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Abstract

This paper is a synthetic overview of regularization, maximum entropy and probabilistic methods for some inverse problems
such as deconvolution and Fourier synthesis problems which arise in mass spectrometry. First we present a unified description
of such problems and discuss the reasons why simple naı̈ve methods cannot give satisfactory results. Then we briefly present
the main classical deterministic regularization methods, maximum entropy-based methods and the probabilistic Bayesian
estimation framework for such problems. The main idea is to show how all these different frameworks converge to the
optimization of a compound criterion with a data adequation part and an a priori part. We will however see that the Bayesian
inference framework gives naturally more tools for inferring the uncertainty of the computed solutions, for the estimation of
the hyperparameters or for handling the myopic or blind inversion problems. Finally, based on Bayesian inference, we present
a few advanced methods particularly designed for some mass spectrometry data processing problems. Some simulation results
illustrate mainly the effect of the prior laws or equivalently the regularization functionals on the results one can obtain in
typical deconvolution or Fourier synthesis problems arising in different mass spectrometry technique. (Int J Mass Spectrom
215 (2002) 175–193) © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Data processing problems in mass spectrometry

In mass spectrometry, the data acquisition and
processing is an essential part of the final measure-
ment process. Even if, in some cases, only some
pre-processing is done during the acquisition process,
the post-acquisition data processing is a vital part of
many new mass spectrometry instruments. The main
reason is that the raw data do not, in general, directly
represent the parameters of interest. These raw data
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are, in general, transformed and distorted version of
the ideal physical quantity of interest which is the
mass distribution of the object under the test.

Some distortions are related directly to the measure-
ment system, for example the blurring effect of the
time-of-flight (TOF) [1] mass spectrometry data can
be written as a simple one-dimensional convolution
equation:

g(τ) =
∫

f (t)h(τ − t)dt, (1)

whereh(t) is the point spread function (psf) of blur-
ring effect,f (t) the desired mass distribution andg(t)
the data. Fig. 1 shows an example where in place of
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Fig. 1. Blurring effect in TOF mass spectrometry data: (a) desired spectra; (b) observed data.

observing the signalf (t) in (a) the signalg(t) in (b)
has been observed.

Some others are due to the output parts of the instru-
ment, for example the interaction and coupling effect
of focal plane detectors (FPD) [2] or non-uniformity
of ion conversion devices (electron multipliers) in
general and in matrix-assisted laser desorption ioniza-
tion (MALDI) techniques in particular. These distor-
tions can be written as a two-dimensional convolution
equation:

g(x′, y′) =
∫∫

f (x, y)h(x′ − x, y′ − y)dx dy. (2)

In some other mass spectrometry techniques such as
Fourier transform ion cyclotron resonance (FT-ICR),

the observed data are related to the Fourier transform
(FT) or Laplace transform (LT) of the mass distribu-
tion:

g(τ) =
∫

f (s)exp{−sτ } dω,

with s = jω or s = jω + α, (3)

where α is an attenuation factor. Fig. 2 shows an
example of the theoretical spectrumf (s) in (a) and
the corresponding observed datag(τ) in (b). We may
observe that, due to the attenuation and the noise in
the data, a simple inversion by inverse FT (c) may
not give satisfactory result.

In this paper we try to give a unified approach to
deal with all these problems. For this purpose, first we
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Fig. 2. The reference spectrum (a), its corresponding simulated data in FT-ICR (b) and the inverse FT of the data (c).

note that all these problems are special cases of

g(s) =
∫

f (r)h(r, s)dr. (4)

Then, we assume that the unknown functionf (r)
can be described by a finite number of parameters

x = [x1, . . . , xn]:

f (r) =
n∑

j=1

xjbj (r), (5)

wherebj (r) are known basis functions. With this as-
sumption the raw datay(i) = g(si ), i = 1, . . . , m are
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related to the unknown parametersx by

y(i) = g(si ) =
n∑

j=1

Ai,j xj ,

withAi,j =
∫

bj (r)h(r, si )dr, (6)

which can be written in the simple matrix formy =
Ax. The inversion problem can then be simplified to
the estimation ofx given A andy. Two approaches
are then in competition: (a) the dimensional control
approach which consists in an appropriate choice of
the basis functionsbj (r) andn ≤ m in such a way
that the equationy = Ax be well conditioned; (b) the
more general regularization approach where a classical
sampling basis forbj (r) with desired resolution is
choose no matter ifn > m or if A is ill-conditioned.

In the following, we follow the second approach
which is more flexible for adding more general prior
information onx. We must also remark that, in gen-
eral, it is very hard to give a very fine mathematical
model to take account for all the different steps of the
measurement process. However, very often, we can
find a rough linear model for the relation between the
data and the unknowns (one- or two-dimension con-
volution or FT or any other linear transformation). But
this model may depend on some unknown parame-
tersθ , for example the amplitude and the width of the
Gaussian shape psf. It is then usual to write

y = Aθx + ε, (7)

whereε is a random vector accounting for the remain-
ing uncertainties of the model and the measurement
noise process.

When the direct model is perfectly known, the
main objective of the data processing step is to obtain
an estimatex̂ of the x such thatx̂ optimizes some
optimality criteria. We will see that, very often, a data
matching criterion such as a least square (LS) crite-
rion J (x) = ‖y − Ax‖2 does not give satisfactory
results. This is, in general due toill-posednessof the
problem which, in the case of linear problems, results
in ill-conditioned linear systems of equations [3]. To
obtain a satisfactory result, we need to introduce some

prior information about the errors and about the un-
knownsx. This can be done through the generalreg-
ularization theoryor in a more general way through
the probabilistic inference and statistical estimation.
In probabilistic methods, the rough prior informa-
tions about the errorsε and the unknownsx are used
to assign the prior probability distributionp(ε|φ1)

and p(x|φ2) where φ1 and φ2 are their respective
parameters.

Thus, the first steps of solving the problem are to
clearly identifyx, A, θ andy and to define an opti-
mality criterion forx̂ which may also depends on the
hyperparametersφ = [φ1,φ2]. The next step is to find
an efficient algorithm to optimize it, and finally, the
third step is to characterize the obtained solution. We
will however see that these steps are forcibly depen-
dent to each other.

In this paper we focus on this general problem. We
first consider the case where the model is assumed
to be perfectly known (A and θ known). This is the
simpleinversion problem. Then we consider the more
general case where we have also to infer aboutθ . This
is themyopicor blind inversionproblem. We may also
want to infer on the hyperparametersφ from the data
(unsupervised inversion). In some cases, we may have
two sets of data, one with known input (for calibration
or point spread function estimation purposes) and one
with unknown input. Finding an optimal solution for
the psf and the unknown input from the two sets of
data can be considered asmulti-channel blind decon-
volution.

1.2. Why simple naı̈ve methods do not give
satisfaction?

When the degradation model is assumed to be per-
fectly known, we are face to a simple inversion prob-
lem. However, even in this case

• the operatorA may not be invertible (A−1 does not
exists);

• it may admit more than one inverse (∃B1 and
B2|B1(A) = B2(A) = I whereI is the identity
operator);
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• it may be ill-posed or ill-conditioned meaning that
there existsx andx + αδx for which ‖A−1(x) −
A−1(x + αδx)‖ never vanishes even ifα �→ 0.

These are the three necessary conditions ofexis-
tence, uniquenessand stability of Hadamard for the
well-posedness of an inversion problem [4–6]. This
explains the reason for which, in general, even in
this simple case, many naı̈ve methods based on gen-
eralized inversion or on least squares may not give
satisfactory results. Fig. 3 shows, in a simple way, the
ill-posedness of a deconvolution problem. In this fig-
ure, we see that three different input signals can result
three outputs which are practically indistinguishable
from each other. This means that, data adequation
alone cannot distinguish between any of these inputs.

As a conclusion, we see that, apart from the data,
we need extra information. The art ofinversion in
a particular inverse problem is how to includejust
enough prior informationto obtain a satisfactory re-
sult. In the following, we will see that, to do this,
there are, at least, three approaches: (i) classical deter-
minist regularization approach; (ii) information theory
and entropy-based approach; and (iii) probabilistic and
more specifically the Bayesian estimation approach.

The main idea of this paper is to show how all these
different frameworks converge to the optimization of
a compound criterion: a data adequation part (likeli-
hood) and an a priori part (or penalization). We will
see however that the Bayesian framework gives more
tools, for example, for inferring the uncertainty of the
computed solutions, for accounting for more specific
knowledge of the errors and noise and for the estima-
tion of the hyperparameters and for handling myopic
and blind inversion problems.

2. Regularization methods

Conceptually, regularization means finding a unique
and stable solution to an ill-posed inverse problem.
A review of the regularization theory and its different
presentations is out of the scope of this paper. Here,
we adopt a practical discrete approach, i.e., when the
problem is discretized and we are faced to a linear

system of equationsy = Ax which may be either
under or over-determined.

In the first case the equationy = Ax has more than
one solution and one way to obtain a unique solution
is to define a criterion, for example∆(x, m) to choose
that unique solution by

x̂ = arg min{x;Ax=y}∆(x, m), (8)

wherem is an a priori solution and∆ a distance mea-
sure.

The solution to this constrained optimization can
be obtained via Lagrangian techniques [7] which con-
sists of defining the LagrangianL(x,λ) = ∆(x, m)+
λt(y − Ax) and searching for(λ̂, x̂) through{

λ̂ = arg minλ{D(λ) = inf x L(x,λ)},
x̂ = arg minx{L(x, λ̂)}.

(9)

As an example, when∆(x, m) = 1/2‖x − m‖2 then
the solution is given by

x̂ = m + At(AAt)−1(y − Am). (10)

One can remark that, whenm = 0 we havex̂ =
At(AAt)−1y and this is the classical minimum norm
generalized inverse solution.

Another example is the case where∆(x, m) =∑
j xj ln (xj /mj ) which is more detailed in Sec-

tion 3.1.
The main issue here is that, this approach provides a

unique solution to the inverse problem, but in general,
this solution remains sensitive to error on the data.

In the second case the equationy = Ax may not
even has a solution. One then can try to define a so-
lution by

x̂ = arg minx{∆(y,Ax)}, (11)

where∆(y, z) is a distance measure betweeny andz.
The case where∆(y, z) = ‖y − z‖2 is the

well-known least squares (LS) method. In this case,
it is easy to see that anŷx which satisfies the normal
equationAtAx̂ = Aty is a LS solution. IfAtA is in-
vertible and well-conditioned then̂x = (AtA)−1Aty

is again the unique generalized inverse solution. But,
in general, this is not the case:AtA is rank deficient
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Fig. 3. Ill-posedness of a deconvolution problem: inputs on the left give practically indistinguishable outputs.

or ill-conditioned and we need to constrain the space
of the admissible solutions. The constraint LS is then
defined as

x̂ = arg minx∈C{‖y − Ax‖2}, (12)

whereC is a convex set. The choice of the setC is pri-
mordial to satisfy the three conditions of a well-posed
solution. An example is the positivity constraint:C =
{x : ∀j, xj > 0}. Another example isC = {x :

‖x‖2 ≤ α} where the solution can be computed via
the optimization of

J (x) = ‖y − A(x)‖2 + λ‖x‖2. (13)

The main technical difficulty is the relation between
α and λ. The minimum norm LS solution can also
be computed using the singular values decomposition,
where there is a link between the choice of the thresh-
old for truncation of the singular values andα or λ.
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In the general case, it is always possible to define a
unique solution as the optimizer of a compound crite-
rion J (x) = ‖y −Ax‖2 +λF(x) or the more general
criterion

J (x) = ∆1(y,Ax) + λ∆2(x, m), (14)

where∆1 and∆2 are two distances or discrepancy
measures,λ a regularization parameter andm is an a
priori solution. The main questions here are: (i) how
to choose∆1 and∆2 and (ii) how to determineλ and
m. For the first question, many choices exist:

• Quadratic orL2 distance:∆(x, z) = ‖x − z‖2 =∑
j (xj − zj )

2;
• Lp distance:∆(x, z) = ‖x−z‖p = ∑

j |xj −zj |p;
• Kullback distance:∆(x, z) = ∑

j xj ln (xj /zj ) −
(xj − zj );

• roughness distance:∆(x, z) any of the previous dis-
tances withzj = xj−1 or zj = (xj−1 + xj−1)/2 or
any linear functionzj = ψ(xk, k ∈ N (j)) where
N (j) stands for the neighborhood ofj . (One can
see the link between this last case and the Gibbsian
energies in the Markovian modeling of signals and
images).

The second difficulty in this approach is determination
of the regularization parameterλ which is discussed
at the end of this paper, but its description is out of
the scope of this paper.

As a simple example, we consider the case where
both∆1 and∆2 are quadratic:J (x) = ‖y −Ax‖2

W +
λ‖x − m‖2

Q with the notation‖z‖2
W = ztWz. The

optimization problem, in this case, has an analytic so-
lution

x̂ = (AtWA + λQ)−1(AtWy − Qm), (15)

which is a linear function of the a priori solutionm
and the datay. Note also that whenm = 0, Q = I

andW = I we havex̂ = (AtA+λI )−1Aty and when
λ = 0 we obtain the generalized inverse solutionsx̂ =
(AtA)−1Aty.

As we mentioned before, the main practical diffi-
culties in this approach are the choice of∆1 and∆2

and determination of the hyperparametersλ and the
inverse covariance matricesW andQ.

3. Maximum entropy methods

3.1. Classical ME methods

The notion of entropy has been used in different
ways in inversion problems. The classical approach
is consideringx as a distribution and the datay as
linear constraints on them. Then, assuming that the
data constraints are satisfied by a non-empty set of
solutions, a unique solution is chosen by maximizing
the entropy

S(x) = −
∑
j

xj ln xj , (16)

or by minimizing the cross-entropy or the Kullback–
Leibler distance betweenx and a default solutionm

KL (x, m) =
∑
j

xj ln
xj

mj

− (xj − mj), (17)

subject to the linear constraintsy = Ax. This method
can be considered as a special case of the regulariza-
tion technique described in previous section for the
under-determined case. Here, we have∆(x, m) =
KL (x, m) and the solution is given by

x̂j = mj exp[−[Atλ̂]j ],

with λ̂ = arg minλ{D(λ) = λty − G(Atλ,m)},
(18)

whereG(s, m) = ∑
j mj (1 − exp[−sj ]). Unfortu-

nately hereD(λ) is not a quadratic function ofλ and
thus there is not an analytic expression forλ̂. However,
it can be computed numerically and many algorithms
have been proposed for its efficient computation. See
for example [8,9] and the cited references for more
discussions on the computational issues and algorithm
implementation.

For other choices of entropy expressions and the
presentation of the optimization problem in continuous
case (functions and operators in place of vectors and
matrices) see [10].

However, even if in these methods, thanks to
convex analysis and Lagrangian techniques, the con-
strained optimization of (16) or (17) can be replaced
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by an equivalent unconstrained optimization, the ob-
tained solutions satisfy the uniqueness condition of
well-posedness but not always the stability one [5,6].

3.2. Entropy as a regularization functional

Entropy (16) or cross-entropy (17) has also been
used as a regularization functional∆2(x, m) in (14).
The main difficulty in this approach is the determina-
tion and proper signification of the regularization pa-
rameterλ. Note that the criterion

J (x) = ‖y − Ax‖2 + λKL (x, m), (19)

is convex onRn+ and the solution, when exists, is
unique and can be obtained either by any simple
gradient-based algorithm or by using the same La-
grangian technique giving:

x̂j = mj exp[−[Atλ̂]j ],

with

λ̂ = arg minλ

{
D(λ) = λty − G(Atλ,m) + 1

λ
‖λ‖2

}
.

(20)

Note that the only difference between (18) and (20)
is the extra term 1/λ‖λ‖2 in D(λ). Note also that the
solution is not a linear function of the datay, but a
linear approximation to it can be obtained by replacing
KL (x, m) by its Taylor series expansion up to the
second order which writes

J (x) = ‖y − Ax‖2 + λ(x − m)tdiag[m]−1(x − m),

which gives

x̂ = m + diag[m](A diag[m]At + λ−1I )−1(y − Am).

3.3. Maximum entropy in the mean

The following summarizes the different steps of the
approach:

• Considerx as the mean value of a quantityX ∈ C,
whereC is a compact set on which a probability law
P is defined:x = EP {X}, and the datay as exact
equality constraints on it:y = Ax = AEP {X}.

• Determine P by minimizing KL(P ;µ) subject
to the data constraints. Hereµ(x) is a reference
measure corresponding to the prior information
on the solution. The solution is obtained via the
Lagrangian and is given by

dP(x,λ) = exp[λt[Ax] − lnZ(λ)] dµ(x),

whereZ(λ) =
∫
C

exp[λt[Ax]] dµ(x).

The Lagrange parameters are obtained by search-
ing the unique solution of∂ lnZ(λ)/∂λi = yi, i =
1, · · · ,M.

• The solution to the inverse problem is then defined
as the expected value of this distribution:x̂(λ) =
EP {X} = ∫

x dP(x,λ).
These steps are very formal. In fact, it is possible

to show that the solution̂x(λ̂) can be computed in
two ways:

• Via optimization of a dual criterion: the solution̂x
is expressed as a function of the dual variableŝ =
Atλ̂ by x̂(ŝ) = ∇sG(ŝ,m) where

G(s,m) = lnZ(s,m) = ln
∫
C

exp[stx] dµ(x),

m = Eµ{X} =
∫
C

x dµ(x)andλ̂

= arg maxλ{D(λ) = λty − G(Atλ)}.
• Via optimization of a primal or direct criterion:

x̂ = arg minx∈C{H(x,m)}
s.t., y = Ax whereH(x,m)

= sups{stx − G(s,m)}.

What is interesting here is the link between these
two options. Note that

• FunctionsG andH depend on the reference mea-
sureµ(x).

• The dual criterionD(λ) depends on the data and
the functionG.

• The primal criterionH(x,m) is a distance measure
betweenx andm which means:H(x,m) ≥ 0 and
H(x,m) = 0 iff x = m; H(x,m) is differentiable
and convex onC andH(x,m) = ∞ if x /∈ C.
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• If the reference measure is separable:µ(x) =∏N
j=1µj (xj ) then P is too: dP(x,λ) = ∏N

j=1
dPj (xj ,λ) and we have

G(s,m) =
∑
j

gj (sj ,mj ),

H(x,m) =
∑
j

hj (xj ,mj ), x̂j = g′
j (sj ,mj ),

wheregj is the logarithmic Laplace transform of
µj : gj (s) = ln

∫
exp[sx] dµj (x); and hj is the

convex conjugate ofgj : hj (x) = maxs{sx−gj (s)}.
The following table gives three examples of choices

for µj and the resulting expressions forgj andhj :

µj (x) gj (s) hj (x,m)

Gaussian exp[−(1/2)(x − m)2] 1/2(s − m)2 1/2(x − m)2

Poisson mx/x! exp[−m] exp[m − s] −x ln (x/m) + m − x

Gamma xα−1 exp[−x/m] ln (s − m) − ln (x/m) + (x/m) − 1

We may remark that the two famous expressions of
Burg and Shannon entropies are obtained as special
cases. For more details see [11–21].

As a conclusion, we see that the maximum entropy
in mean extends in some way the classical ME ap-
proach by giving other expressions for the criterion to
optimize. Indeed, it can be shown that where ever we
optimize a convex criterion subject to the data con-
straints we are optimizing the entropy of some quan-
tity related to the unknowns and vise versa. As a fi-
nal remark, we see that even if this information the-
ory approach gives some more insights for the choice
of criteria to optimize, it is more difficult to account
for the errors on the data and there is no tools for the
determination of the hyperparameters.

4. Bayesian estimation approach

In Bayesian approach, the main idea is to translate
our prior knowledge about the errors and about the
unknowns to prior probability laws. Then, using the
Bayes rule the posterior law of the unknowns is ob-
tained from which we deduce an estimate for them.

To illustrate this, let consider the case of linear in-
verse problemsy = Ax + ε. The first step is to
write down explicitly our hypothesis: starting by the
hypothesis thatε is zero-mean (no systematic error),
white (no correlation for the errors) and assuming that
we may only have some idea about its energyσ 2

ε =
1/(2φ), and using either the intuition or the maximum
entropy principle (MEP) lead to a Gaussian prior law:
ε ∼ N (0,1/(2φ)I ). Then, using the direct model
y = Ax + ε with this assumption leads to

p(y|x, φ) ∝ exp[−φ‖y − Ax‖2]. (21)

The next step is to assign a prior law to the unknowns
x. This step is more difficult and needs more caution.

Again here, let illustrate it through a few examples. In
the first example, we assume that, a priori we do not
have (or we do not want or we are not able to account
for) any knowledge about the correlation between the
components ofx. This leads us to

p(x) =
∏
j

pj (xj ). (22)

Now, we have to assignpj (xj ). For this, we may
assume to know the mean valuesmj and some idea
about the dispersions around these mean values. This
again leads us to Gaussian lawsN (mj , σ

2
xj
), and if

we assumeσ 2
xj

= 1/(2θ),∀j , we obtain

p(x) ∝ exp[−θ
∑
j

|xj − mj |2]

= exp[−θ‖x − m‖2]. (23)

With these assumptions, using the Bayes rule, we ob-
tain

p(x|y) ∝ exp[−φ‖y − Ax‖2 − θ‖x − m‖2]. (24)

This posterior law contains all the information we
can have onx (combination of our prior knowledge
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and data). Ifx was a scalar or a vector of only two
components, we could plot the probability distribu-
tion and look at it. But, in practical applications,x

may be a vector with huge number of components.
For this reason, in general, we may choose apoint
estimatorto summarize it (best representing value).
For example, we can choose the valuex̂ which cor-
responds to the maximum ofp(x|y)—the maximum
a posteriori (MAP) estimate, or the valuêx which
corresponds to the mean of this posterior—thepos-
terior mean (PM) estimate. We can also generate
samples (using any Monte Carlo method) from this
posterior and just look at them as a movie or use
them to compute the PM estimate. We can also use
it to compute the posterior covariance matrix from
which we can infer on the uncertainty of the proposed
solutions.

In the Gaussian priors case already presented, it is
easy to see that, the posterior law is also Gaussian and
the both estimates are the same and can be computed
by minimizing

J (x) = − lnp(x|y) = ‖y − Ax‖2 + λ‖x − m‖2,

with λ = θ

φ
= σ 2

ε

σ 2
x

. (25)

We may note here the analogy with the quadratic
regularization criterion (14) with the emphasis that
the choice∆1(y,Ax) = ‖y − Ax‖2 and∆2(x,m) =
‖x − m‖2 are the direct consequences of Gaus-
sian choices for prior laws of the noise and the un-
knownsx.

The Gaussian choice forpj (xj ) may not always be
a pertinent one. For example, we may a priori know
that the distribution ofxj around their meansmj are
more concentrated but great deviations from them are
also more likely than a Gaussian distribution [22]. This
knowledge can be translated by choosing a generalized
Gaussian law

p(xj ) ∝ exp

[
− 1

2σ 2
x

|xj − mj |p
]
, 1 ≤ p ≤ 2.

(26)

In some cases we may know more, for example we
may know thatxj are positive values. Then a Gamma

prior law

p(xj ) = G(α,mj ) ∝ (xj /mj )
−α exp[−xj /mj ],

(27)

would be a better choice.
In some other cases we may know thatxj are dis-

crete positive values. Then a Poisson prior law

p(xj ) ∝
m
xj
j

xj !
exp[−mj ] (28)

is a better choice.
In all these cases, the MAP estimates are al-

ways obtained by minimizing the criterionJ (x) =
− lnp(x|y) = ‖y − Ax‖2 + λF(x) whereF(x) =
− lnp(x). It is interesting to note the different expres-
sions we obtain forF(x) for these choices contain
also different entropy expressions for thex.

When, a priori we know thatxj are not independent,
for example when they represents the pixels of an
image, we may use a Markovian modeling

p(xj |xk, k ∈ S) = p(xj |xk, k ∈ N (j)), (29)

whereS = {1, . . . , N} stands for the whole set of
pixels andN (j) = {k : |k − j | ≤ r} stands forrth
order neighborhood ofj .

With some assumptions about the border limits [23],
such models again result to the optimization of the
same criterion with

F(x) = ∆2(x, z) =
∑
j

φ(xj , zj )

wherezj = ψ(xk, k ∈ N (j)), (30)

with different potential functionsφ(xj , zj ).
A simple example is the case wherezj = xj−1 and

φ(xj , zj ) any function in between the following:{
|xj − zj |α, α ln

xj

zj
+ xj

zj
,

xj ln
xj

zj
+ (xj − zj )

}

See [24–26] for some more discussion and properties
of these potential functions.
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5. Main conclusion and unifying viewpoint

As one of the main conclusions here, we see that, a
common tool between the three previous approaches
is defining the solution as the optimizer of a compound
criterion: a data dependent part∆1(y,Ax) and an a
priori part ∆2(x,m). In all cases, the expression of
∆1(y,Ax) depends on the direct model and the hy-
pothesis on the noise and the expression of∆2(x,m)

depends on our prior knowledge ofx. The only differ-
ence between the three approaches is the arguments
leading to these choices. In classical regularization,
the arguments are based on notion of energy, in maxi-
mum entropy approach they are based on information
theory, and in Bayesian approach, they are based on
the choice of the prior probability laws.

However, the Bayesian approach has some more ex-
tra features: it gives naturally the tools to account for
uncertainties and errors of modeling and data through
the likelihoodp(y|x). It also gives natural tools to
account for any prior information about the unknown
signal through the prior probability lawp(x). We also
have access to the whole posteriorp(x|y) from which,
not only we can define an estimate but also, we can
quantify its corresponding uncertainty. For example,
in the Gaussian case, we can use the diagonal ele-
ments of posterior covariance matrix to put error bars
on the computed solution. We can also compare pos-
terior and prior laws of the unknowns to measure the
amount of information contained in the observed data.
Finally, as we will see in the last section, we have finer
tools for hyperparameters estimation and for handling
myopic or blind deconvolution problems. In the fol-
lowing we keep this approach and present methods
with finer prior modeling more appropriate for mass
spectrometry signal processing applications.

6. Advanced methods

6.1. Bernoulli–Gamma and generalized
Gaussian modeling

In mass spectrometry, the unknown quantityx is
mainly composed of positive pulses. One way to model

this prior knowledge is to imagine a binary valued ran-
dom vectorz with p(zj = 1) = α andp(zj = 0) =
1−α, and describe the distribution ofx hierarchically

p(xj |zj ) = zjp0(xj ), (31)

with p0(xj ) being either a Gaussianp(xj ) =
N (m, σ 2) or a Gamma lawp(xj ) = G(a, b). The
second choice is more appropriate while the first re-
sults on simpler estimation algorithms. The inference
can then be done through the joint posterior

p(x, z|y) ∝ p(y|x)p(x|z)p(z). (32)

The estimation ofz is then calleddetectionand that
of x estimation. The case where we assumep(z) =∏

j p(zj ) = αn1(1 − α)(n−n1) with n1 the number
of ones andn the length of the vectorz, is called
Bernoulli process and this modelization forx is called
Bernoulli–Gaussianor Bernoulli–Gammaas a func-
tion of the choice forp0(xj ).

The difficult step in this approach is the detection
step which needs the computation of

p(z|y) ∝ p(z)

∫
p(y|x)p(x|z)dx (33)

and then the optimization over{0,1}n wheren is the
length of the vectorz. The cost of the computation of
the exact solution is huge (a combinatorial problem).

Many approximations to this optimization have
been proposed which result to different algorithms for
this detection–estimation problem [27]. To avoid com-
plex and costly algorithms of detection–estimation
and still be able to catch the mass spectrometry pulse
shape prior information, there is a simpler model-
ing: generalized Gaussian modelingwhich consist of
assumingp(x) ∝ exp[−θ

∑
j |xj |α], 1 ≤ α ≤ 2 or

p(x) ∝ exp[−θ
∑

j |xj − xj−1|α] or still a combina-
tion of them

p(x) ∝ exp[−θ0

∑
j

|xj |α0 − θ1

∑
j

|xj − xj−1|α1].

(34)

The first one translates the fact that, if we plot the
histogram of a typical spectrum, we see that great
number of samples are near to zero, but there are



186 A. Mohammad-Djafari et al. / International Journal of Mass Spectrometry 215 (2002) 175–193

samples which can go very far from this axis. The
second expression translates the same fact but on
the differences between two consecutive samples
and the third choice combines the two facts. The
more interesting fact of such a choice as a prior
law for x is that the corresponding MAP criterion
is convex and the computation of the solutions can
be done easily by any gradient-based type algo-
rithm.

6.2. A mixed background and impulsive
signal modeling

In some techniques of mass spectrometry, a better
model forx is to assume it as the sum of two com-
ponentsx = x1 + x2: a smooth backgroundx1 and
pulse shapex2. To catch the smoothness ofx1 we can
assign a Gaussian distributionp(x1) = N (x10,Rx1)

and to catch the pulse shape ofx2 we can again ei-
ther use the Bernoulli–Gamma or Bernoulli–Gaussian
models of the previous section or use a generalized
Gaussian prior

p(x2) ∝ exp[−θ
∑
j

|x2j |α]. (35)

The inference can then be done through the joint
posteriorp(x1, x2|y) ∝ p(y|x)p(x1)p(x2) which
writes

lnp(x1, x2|y)= ‖y − A(x1 + x2)‖2

+(x1 − x10)
tR−1

x1
(x1 − x10)

−θ
∑
j

|x2j |α. (36)

One possible way to estimatex1 andx2 is the joint
optimization of this posterior through the following
relaxation iterations:{

x̂1 = (AtA + λ1R
−1
x1
)−1(Aty1 + λ1m1),

x̂2 = arg maxx2
{ lnp(x̂1, x2|y)}.

6.3. Hierarchical modeling

Another approach is a hierarchical modeling.
As an appropriate example, we proposep(x|z) =

N (z, σ 2
z I ) and p(z) = N (0,Rz) with Rz =

σ 2
z (D

tD)−1 which leads to

− lnp(x, z|y) = ‖y − Ax‖2 + λ‖x − z‖2 + µ‖Dz‖2.

(37)

Its joint optimization can be obtained through the fol-
lowing relaxation iterations:


x̂ = (AtA + λI )−1(Aty + λẑ),

ẑ = λ

(
DtD + λ

µ
I

)−1

x̂.
(38)

A better choice forp(x|z) is p(x|z) ∝ exp[−θ∑
j |xj − zj |α] which leads to

− lnp(x, z|y)= ‖y − Ax‖2 + µ
∑
j

|xj − zj |α

+λ‖Dz‖2. (39)

The main drawback of this model is that− lnp(x, z|y)
is neither quadratic inz nor in x. However, the so-
lution can be obtained via an iterative gradient-based
algorithm.

7. Numerical experiment

The main objective of this section is to illustrate
some of the points we discussed in previous sections.
As we discussed, one of the main critical points in
inverse problems is the choice of appropriate prior
laws. In this paper, we only focus on this point and we
give a very brief comparison of results obtained with
some of the aforementioned prior law choices. We
have limited ourselves to the prior laws which result
to concave MAP criteria to avoid the difficult task of
global optimization problems.

We also limit ourselves to two inverse problems:
deconvolution and Fourier synthesis. This comparison
can be done objectively on simulated data. However,
we must generate data representing some real and dif-
ficult situations to be able to see the differences be-
tween different methods. For this reason, we simulated
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Fig. 4. Simple deconvolution results for the first reference spectrum. The original spectrum and data are those of Fig. 1. (a) Quadratic
regularization (QR); (b) QR with positivity constraint; (c) MAP estimation with generalized Gaussian prior; (d) MAP estimation with
−x ln x prior; (e) MAP estimation with lnx prior.
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Fig. 5. Deconvolution results of Fig. 4 showed in logarithmic scale: (a) Gaussian prior; (b) truncated Gaussian prior; (c) truncated
generalized Gaussian prior; (d) entropicx ln x − x prior; (e) entropic lnx + x prior.
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two spectra:

(i) a simple case where the background is flat
(Fig. 1a) and

(ii) a more complicated case where the background is
not flat (Fig. 2a).

We used these spectra as references for measuring
the performances of the proposed data processing
methods.

7.1. Simple deconvolution

For this case, first we used the first spectrum as
the reference. Then using it, we simulated data by
convoluting it with a Gaussian shape psf and added
some noise (white Gaussian such that SNR= 20 dB).
Fig. 1 shows this original spectrum and the associated
simulated data. Then, using these data, we applied
some of the different methods previously explained.

Fig. 4 shows these results. All these results are ob-
tained by optimizing the MAP criterion

J (x) = − lnp(x|y) ∝ ‖y − Ax‖2 + λφ(x),

with different prior lawsp(x) ∝ exp[−λφ(x)]. The
main objective of these experiments is to show the
effects of the prior lawp(x) or equivalently the
choice of the regularization functionalφ(x) on the
results. We limited ourselves here to the following
choices:

(a) Gaussian or equivalently quadratic regularization
φ(x) = α

∑
x2
j , α > 0;

(b) Gaussian truncated on positive axis or equiva-
lently quadratic regularization with positivity con-
straintφ(x) = α

∑
x2
j , xj > 0, α > 0;

(c) Generalized Gaussian or equivalentlyLp regular-
ization withφ(x) = α

∑ |xj |p, p = 1.1, xj > 0,
α > 0;

(d) Shannon (x ln x) entropyφ(x) = α(
∑

xj ln xj −
xj ), xj > 0, α > 0;

(e) Burg ( lnx) entropy or equivalently Gamma prior
φ(x) = α(

∑
ln xj + xj ), xj > 0, α > 0.

Fig. 5 shows the same result on a logarithmic scale
for the amplitudes to show in more detail the low

amplitude pulses. We used log(1 + y) scale in place
of y scale which has the advantage of being equal to
zero fory = 0.

As it can be seen from these results, Gaussian prior
or equivalently quadratic regularization does not give
satisfactory result, but in almost all the other cases
the results are satisfactory, because the corresponding
priors are more in agreement with the nature of the
unknown input signal. The Gaussian prior (a) is not at
all appropriate, Gaussian truncated to positive axis (b)
is a better choice. The generalized Gaussian (c) and
the −x ln x entropic priors (d) give also practically
the same results than the truncated Gaussian case. The
Gamma prior (e) seems to give slightly better result
(less missing and less artifacts) than all the others. This
can be explained if we compare the shape of all these
priors shown in Fig. 6. The Gamma prior is sharper
near to zero and has longer tail than other priors. It thus
enforces signals with greater number of samples near
to zero and still leaves the possibility to have very high
amplitude pulses. However, we must be careful on this
interpretation, because all these results depend also
on the hyperparameterλ whose value may be critical
for this conclusion. In these experiments, we used the
same value for all cases. Description and discussion
of the methods to estimateλ from the data is out of

Fig. 6. Plots of the different prior lawsp(x) ∝ exp[−αφ(x)]:
(a) truncated Gaussianφ(x) = x2, α = 3; (b) truncated gen-
eralized Gaussianφ(x) = xp , p = 1.1, α = 4; (c) entropic
φ(x) = x ln x−x, α = 10; (d) entropicφ(x) = ln x+x, α = 0.1.
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Fig. 7. Reconstructed spectra in FT-NMR data: (a) shows the weighted FFT solution; (b), (c) and (d), respectively, givesx̂1, x̂2 and
x̂ = x̂1 + x̂2. The true peaks are given by circles and the true background is given by dashed lines.
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focus of this paper. We can, however, mention that, in
general, the results are not too sensitive to this value
when it is fixed to the right scale.

7.2. Fourier synthesis inversion in NMR mass
spectrometry

As a second example, we used the second spectrum
as the reference. But here, we simulated the FID data
that one could observe using a relaxation ofτ = 0.2.
Here also, we added some noise on the data and then,
using them, we applied the mixed backgroundand
pulse shape signal model previously explained in this
paper. Fig. 7 shows the result which is obtained more
precisely by optimizing the following criterion:

J (x1, x2)= − lnp(x1, x2|y) = ‖y − A(x1 + x2)‖2

+λ1

∑
j

(x1(j + 1) − x1(j))
2

+λ0

∑
j

|x2(j)|,

which involves a usual data-based term and two reg-
ularization terms: the first one addresses the smooth
backgroundx1 and the second one addresses the im-
pulsive componentx2. The chosen heavy-tailedL2 −
L1 potential function is a hyperbolic cost [28,29]. So
that, J is strictly convex and the estimated object is
defined as the minimizer ofJ overRn+. The optimiza-
tion is achieved by an iterative coordinate descent al-
gorithm [7]. The minimizerŝx1, x̂2 andx̂ = x̂1 + x̂2

are given in Fig. 7(b)–(d). It is to be compared to the
“weighted FFT” solution of Fig. 7(a). The proposed
solution accounts for positivity and clearly separates
background and peaks. Moreover, the peaks are more
accurately identified.

8. Conclusions

In this paper we presented a synthetic overview
of regularization, maximum entropy and probabilistic
methods for linear inversion problems arising in mass
spectrometry. We discussed the reasons why simple

näıve methods cannot give satisfactory results and the
need for some prior knowledge about the unknowns to
obtain satisfactory results. We then presented briefly
the main classical regularization, maximum entropy
based and the Bayesian estimation-based methods.
We showed how all these different frameworks con-
verge to the optimization of a compound criterion.
We discussed the superiority of the Bayesian frame-
work which gives more tools for the estimation of the
hyperparameters or for inferring the uncertainty of
the computed solutions or for handling the myopic or
blind inversion problems. Finally, we presented some
advanced methods based on Bayesian inference and
particularly designed for some mass spectrometry
data processing problems. We illustrated some nu-
merical results simulating deconvolution and Fourier
synthesis problems to illustrate the results we can ob-
tain using some of the presented methods. The main
objective of these numerical experiments was to show
the effect of different choices for prior laws or equiv-
alently the regularization functional on the result.

However, as we have remarked in previous sec-
tions, in general, the solution of an inverse problem
depends on our prior hypothesis on errorsε and on
x. In practical applications, we can only formalize
these hypothesis either through prior probabilities or
through regularization functionals depending on some
hyperparameters (regularization parameter for exam-
ple). Determination of these hyperparameters from the
data becomes then a crucial part of the problem. De-
scription of the methods to handle this problem is out
of focus of this paper. Interested readers can refer to
[30] for deterministic methods such as cross-validation
technics or to [31–42] for Bayesian inference-based
methods.

Another point we did not discussed is the validity
of linear model with additive noisey = Hx + ε and
all the hypothesis needed to write down the likelihood
p(y|x). For example, we assumedε to be additive and
independent of the inputx. This may not be true, but
it simplifies the derivation ofp(y|x) from pε(ε). If
this hypothesis is correct, thenp(y|x) = pε(y−Hx).
If this is not the case, we have to account for it in
the expression ofp(y|x). Then, all the other steps
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of the Bayesian inference do not change. However, if
lnp(y|x) is not a quadratic function ofx, the conse-
quent computations of the posterior law summaries or
its sampling may be more difficult. This is also true for
the hypothesis thatε is white. This assumption is also
used to simplify the expression ofp(y|x), but this can
be handled more easily than the previous hypothesis
if it is not true. For example, if we can assume it to
Gaussian and model its covariance matrixRε , we can
use it easily in the expression of the likelihood which
becomesp(y|x) = N (y − Hx,Rε). Also, as men-
tioned by one of reviewers of this paper, in some tech-
niques of mass spectrometry, the Gaussian assumption
for ε may not be valid, because what is measured is
proportional to the number of ions. Then, a Poisson
distribution forp(y|x) will be a better choice.

Other problems we did not consider in this paper
are myopic or blind inverse problems. As a typical
example, consider deconvolution problems (1) or (2)
where the psfsh(t) or h(x, y) are partially known. For
example, we know that they have a Gaussian shape,
but the amplitudea and the widthσ of the Gaussian
are unknown. Noting byθ = (a, σ ) the problem then
becomes the estimation of bothx and θ from y =
Aθx + ε. The case where we know exactly the shape
but not the gaina is calledauto-calibrationand the
case where we only know the support of the psf but not
its shape is calledblind deconvolution. In the first case
θ = a and in the second caseθ = [h(0), . . . , h(p)].
We must note however that, in general, the blind
inverse problems are much harder than the simple in-
version. Taking the deconvolution problem, we have
seen in introduction that, the problem even when the
psf is given is ill-posed. The blind deconvolution then
is still more ill-posed, because here there are more
fundamental under determinations. For example, it is
easy to see that, we can find an infinite number of pairs
(h, x) which result to the same convolution product
h × x. This means that, to find satisfactory methods
for these problems need much more precise prior
knowledge both onx and onh, and in general, the
inputs must have more structures (be rich in informa-
tion content) to be able to obtain satisfactory results.
Conceptually however, the problem is identical to the

estimation of hyperparameters. Interested readers can
refer to the following papers [27,43] for a few exam-
ples. We are still working on these points. We have
also to mention that we have not yet applied these
methods to real data in spectrometry and we are inter-
ested and prospective to evaluate them on real data.
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