direct model or forward model is made up of the
transport model and the observation model.

The transport model formalizes the physical process
involved in the propagation of the release from the source
to the sensors. No specific transport model is required by
the method proposed in this paper, the only requirement
being to compute the model output for a given source.
Nevertheless, it is noteworthy that the computation time
of the transport model will impact the computation time
of the inverse method. Most of the transport models are
based on partial differential equations named advection
diffusion equations (ADE). In these equations, the coeffi-
cients are the physical parameters that characterize
the soil properties. The transport model of interest is
described in the Appendix A. Experts in geology built it
from the characteristics of several real sites.

The observation model describes the way the measure-
ments are collected by the sensors in the groundwater.
Various observation models can be defined, as long as it
formalizes the concentrations at the outputs for a given
source at the input. In investigated case here, the number
of sensors is small as compared to the spatial extent of the
site and measurements are made as a function of time at
each sensor. The proposed approach naturally applies to
other observation schemes where measurements are
made at a unique time e.g. [28] or onto an irregular grid.
We refer to the Appendix B for the description of the
observation model used in this paper.

Transport and observation model lead to the following
expression of the concentrations:

cðx; y; tÞ ¼ 2vz;1h1ðtÞn h2ðx; y; tÞn sðx; y; tÞ ð2Þ
where n is the convolution operator (see Appendices A and
B for the explanation of the different terms). After repla-
cing Eq. (1) in Eq. (2) and introducing the notation q0hk;jðθÞ
for the model output at sensor k and at time j to reveal the
dependency with respect to the source parameters (q0; θ),
the data can be written as

d¼ q0hðθÞþε ð3Þ
where the vector hðθÞ of size M¼∑K

k ¼ 1 Jk contains the
elements hk;jðθÞ, the vector d groups all the available
observations and ε includes both modeling errors due to
the imperfection of the direct model and errors due to the
measurement system. In Eq. (3), we can see that the direct
model is a linear function of q0 and a non-linear function
of θ. Here, the parametric model for the source ensures the
non-negativity of the concentrations at the output: as the
source cannot be negative, the concentrations are also
non-negative.

By construction, the model output reproduces the
observed concentration measurements. Assuming additive
errors, the difference between the observations and the
model output represents the reconstruction error at the
output. In the real-life application considered here, there is
no evidence on how the errors distribution is. When no

specific knowledge about the errors distribution is avail-
able, it is usual to consider that the errors ε are indepen-
dent and identically distributed according to the normal
density with zero mean and a given variance matrix. In the
following, the variance matrix is written rεIM with IM the
identity matrix of size M (number of observations) and rε
the unknown variance parameter. The choice of a Gaussian
distribution for the error will also ease the analytical
calculation, as it will be seen later.

3. Penalized parametric approach to inverse problem

3.1. Bayesian approach

A Bayesian formulation of the problem is interesting
because prior knowledge is taken into consideration natu-
rally and allows to obtain uncertainties about the esti-
mated parameter. Based on the likelihood and the prior
probability, the joint posterior density for q0; θ and rε built
by the Bayes formula takes the form:

pðθ; q0; rεjdÞ ¼
pðdjθ; q0; rεÞpðθ; q0ÞpðrεÞR

pðdjθ; q0; rεÞpðθ; q0ÞpðrεÞ dθ dq0 drε
ð4Þ

where ½θ; q0� and rε are supposed to be a priori
independent.

The posterior probability contains the available infor-
mation about the unknown parameters θ. Insofar as the
denominator of Eq. (4) does not depend on the para-
meters, the posterior density is proportional to the
numerator where pðdjθ; q0; rεÞ is the likelihood and
pðθ; q0ÞpðrεÞ is the prior density.

3.2. Parameter likelihood

Since the error is additive and normally distributed
with zeros mean and variance matrix rεIM (see Eq. (3)), d is
distributed according to a normal density with mean
q0hðθÞ and same variance rεIM . Then, the likelihood takes
the form:

pðdjθ; q0; rεÞ ¼ ð2πrεÞ�M=2 exp �‖d�q0hðθÞ‖2
2rε

� �
ð5Þ

where J :J designs the Euclidean norm. So the likelihood
depends on the error variance rε, which is sometimes called
hyperparameter, and is generally unknown. In this paper, rε
is estimated as well as the source parameters. Such model is
usually referred to as hierarchical Bayesian model.

3.3. Prior density

The parametric source models represent the first level
of prior information. As the inverse problem is particularly
ill-posed, we consider a second level of prior information
about the source by parameter penalization. The purpose
is to ensure that each parameter belongs to its definition
domain (for instance τ040) and to integrate additional
information when any such knowledge exists. There are
many ways of incorporating prior information. The Baye-
sian framework used here introduces this information
through the prior density. The prior that favors regions
of high probability thus structures the parameter space.
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As information about spatial location mainly comes
from the site characteristics (building layout, etc.), we
consider that the two parameters x0; y0 are not indepen-
dent. For the other parameters, because no information is
available about eventual dependencies, the prior law is
separable. Consequently, the prior probability takes the
form of a product:

pðθ; q0Þ ¼ pðx0; y0Þpðt0Þpðτ0Þpðq0Þ: ð6Þ

One advantage of the parametric Bayesian approach
over non-parametric approaches is that it offers an intui-
tive way of taking into account prior knowledge about the
source. For each component of θ, we investigate two
different options: a uniform density on a given domain
and a Gaussian density distributed around a nominal
value. These laws model the two most usual ways of
expressing prior knowledge. A uniform density requires a
lower and an upper bound on each parameter, it implies
hard constraints on the parameter values, for instance by
authorizing or inhibiting location. Conversely, Gaussian
density allows to integrate flexible constraints, for instance
by attributing to each point in space a prior presence
probability of the source. For the parameter q0, both
options are possible. We choose here a Gaussian prior
density for q0, pðq0Þ ¼N ðμq0 ; rq0 Þ, where μq0 and rq0 are
respectively the mean and the variance of pðq0Þ, with a
high value for rq0 to set a non-informative prior. This
choice eases the computation as it will be seen below.

The hierarchical Bayesian framework also requires to
define a prior density for the error variance rε. If it exists,
the classic choice is a conjugate density [41], because it
allows to easily generate samples from the posterior
density. Here, the likelihood is normally distributed and
the conjugate density is the Inverse Gamma density
pðrεÞ ¼ IGðrεjαε; βεÞ defined by

IGðrεjαε; βεÞp
expð�βε=rεÞ

rαε þ1
ε

IRþ ðrεÞ ð7Þ

where IRþ is the indicator function on Rþ . The parameters
ðαε; βεÞ of the prior density for rε are sometimes referred to
as hyperparameters. Assuming no prior knowledge on rε,
αε and βε are chosen close to zero. Thus, we obtain the
prior law pðrεÞ ¼ 1=rε, which is the non-informative
Jeffreys prior [42].

3.4. Posterior density

If the prior densities on θ are uniform on the domain D,
the posterior densities take the following form:

pðθ; q0; rεjdÞpexp �‖d�q0hðθÞ‖2
2rε

� �
IDðθÞ

exp �βε
rε

� �
r�αε�1
ε IRþ ðrεÞ: ð8Þ

Given rε and q0, this option is equivalent to truncating the
likelihood of the parameters in D. In this case, the prior
information consists in integrating constraints on the
source parameters.

If the prior densities are Gaussian, the posterior law is
written:

pðθ; q0; rεjdÞpexp �‖d�q0hðθÞ‖2
2rε

� �
exp �βε

rε

� �
r�αε�1
ε IRþ ðrεÞ

exp �1
2
½θ�μθ�tR�1

θ ½θ�μθ��
ðq0�μq0 Þ

2

2rq0

( )
ð9Þ

where μθ and Rθ are respectively the mean and the
covariance matrix of the prior density pðθÞ. This time, the
prior density penalizes the solution: the further θ is
from its prior mean, the faster the posterior density
decreases. The covariance matrix influences the structure
of decrease.

The choice between the formulations (8) and (9) should
be guided by the kind of prior information the user wants
to introduce. The first case is useful to set the range of a
parameter and can be seen as a hard penalization, as it
prohibits some values. The second case can be seen as a
soft penalization that smoothly disadvantages some values.
Moreover, in both cases, the prior can be tuned to allow
more or less large ranges depending on available informa-
tion. In this paper, we focus on the uniform prior density,
leading to the posterior density given by Eq. (8). The
Gaussian choice or even a combination of uniform and
Gaussian densities is naturally possible.

4. Exploration by MCMC algorithm and estimation

The posterior probability density pðθ; q0; rεjdÞ integrates
all the available information on the source. It provides
information about high probability zones in the parameter
space. Visualization of such zones in appropriate sub-
spaces is a relevant way of understanding the inverse
problem difficulties. It can also give an idea of the source
components.

To explore the posterior density, basic methods rely on
discretization: the posterior density is simply evaluated on
a regular grid of parameter values. As the parameter space
dimension is higher than three, such an approach requires
high computational resources (for a P-dimensional para-
meter and a discretization on L points in each dimension,
LP evaluations are required). In addition, the number of
parameters to be estimated may increase in future devel-
opments. More powerful approaches are given by Monte-
Carlo sampling methods which compute values essentially
in regions with high probability. Instead of splitting up the
parameter space into a uniform grid, the idea is to use a
set of points representative of the probability density.
Here, the posterior probability cannot be directly sampled
because of the likelihood complexity. We propose there-
fore Markov Chain Monte Carlo (MCMC) algorithms to
explore the posterior density.

4.1. Exploration of the source space

The adopted algorithm to generate samples from the
posterior probability belongs to MCMC family. Generally
speaking, these algorithms generate a Markov chain
with the target density as stable distribution. The two
main MCMC methods involve Gibbs sampler and the
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Metropolis-Hasting (MH) algorithms [43,44]. In this study,
the proposed algorithm is based on both methods (namely
hybrid Gibbs algorithms [44]). The sampling problem is
split into three Gibbs steps: at each iteration, we generate
samples from the conditional posterior densities pðq0jd;
θ; rεÞ, pðrεjd; θ; q0Þ and pðθjd; q0; rεÞ. One of the advantages
of such algorithms is to provide simulations even for
intricate posterior law, even if the normalization constant
is unknown. Another nice property is to separate non-
linear source parameters from the linear parameter and
the error variance and to allow specific processing for q0
and rε. A drawback is that it can be computationally
expensive. However, in our implementations, the compu-
tation time is of the order of 10 min,1 which is compatible
with the practical demands.

From the joint density for θ, q0 and rε, the three
conditional laws exist and can be derived from the Bayes
formula, taking into account that θ, q0 and rε are assumed
to be independent (so pðq0jθ; rεÞ ¼ pðq0Þ for instance). Each
of them is proportional to the product of the likelihood
and the corresponding prior.

1. The conditional law of q0:

pðq0jd; θ; rεÞ ¼
1

pðdjθ; rεÞ
pðd θ; q0; rεÞpðq0Þ:
�� ð10Þ

2. The conditional law of rε:

pðrεjd; θ; q0Þ ¼
1

pðdjθ; q0Þ
pðd θ; q0; rεÞpðrεÞ:
�� ð11Þ

3. The conditional law of θ:

pðθjd; q0; rεÞ ¼
1

pðdjq0; rεÞ
pðd θ; q0; rεÞpðθÞ:
�� ð12Þ

For the first step, we have to sample pðq0jd; θ; rεÞ. It can
be seen that the Gaussian density for q0 is a conjugate
density for the Gaussian likelihood (see 3.3 and Appendix C).
Therefore, the conditional posterior for q0 is also Gaussian
with parameters:

pðq0jd; θ; rεÞpN rq0d
thþrεμq0

rq0h
thþrε

;
rεrq0

rq0h
thþrε

 !
: ð13Þ

At this point, the algorithm shows a similarity with the
deterministic maximum likelihood approach proposed
in [4]. Indeed, the mean of the conditional posterior
pðq0jd; θ; rεÞ becomes the maximum likelihood estimate
of q0 when no prior on q0 is considered (rq0 ¼ þ1). The
method can be seen as an extension of the maximum
likelihood approach that includes prior information and
explores the parameter space.

For the second step, the density to be sampled is
pðrεjd; θ; q0Þ. Due to the conjugacy (see 3.3 and Appendix C)
it has the interesting property to be an Inverse Gamma

density, with density:

pðrεjd; θ; q0ÞpIG αεþ
M
2
; βεþ

‖d�q0hðθÞðnÞ‖2
2

 !
: ð14Þ

To set a non-informative prior on ε, the parameters αε and βε
are chosen close to zero.

For the third step, the density to be sampled is
pðθjd; q0; rεÞ which does not have a simple form. To gen-
erate these samples, we use a random walk MH algorithm
(sometimes simply called Metropolis algorithm) with the
Gaussian proposal density N ðθðnÞ; αRlÞ where

� θp is the proposal sample,
� θðnÞ is the current sample (iteration n),
� Rl is the prior covariance matrix,
� α is a scale factor to be practically set.

Thus, the proposal sample is obtained by adding a random
perturbation tuned by α to the current sample. Hence, the
algorithm is practically tuned by a unique coefficient α
which affects the distance between the current and the
proposal sample. In theory, α does not affect the result of
the algorithm but only the computation time. In practice, a
compromise should be made between a fast exploration of
the posterior density and a high acceptation rate: proposi-
tions from a wider neighborhood can produce a better
parameter space exploration but a greater chance of
rejection. Here, α is chosen in order to reach a 25%
acceptation rate, as recommended by [45] for more than
two-dimensional problems. To take into account the
different scales of each parameter, we define Rl according
to the prior, which at least limits the space to the plausible
values. In the uniform prior case of Eq. (8), Rl is set to a
diagonal matrix with i-th diagonal element equal to
jθmax

i �θmin
i j=2. In the Gaussian prior case of Eq. (9), Rl is

simply set to the prior covariance matrix Rθ. The accep-
tance step relies on the classical Metropolis acceptation
probability:

ρðθp; θðnÞÞ ¼min 1;
pðθpjd; q0; rεÞ
pðθðnÞjd; q0; rεÞ

( )
: ð15Þ

The three steps of the proposed algorithm are summed up in
Table 1 with a pseudo-code notation. The algorithm is named
unsupervised because it automatically estimates the error
variance, which is relevant to avoid a difficult human decision.

Table 1
Unsupervised MCMC algorithm.

initialize θð0Þ; rð0Þε

for n¼ 0;…;N�1 do

(1) generate qðnþ1Þ
0 � pðq0jd; θðnÞ; rðnÞε Þ Eq. (13)

(2) generate rðnþ1Þ
ε � pðrεjd; θðnÞ; qðnþ1Þ

0 Þ Eq. (14)
(3) generate θðnþ1Þ � pðθjd; rðnþ1Þ

ε ; qðnþ1Þ
0 Þ with the steps:

- propose a new sample θp �N ðθðnÞ; αRlÞ
-compute the acceptance probability ρðθp ; θðnÞÞ Eq. (15)
- draw u� U ½0;1�
- if uoρðθp; θðnÞÞ do θðnþ1Þ←θp (accept the proposed sample)

- else do θðnþ1Þ←θðnÞ (keep the current sample)
end for

1 The proposed algorithm has been implemented with the comput-
ing environment Matlab on a PC, with a 2 GHz AMD-Athlon CPU, and
1 GB of RAM.
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Remark 1. The error variance affects the behavior of the
MH algorithm, as it has a significant influence on the
posterior density shape. Indeed, the higher the variance,
the flatter the posterior density and the higher the
acceptance rate of the MH algorithm.

The obtained samples can be used to depict the zones
of high probability of the source localization in the para-
meter space. However, they do not supply a unique
solution to the inverse problem. To estimate the source
parameters, the two remaining questions concern the
choice of a point estimate and its computation.

4.2. Point estimate and confidence intervals

The estimation of the source parameters from the poster-
ior density requires the choice of a point estimate. In our
context, numerous point estimates are possible: the poster-
ior maximizer, the posterior mean, the posterior median, etc.
Here, we focus on the posterior mean (PM) estimate which
supplies the average of the probable sources:

½θ̂; q̂0; r̂ε�PM ¼ Eθ;q0 ;rε jd½θ; q0; rεjd�

¼
Z

½θ; q0; rε�pðθ; q0; rεjdÞ dθ dq0 drε: ð16Þ

Remark 2. In statistical terms, the PM is an optimal estima-
tor [42]: of all the possible functions of the data (be they
Bayesian or not, empirical or not, a computation code, etc.), it
is the one that yields the Minimum Mean Square Error
(MMSE). Note that the MSE is the expected value of the
squared norm of the difference between estimated and true
values under the joint distribution of the observation and the
unknown. Regarding first order statistics, this estimator has
moreover a zero mean bias.

The calculation of the PM requires numerical evaluation
of a multidimensional integral. In our problem, the expres-
sion of the posterior density does not allow the analytical
calculation of Eq. (16), in particular because of the complex-
ity of the likelihood expression. The developed solution is
given by the Monte Carlo method. If ½θðnÞ; qðnÞ0 ; rðnÞε �,
n¼ 0;…;N�1 are N realizations of the posterior density
by means of the MCMC algorithm described above, one
can approximate the posterior mean (16) by the empirical
mean:

½θ̂; q̂0; r̂ε�PMC
1
N

∑
N�1

n ¼ 0
½θðnÞ; qðnÞ0 ; rðnÞε �: ð17Þ

According to the law of large numbers and the ergodicity, the
expression (17) converges to the posterior mean when N
tends to infinity.

Uncertainties can be obtained by the posterior covar-
iance matrix R̂θ;q0 ;rε jd that measures the dispersion of the
posterior density around its mean. In the same manner as
for the posterior mean, we approximate the posterior
covariance matrix with the empirical one:

R̂θ;q0 ;rεjd ¼
1
N

∑
N�1

n ¼ 0
½θðnÞ; qðnÞ0 ; rðnÞε ��½θ̂; q̂0; r̂ε�PM
h it

½θðnÞ; qðnÞ0 ; rðnÞε ��½θ̂; q̂0; r̂ ε�PM
h i

: ð18Þ

Then, the confidence intervals at 95% are computed with
the approximation

½½θ̂; q̂0; r̂ε�PM�2r̂1=2R ; ½θ̂; q̂0; r̂ε�PMþ2r̂1=2R �

where r̂R is a row vector with diagonal elements of
R̂θ;q0 ;rεjd.

4.3. Application procedure

Although being unsupervised (automatic estimation of
the hyperparameters), the proposed method required some
attention in order to produce accurate results. The proce-
dure is listed below. And a flow chart is given in Fig. 2.

1. Select the source temporal model (see Section 2.1).
2. Formalize the prior knowledge on the source para-

meters as a prior density (see Section 3.3).
3. Initialize the source parameters.

Select a temporal model for the source
(see section 2.1)

Formalize the prior information into prior 
density (see section 3.3)

Start

End

Select initial values for the source
parameters 

Select a value for the Metropolis-Hasting 
parameter � (see section 4.1)

Generate few samples under the posterior
density (see Table D.1)

Is acceptation rate
between about 10 

to 30 % ?

Generate samples under the posterior
density (see Table D.1)

Has converged 
(evaluate by visual 

inspection) ?

Discard the burning samples and compute 
the point estimate (see Eq. (17))

no

yes

no

yes

Fig. 2. Flow chart of the proposed method.
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4. Select the Metropolis-Hastings sampler parameter α
(see Section 4.1).

5. Execute the algorithm on few iterations.
6. Restart from step 4 until the acceptation rate is about

10–30%.
7. Evaluate the convergence by visual inspection of the

posterior samples as function of the iterations.
8. Discard the burning samples and compute the point

estimate (see Eq. (17)).
9. If needed, restart from 1 with another temporal model.

Step 1 would generally be done by visual inspection of
the observations at some points as functions of time or by
prior knowledge from the experts. Regarding the step 2,
the choice between soft and hard constraints has been
found to be not critical. A typical procedure would be to
define admissible ranges of values for each parameter
(possibly large if little knowledge is available) and to
convert the minimum and maximum values of hard
constraints into the mean and variance of soft constraints
with xmean ¼ ðxminþxmaxÞ=2 and xvar ¼ ðxmax�xminÞ2=16,
respectively. In the proposed method, the choice of the
initial value of the source parameter is arbitrary but can
have an influence on the convergence time. In practice, the
center of the prior range or the mean of the prior Gaussian
density would make an acceptable starting point. As for

the initialization, the Metropolis-Hastings parameter only
affects the convergence time. The proposed trial and error
procedure to fix this parameter is common in the litera-
ture. Finally the evaluation of the convergence of the
algorithm is let to the practitioner evaluation. This would
usually be done by representing the samples and the point
estimate as a function of the iterations: smooth evolution
of the point estimate and good mixing of the posterior
density are indicators of convergence.

5. Numerical applications

To evaluate the proposed method, various pollution
events have been simulated on a hypothetical site derived
from a real site. The site has four to eight sensors located
as shown in Fig. 3. At first, the method's ability to recover
the source is analyzed when correct temporal release
shapes are selected, with a focus on the Laplacian temporal
release. Then, an impact study of incorrect temporal
models is presented. This validation stage is followed by
a quantitative comparison with respect to two existing
methods widely used in the literature ; nine configurations
of sensors and noise that reproduce a large range of
situations are considered. Finally, the behavior of the
method is described on a real case where only one sensor
measured the pollution. The transport model and the
values of the physical parameters are detailed in
Appendix A. Note that the advection phenomenon is
carried by the increasing x-value, so the emission tends
to move in this direction.

5.1. Validation of the proposed method

In this section, several pollution events are simulated
from different source configurations. In each event, the
contaminant plume is recorded by six sensors, the sensors
1–6 of Fig. 3. The simulated set of observations is gener-
ated by adding zero-mean Gaussian noise to the model
output. In order to reproduce real measurement
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Fig. 4. Simulated (lines) and reconstructed (dash lines) observations on the hypothetical site. The abscissa represent the time in day, the ordinates
represent the concentrations in milligrams per square meter. One observation per 2 days and per sensor is made (6�91 measurements). The simulated
observations and the reconstructed output from the estimated parameters (Table 2) are here indistinguishable.
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Fig. 3. Position of the sensors (points) on the hypothetical site. Depend-
ing on the case, the sensors 1–4, 1–6 or 1–8 are used. The star shows the
location of the source in Sections 5.1.1 and 5.1.2. The rectangle (dash line)
shows the possible location of the source in Section 5.2. The advection
flow is hold by the x axis.
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conditions, the error variances are adjusted in order to get
a similar signal to noise ratio (SNR) at each sensor:

rðkÞε ¼ 10�SNR=10

Jk
∑
Jk

j ¼ 1
ðq0hk;jÞ2 ð19Þ

where k indices the sensor, Jk is the number of measure-
ments from the sensor k and hk;j is the model output at
sensor k and time j. The SNR is computed in decibel with
SNR¼ 10log 10ð∑M

i ¼ 1d
2
i =∑M

i ¼ 1ε
2
i Þ and has been set to 15 dB

in order to obtain observations similar to a real data set
(the average of the error standard deviations is
0.12�105 mg/m2). Each sensor provides an observation
every 2 days during 180 days, i.e. 6�91 concentration
measurements. Simulated observations are represented in
Fig. 4. The three main propagation phenomena (attenua-
tion, advection and dispersion) can be seen: the further
the sensors are from the source, the more attenuated,
delayed and moved are the measurements.

10000 20000 30000 40000

2
4
6
8

10 x 109

q 0
[m

g/
m

2 ]

10000 20000 30000 40000
−150

−100

−50

0

x 0
[m

]

10000 20000 30000 40000

−20

0

20

y 0
[m

]

10000 20000 30000 40000
−40

−20

0

t 0
[d

]

10000 20000 30000 40000
0

5

10

τ 0
[d

]

iterations

0.9 1 1.1
x 109

0

1

2
x 10−8

−80 −60 −40
0

0.05

0.1

2 4 6
0

0.5

1

−8 −6 −4
0

0.5

1

2 2.5 3
0
1
2
3

histograms

Fig. 5. Left-hand column: evolution of the parameters (solid lines) and the posterior mean (dashed lines) during the MCMC algorithm computation.
The straight lines represent the true values of the parameters. Right-hand column: samples histograms of the marginal posterior density (last 2�104 samples).
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5.1.1. Correct temporal model
Here, the same temporal model is used for generating

the observations and for inverting. First, a point source
with a Laplacian temporal release is considered. The true
values of the source parameters are τ0 ¼ 2:5 d, q0 ¼ 109

mg=m2, x0 ¼�60 m, y0 ¼ 5 m and t0 ¼�6 d. The unsuper-
vised MCMC algorithm is applied to generate samples
from the posterior density of Eq. (8). Fig. 5 shows the

samples as a function of iteration index (left-hand col-
umn). The first samples of the MCMC run (empirically
evaluated to the first 2�104 samples) constitutes the so-
called burn-in period: it is a current practice to throw it
away, since the chain is not in its stationary state. Further
development of the method could include automatic
detection of convergence, for instance based on multi-
chains criterion [46]. The dashed lines show the evolution
of the iterative empirical mean of the samples and the
straight lines represent the true values of the parameters.
In this figure, the limits of the vertical axis are the prior
bounds on the parameters. Evaluation of the uncertainties
can be seen with the sample oscillations around the mean
and with the histograms width (right-hand column).

The algorithm performed in about 3 min (on a standard
desktop computer). Note that several hours of computa-
tion are usually accepted for such inverse problem, as the
relatively low velocity of the pollutant propagation pre-
vents from rapid change in the observations. The proposed
method is therefore in the fast range.

In Fig. 6, histogram representations of marginal poster-
ior density in the x0; y0 (left) and x0; t0 (right) space shows
interesting shapes. First, the posterior density is particu-
larly spiky (note the axis ranges). Second, the extension of
the density is greater in the x direction, which means that
small variations of the x0 parameter still give acceptable
source. Moreover in the x0; t0 space, the correlation
between the two parameters, shown via the histogram
orientation with a slope of about 11 m/d (close to the
convection velocity vx;2) expresses a space-time uncer-
tainty (a source located in x0 ¼�70 m and at t0 ¼�7 d
makes still an acceptable candidate).

The PM estimate is computed from the 2�104 last
samples. Table 2 reports the true values, the PM estimates
and 95% confidence intervals in the first, second and third
line respectively. The estimated parameters are close to
their true values, with small errors on q0; τ0; t0 and y0.
Relatively, the estimation x0 is more inaccurate though it is
still included in the confidence interval. This result is due
to the importance of the advection phenomenon causing
fast and strong carrying of the pollution into the ground-
water. In the Fig. 4, the reconstructed concentrations
obtained from the estimated source are also plotted (dash
lines). It shows that the concentrations are correctly
reconstructed and that the method naturally ensures the
non-negativity of the data.

In addition, Fig. 7 plots the prior and the marginal
posterior densities for q0. The integration of all available
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Fig. 7. Prior density and marginal posterior density for q0. To make the
figure more clear, the prior has been multiplied by a factor 10.
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Table 3
Parameter estimation – different temporal releases (correct shapes).

q0 (mg/m2) (�109) x0 (m) y0 (m) t0 (d) τ0 (d)

Dirac 1.0370.03 �66.576.19 4.4370.69 �6.5570.53 No value
Step 1.0170.04 �62.4711.8 4.8170.92 �6.2071.28 No value
Window 1.0670.21 �66.075.6 4.4470.66 �6.5170.48 2.6070.52
Decr. slope 1.0370.20 �65.775.8 4.4970.71 �6.4870.43 2.6271.40
Triangle 1.0470.04 �58.978.2 4.8570.77 �5.9270.65 5.2371.54
Laplacian 1.0170.04 �62.179.8 4.6370.77 �6.2170.84 2.6170.26
Gaussian 1.0070.04 �58.2711.7 4.8870.90 �5.8870.99 2.6870.26

True values 1.00 �60.0 5.00 �6.00 2.50

Table 2
Parameter estimation – Laplacian release.

q0 (mg/m2) x0 (m) y0 (m) t0 (d) τ0 (d)

True 1.00�109 �60 5 �6 2.5
Estimation 1.01�109 �61.6 4.65 �6.16 2.61
Confidence 70.04�109 710.7 70.85 70.91 70.26
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information about the source leads to a very spiky poster-
ior density compared with the prior.

The method also gives an estimation of the error
variance rε. As shown in Appendix D, the proposed algo-
rithm gives an estimation the mean of the variances used to
generate the observations on each sensor. Here, the var-
iances mean is equal to 14.8�107 and the estimation is
14.3�107 with a confidence interval of 71.8�107. Fig. 8
shows the evolution of the error variance as a function of
iterations with an initialization arbitrarily set to one. It can
be seen on the right plot of Fig. 8 that the variance increases
rapidly to a high value then converges around the mean of
the true variances. This behavior is due to the poor data
fitting during the first iterations. When the source para-
meters are strongly erroneous, the data adequation term
‖d�q0hðθÞ‖2 is high and the Inverse Gamma density of Eq.
(14) will more likely generate high value of rε. Besides, this
is a nice behavior: high error variances lead to flat posterior
densities and allow a wide exploration of the parameter
space during the burning period.

Validation of the proposed approach for the other
temporal releases listed in Section 2.1 is briefly presented
below. As for the Laplacian release, results are summarized
in a table (Table 3). It can be seen that the quantity q0
is close to its true value, only slightly over estimated.
Regarding the parameter τ0, the estimation error is less
than 0.20 day (except for the Triangle). As the uncertainty
is close to 3 days for the Decreasing slope and the Triangle,
accurate estimation of τ0 is not ensured for these releases.
For the location x0, the greater error is for the Dirac
distribution and the greater uncertainties are for the Step,
the Laplacian and the Gaussian function. Note that in all
the cases, the uncertainty on x0 is important, as already
pointed out. The difficulty to estimate the localization in
the direction of the flow is therefore one of the specificities
of the problem. For y0 and t0, the errors are small with
acceptable confidence intervals. Note that the uncertainty
on t0 is the most important for the Step release (71.28 d),
which is the only release that never ends.

In conclusion, whatever the shape of the release, the
parameters are accurately estimated. In most cases, the
relative errors do not exceed 10% and are often under 5%.
Moreover, the true value is almost always included in the
95% confidence interval.

5.1.2. Incorrect temporal model
In the present section, impact of erroneous temporal

model on the source estimation is investigated. Indeed, the
choice of the model for the temporal release can be incorrect,

as it would be made typically by visual inspection of the
observations or by prior knowledge. To assess the robustness
with respect to the source model error, two different models
are used to generate the observations and to solve the inverse
problem. Six situations are considered, summarized in
Table 4, that leads to three main conclusions.

1. Using Laplacian (Gaussian) releases to estimate Dirac
(Window) releases is efficient. The true releases are
well fitted and the localization and amplitude para-
meters are estimated with good accuracy. For the
Window/Gaussian case, the model error does not affect
the quality of the estimation at all. For the Dirac/
Laplacian case, only the quantity of pollutant is mainly
under evaluation (factor 2).

2. Using Dirac (Window) releases to estimate Laplacian
(Gaussian) releases do not allow to recover the source.
The estimated sources are indeed located further in x
(40–50 m before) and happened earlier (3–4 days). It
can be explained by the insufficient degrees of freedom
of the Dirac and Window distributions.

3. The difference between Laplacian and Gaussian func-
tions appears to be too slight to be discriminated, as the
crossed results are very good. The parameter τ0 is
adapted to fit the true release and the other parameters
are well estimated. Note that the confidence intervals
are generally larger than without source model error.
For the parameter x0, the estimated value is close to the
true one but the uncertainty is high, as the confidence
intervals are greater than 20 m.

Following the results on the selected cases, the proposed
method is quite robust to an erroneous source model.
Without serious prior information about the shape of the
release, the use of Laplacian and Gaussian releases as
source models are strongly recommended, for they are
more flexible and lead to the best estimates.

5.2. Comparison with existing methods

As mentioned in Remark 2, from a statistical standpoint,
the chosen point estimate (the posterior mean) is an optimal
one: of all the possible functions of the data, it yields the
minimum mean square error [41]. The proposed simulated
study reinforces this theoretical result. A large amount of
1000 sources has been drawn (uniformly distributed in the
prior interval). For each source, a data set has been simulated

Table 4
Parameter estimation – different temporal releases (incorrect shapes).

True rel./Model rel. q0 (mg/m2) (�109) x0 (m) y0 (m) t0 (d) τ0 (d)

Dirac/Laplacian 0.4770.05 �62.879.5 4.6170.80 �6.2570.80 0.5670.35
Laplacian/Dirac 2.2070.07 �111.077.9 2.5370.80 �10.3570.69 No value
Window/Gaussian 1.0170.03 �59.977.2 4.7870.66 �6.0170.61 1.1770.22
Gaussian/Rect. win. 1.2570.23 �100.778.14 2.8070.82 �9.4870.71 1.7070.30
Laplacian/Gaussian 1.0070.04 �61.5710.6 4.6970.87 �6.1570.91 3.1070.25
Gaussian/Laplacian 1.0370.04 �64.4710.9 4.4670.92 �6.4070.93 2.0970.26

True values 1.00 �60 5 �6 2.5
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as described in the previous section: using the transport
model and an additive Gaussian noise.

Regarding the processing approach, we have compared
the proposed method to more generic ones already used to
solve similar problems and to compare methods [4,21]
(see also [47]). Both are founded on a Least Squares (LS)
criterion and regarding the optimization algorithm, the
one relies on a gradient approach [4] denoted by LS-G and
the other relies on simulated annealing [21], denoted by
LS-SA. The Matlab optimization toolbox [48] and the ASA
implementation [49] where used respectively for the LS-G
and LS-SA methods. Moreover, for ASA algorithm, the
parameters of [21] have been used.

Then, each data set is processed by the proposed method
and the LS ones. By empirical average of these 1000 results,
the MSE is computed for the PM and for the LS estimates.
The error is then normalized so that a null estimate yields a
100% error (and the perfect estimate yields a null error).

In order to deepen the study, we have assessed config-
urations varying the SNR (20 dB, 15 dB, and 0 dB) as well as
varying the number of sensors (K¼8, 6 and 4, using sensors
numbered 1–8, 1–6 and 1–4, respectively, in Fig. 3) and
results are given in Table 5. The error varies from 5.46% to
64.19% depending on the configuration and the inverse
method. As expected, for each method (each row) the error
increases when the number of sensors decreases and when
the noise level increases. For the PM method, it is always
under 10% in 8 and 6 sensors configuration, and under 15% in
the case of 4 sensors. Regarding the comparison between
methods, these quantitative results clearly show the super-
iority of the proposed approach: it yields the smallest error
among the three methods in each configuration (about 4–53
percent lower). In addition, methods with global exploration
capability of the parameter space such as the proposed
method or the LS-SA method seem mandatory, especially
in case of very few sensors and high noise level.

Remark 3. It must be mentioned that for high SNR and
large number of sensors, the measured data set brings an
important amount of information and as a consequence,
the posterior density may be very spiky (around the
correct value). In such a case, the MCMC algorithm may
require a larger number of iterations to explore the
parameter space and find the area with substantial
density. On the contrary, the gradient algorithm may be
more efficient since it is based on directional exploration
of the parameter space. Anyway, a combined version based
on Langevin approaches [41,42,46] or more advanced
approaches [50] could be used to overcome this difficulty
if necessary.

5.3. Application on a real case

We propose here the application of the method on an
underdeterminated case where the source estimation
cannot be fully achieved because of the lack of observa-
tions. In this case, a unique sensor recorded real observa-
tions of a tracer release. One of the advantages of the
developed approach is indeed to allow strong regulariza-
tion and to process situations where only a few noisy
observations are available. Even if the source estimation
cannot be done because of the non-uniqueness, we show
here that the method is still relevant to process the prior
information and the data in order to give guidelines for
source estimation.

On the experimental site, only one sensor has mea-
sured the concentrations in the groundwater over a period
of 18 months. Several sensors were displayed on the site,
but the quality of their observations was not sufficient. The
hydrogeologic conditions on this site are complex. How-
ever, the direct model of Appendix A makes an acceptable
approximation, due to the relative high velocity of the
water in the groundwater that dominates other
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Fig. 9. Left-hand: position of the sensor on the real site (located at ð220;0Þ). The prior source localization is x0A ½�15;15� m, y0A ½5;25� m. Right-hand:
normalized observations made by the sensor.

Table 5
Comparative study. The relative square root of the Mean Square Error (expressed as a percentage, %) is given for the three compared methods: Posterior
Mean (PM), Least Squares with Simulated Annealing (LS-SA) and Least Squares with Gradient (LS-G). Nine configurations are investigated varying the
number of sensors (K) and the noise level (SNR). One thousand trials per configuration are averaged.

K 8 6 4

SNR (dB) 20 15 0 20 15 0 20 15 0

PM 5.46 6.32 9.33 9.26 9.85 9.92 12.23 13.58 14.95
LS-SA 11.22 12.84 15.55 13.26 14.00 15.67 16.78 17.97 18.31
LS-G 13.98 24.78 56.28 32.66 49.87 62.90 40.52 56.57 64.19
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phenomena. Site and observations are represented in
Fig. 9. The maximum of the observations is set to one
and the temporal axis starts with the first observation. The
observation period is regular with approximately one
measurement per day. Measurements indicate a polluting
event of greater importance detected around the 380th
day and other events of smaller magnitudes that could
correspond to measurement noise or to releases of less
importance. Our goal here is to characterize the source at
the origin of the main observed peak. According to the
shape of the peak and to the previous robustness study,
the Laplacian function appears suited to model the source.

Due to the lack of spatial information on the pollutant
plume, a large uncertainty on the source location is
expected. As in the simulated cases, prior information is
taken into account by uniform prior for the source para-
meters. Here, the experts had a prior knowledge of the
origin building of the tracer release. The expected source
was located in x0A ½�15;15�m, y0A ½5;25�m. Note that it is
a relatively short range of the site; thus it supposed that
the localization was almost known. On the other para-
meters, the prior knowledge of the experts was less
accurate: the quantity is maximum 106 times higher than
the maximum measurement, the pollution happened dur-
ing a maximum of 2 months within 1 year before the
measured peak. For the parameters q0; t0 and τ0, the prior
domain is chosen large in a first step (q0A ½10�3;106�,
t0A ½100;400�, τ0A ½1;30�) and then it is reduced according
to the explored space domain.

Considering the spiky and potentially multimodal nat-
ure of the posterior density, the convergence of the
Markov chain may be slow and it may be necessary to
simulate a great number of samples before convergence. In
order to focus this numerical study on the behavior of the
method in a very underdeterminated situation, the error
variance is not estimated. A supervised version of the
algorithm is used. It is based on iterations of steps (1) and

(3) of the algorithm given in Table 1, with the step (2)
replaced by a fixed value of rε. The error variance is
intentionally fixed to a relatively high value (rε ¼ 0:1) in
order to highlight the structure of the posterior density.

We have generated 4.8�105 samples; we depicted
two-dimensional histograms of the posterior density
for ðx0; y0Þ, ðx0; t0Þ, ðx0; τ0Þ and ðx0; q0Þ in Fig. 10 (a), (b),
(c) and (d), respectively. It can be seen that the width of
the density in the y0, t0 and τ0 axis is relatively small. The
method gives a good idea of the most probable values of
these parameters: y0 around 19 m, t0 around 309 days, and
τ0 around 22 days. For the two other parameters, the
dispersion of the posterior density is important. It is shown
in each figure for the parameters x0: no value seems to be
more probable than the others and the density is truncated
by the prior bounds (it indicates that larger prior ranges
would be advisable). Fig. 10 (d) is particularly useful to
illustrate the non-uniqueness of the inverse problem solu-
tion. The density covers all the x0; q0 space, which show that
with the available observations and the incorporated prior
information, no conclusion on the localization in the x axis
and on the quantity of pollutant can be made (the localiza-
tion in the direction of the flow is not possible). Therefore,
the PM estimator (or any point estimate) is not relevant.
Instead of giving a point estimate, representations of the
posterior density and marginal point estimate are helpful to
guide the source identification, for instance by the mean of
marginal density histograms of samples. In the example
presented here, it could help the experts to confirm the
apparition of the contamination around 60 days before the
observed abnormal concentrations, with a release duration
close to 1 month.

6. Conclusions

In this paper, we have presented a Bayesian para-
metric method to estimate the location, temporal
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Fig. 10. Samples histograms of the marginal posterior density in the x0 ; y0 space (a), x0; t0 space (b), x0 ; τ0 space (c) and space x0 ; q0 (d). The lines denote the
prior domain. The samples are clearly localized in the t0 dimension, also in y0 and τ0, but not at all in x0 and q0.
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release and amplitude of a point source. All available
prior information about the source has been incorpo-
rated in a hierarchical Bayesian model and posterior law
has been explored by means of an MCMC algorithm
(Metropolis-Hastings within Gibbs sampler). Compared
to the existing parametric methods entirely based on
likelihood or least squares, the proposed method natu-
rally incorporates additional prior information. In parti-
cular, it is more robust to difficult situations in which the
number of available observations is small and the noise
is high. Another important feature of the Bayesian
approach and of MCMC algorithm is the natural possi-
bility to evaluate uncertainties and to represent the
solution space.

Applied on simulated cases built to mimic real con-
tamination events, the relevance of the method has been
demonstrated for sources with different temporal releases
and robustness to source model error has been shown in
various situations. In each case, the source is characterized
with good accuracy and the true values are always
included in the confidence intervals around the estimated
parameters. A default of determination in the space-time
plane has been identified to be responsible for larger
uncertainty for the longitudinal (x-axis) location. A com-
parative study varying the signal-to-noise ratio and the
number of sensors has been achieved and shows the
superiority of the proposed method over the general
gradient-based and simulated annealing-based least
squares methods. The application of the method to a real
case emphasizes its interest when the source is undeter-
mined due to poorly informative data set. Instead of the
point estimate, the representation of the posterior density
makes it possible to supply clues on the most probable
values of the source components.

A perspective of this work is to extend the estimation
to some parameters of the transport model, such as the
velocity or the dispersion coefficients. To this end, our
Bayesian parametric approach is relevant: prior informa-
tion regarding physical parameters is generally available
and could be accounted for. In addition, the proposed
method as it is, remains limited to relatively simple source
and a natural perspective is to consider multiple sources in
time. In this way, we plan to apply our method to the
source models used by [25]. Moreover, the extension to
automatic model selection will also be investigated within
our Bayesian parametric approach based on Bayes factor
and posterior sampler.
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Appendix A. Transport model

The transport model used for the simulation is made up
of two zones. Immediately beneath the surface, the first
zone models the unsaturated medium in which propaga-
tion is solely according to the depth z. In the second zone,
modeling the groundwater, propagation is anisotropic in
three directions, with an advection velocity carried by the x
axis. In each zone, the concentrations are governed by a
partial differential equation namely an advection–dispersion
equation (ADE) [6,51]. Transport models in zones 1 and 2
are given by Eqs. (A.(1) and A.2) respectively:

∂c1
∂t

þvz;1
∂c1
∂z

�Dz;1

4
∂2c1
∂z2

¼ sδðzÞ ðA:1Þ

∂c2
∂t

þvx;2
∂c2
∂x

�Dx;2

4
∂2c2
∂x2

�Dy;2

4
∂2c2
∂y2

�Dz;2

4
∂2c2
∂z2

¼ s2δðz�LÞ ðA:2Þ
where L represents the depth of zone 1, vz;1; vx;2 denote the
advection velocities, Dz;1, Dx;2, Dy;2 denote the dispersion
coefficients, c1 and c2 represent the concentrations in zones
1 and 2 respectively, s models the source at the surface and
s2 models the transfer from zone 1 to zone 2. s and s2
represent a concentration of substance by unit of time, for
instance a mass concentration rate in mg/d m2. The term s2
is obtained by equaling the incoming flux and outcoming
flux at the interface of zones 1 and 2. It depends on the
concentration in the first zone with the formula s2 ¼ vz;1c1.

We assume here that the two zones are homogeneous
and invariant: their properties do not depend on space or
time variables. Therefore, the coefficients of the equations
are uniform and constant. This simplification produces a
linear and invariant (convolutive) transport model.

More specifically, concentrations c1 are defined for
0rzrL. To compute c1, it is assumed that the plume
spreads out as if the medium was semi-infinite and only
the concentrations in the interval 0rzrL are considered.
If we assume zero concentrations level in the environment
before the beginning of pollution and at the infinite limits
of the zones, the output of the transport model can be
written as the following double convolution [52]:
c2ðx; y; z; tÞ ¼ 2vz;1h1ðtÞnh2ðx; y; z; tÞnsðx; y; tÞ where n desig-
nates the convolution operator, h1 and h2 are the impulse
responses in zones 1 and 2 respectively (Green functions),
the factors 2 and vz;1 are respectively modeling the mirror
effect and the conservative flux due to the interface
between the two zones [4,53]. The expressions of func-
tions h1 and h2 are obtained by solving the ADE when the
second member is a Dirac [53]:

h1ðtÞ ¼ t�1=2ð4πDz;1Þ�1=2 exp �ðL�vz;1tÞ2
Dz;1t

( )

h2ðx; y; z; tÞ ¼ t�3=2ðð4πÞ3Dx;2Dy;2Dz;2Þ�1=2

exp �ðx�vx;2tÞ2
Dx;2t

� y2

Dy;2t
� z2

Dz;2t

( )
:

At given t, the function h2 is Gaussian w.r.t. ðx; y; zÞ. At given
x; y; z , the function h2 is neither Gaussian nor symmetrical
w.r.t. t.
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For the simulated cases of Section 5.1, the physical
model parameters are set as follows: Dz;1 ¼ 1:33 m2=day,
vz;1 ¼ 0:66 m=d, Dx;2 ¼ 224 m2=d, Dy;2 ¼ 44:9 m2=d and
vx;2 ¼ 11:2 m=d. For the real case of Section 5.3, the
parameters are Dz;1 ¼ 1:33 m2=d, vz;1 ¼ 0:66 m=d, Dx;2 ¼
310 m2=d, Dy;2 ¼ 4:97 m2=d and vx;2 ¼ 15:5 m=d.

Appendix B. Observation model

We consider that each sensor records a concentration
measurement representing the total concentration on the
depth of the groundwater, assumed infinite. To formalize
the measurement procedure, the concentrations c2 are
integrated w.r.t. z:

cðxk; yk; tk;jÞ ¼
Z þ1

L
c2ðxk; yk; z; tk;jÞ dz ðB:1Þ

where ðxk; ykÞ with k¼ 1;…;K denotes the coordinates of
sensor k and tk;j with j¼ 1;…; Jk denotes the jth instant of
measurement at sensor k. cðxk; yk; tj;kÞ represents the con-
centration at the sensor k and time j after the propagation
in zones 1 and 2. Note that c implicitly depends on c1: c is
the integral of c2, c2 and s2 are linked by Eq. (A.2) and s2 is
a function of c1. Insofar as this integral can be calculated
explicitly, the measurement system eliminates the depen-
dency on z. In the expression of the concentrations c2, the
impulsive response h2 is replaced by h2 , independent of z:

h2ðx; y; tÞ ¼ t�1ð4πD2;xD2;yÞ�1=2 exp �ðx�v2;xtÞ2
D2;xt

� y2

D2;yt

( )
:

and the concentrations becomes cðx; y; tÞ ¼ 2vz;1h1ðtÞn
h2ðx; y; tÞnsðx; y; tÞ.

Appendix C. Conjugate prior densities for
Gaussian likelihood

For the sake of completeness, this appendix reminds of
the well-known expressions of the conjugate densities in
case of Gaussian likelihood (see for instance [42, p. 97] for
more results on conjugate priors). Let note pðdjμlike; rlikeÞ ¼
N ðμlike; rlikeÞ the Gaussian likelihood with mean μlike and
variance rlike. With little calculation, it is not difficult to
show the following results:

� if the prior density for the mean μlike is Gaussian with
parameter pðμlikeÞ ¼N ðμpri; rpriÞ, then the conditional
posterior density for μlike is still Gaussian with para-
meters

pðμlikejd; rlikeÞpN μlikerlikeþdrpri
rlikeþrpri

;
rlikerpri
rlikeþrpri

� �
:

� if the prior density for the variance rlike is inverse
gamma with parameter pðrlikeÞ ¼ IGðαpri; βpriÞ, then the
conditional posterior density for rlike is still an inverse
gamma with parameters

pðrlikejd; μlikeÞpIG αpriþ
1
2
; βpriþ

ðd�μlikeÞ2
2

 !
:

Appendix D. Expectation of the error variance estimation

In this appendix, we prove that the variance estimated
by our method converges to the mean of the variances on
each sensor. First, it is easy to see that the PM estimate and
the marginal PM estimate are equal, so r̂ε ¼ Erε ;θ;q0 jdðrεÞ
¼ Erε jdðrεÞ. Then, according to the Rao–Blackwell theorem
[54], we have the following approximation of the marginal
density: pðrεjdÞ ¼ 1=N∑N

n ¼ 1pðrεjd; θðnÞ; qðnÞ0 Þ where θðnÞ; qðnÞ0
are drawn from the joint posterior density. So it leads to
the following expression for the estimate:

Erε ;θ;q0 jdðrεÞ ¼ Erε jdðrεÞ

¼
Z

rεpðrε dÞ drε
��

�
Z

rε
1
N

∑
N

n ¼ 11
pðrε d; θðnÞ; qðnÞ0 Þ drε

���
¼ 1
N

∑
N

n ¼ 1
Erεjd;θðnÞ ;qðnÞ0

ðrεÞ:

In our case, the conditional density for rε, pðrεjd; θÞ, is an
Inverse Gamma density with parameters α¼M=2; β¼
‖d�q0hðθÞ‖2=2 (assuming αε ¼ 0 and βε ¼ 0), and its expec-
tation is equal to β=α¼ ‖d�q0hðθÞ‖2=M. Let us write
bðnÞ ¼ d�qðnÞ0 hðθðnÞÞ, so we have Erεjd;θðnÞ ;qðnÞ0

ðrεÞ ¼ ‖bðnÞ‖2=M.
Then, by taking the expectation:

Eðr̂εÞ �
1

NM
∑
N

n ¼ 1
∑
M

m ¼ 1
EððbðnÞm Þ2Þ

where M is the observation number. By using the relation
VARðbðnÞ

m Þ ¼ EððbðnÞ
m Þ2Þ�EððbðnÞ

m ÞÞ2, we obtain

Eðr̂εÞ �
1
NK

∑
N

n ¼ 1
∑
K

k ¼ 1

1
Jk

∑
Jk

j ¼ 1
ðrðnÞε;k;jÞ2

where K is the sensor number, Jk the observation number
at sensor k. Finally remind that rε;k;j is constant on each
sensor k so the mean for the sensor k is simply
1=Jk∑

Jk
j ¼ 1ðr

ðnÞ
ε;k;jÞ2 ¼ ðrðnÞε;kÞ2, we have

Eðr̂εÞ �
1
K

∑
K

k ¼ 1

∑N
n ¼ 1ðrðnÞε;kÞ2

N
¼ 1
K

∑
K

k ¼ 1
ðr̂ε;kÞ2

Thus, the mean estimate value can be approximated by the
mean of the empirical variances on the sensors.
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