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Gradient Scan Gibbs Sampler: An Efficient Algorithm
for High-Dimensional Gaussian Distributions

Olivier Féron, François Orieux, and Jean-François Giovannelli

Abstract—This paper deals with Gibbs samplers that include
high dimensional conditional Gaussian distributions. It proposes
an efficient algorithm that avoids the high dimensional Gaussian
sampling and relies on a random excursion along a small set of di-
rections. The algorithm is proved to converge, i.e., the drawn sam-
ples are asymptotically distributed according to the target distri-
bution. Our main motivation is in inverse problems related to gen-
eral linear observation models and their solution in a hierarchical
Bayesian framework implemented through sampling algorithms.
It finds direct applications in semi-blind/unsupervised methods as
well as in some non-Gaussian methods. The paper provides an il-
lustration focused on the unsupervised estimation for super-reso-
lution methods.
Index Terms—Mathematics, Monte Carlo methods, optimiza-

tion methods.

I. INTRODUCTION

A. Context and Problem Statement

G AUSSIAN distributions are common throughout signal
and image processing, machine learning, statistics,…

being convenient from both theoretical and numerical stand-
points. Moreover, they are versatile enough to describe very
diverse situations. Nevertheless, efficient sampling including
these distributions is a cumbersome problem in high dimen-
sions and this paper deals with this question.
Our main motivation is in inverse problems [1], [2] and the

methodology resorts to a hierarchical Bayesian strategy, numer-
ically implemented through Monte-Carlo Markov Chain algo-
rithms and more specifically the Gibbs Sampler (GS). Indeed,
consider the general linear direct model , where ,
and are the observation, the noise and the unknown image

and is a given linear operator. Consider, again, two indepen-
dent prior distributions for and that are Gaussian condi-
tionally to a vector , namely the hyperparameter vector. The
estimation of both and relies on the sampling of the joint
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posterior , and this is the core question of the paper. It
commonly requires the handling of the high dimensional condi-
tional posterior that is Gaussian with given mean
and precision .
The framework considered in this paper directly covers

non-stationary and inhomogeneous Gaussian models for image
and noise. The paper also has fallouts for non-Gaussian models
based on conditionally Gaussian ones involving auxiliary/latent
variables1 (e.g., location or scale mixtures of Gaussian) for
edge preserving [3]–[5] and for sparse signals [6], [7]. It also
includes other hierarchical models [8], [9] involving labels
for inversion-segmentation. This framework also includes
linear variant direct models and some non-linear direct models,
based on conditional linear ones, e.g, bilinear or multilinear. In
addition, it covers a majority of current inverse problems, e.g,
unsupervised [5] and semi-blind [10], by including hyperpa-
rameters and acquisition parameters in the vector .
Large scale Gaussian distributions are also useful for Internet

data processing, e.g, to model social networks and to develop
recommender systems [11]. They are also widely used in epi-
demiology and disease mapping [12], [13] as they provide a
simple way to include spatial correlations. The question is also
in relation to spatial linear regression with (smooth) spatially
varying parameters [14]. In these cases the question of efficient
sampling including Gaussian distributions in high dimensions
becomes crucial and it is all the more true in the “Big Data”
context.
In the following we address the general problem of sampling

from a joint distribution where the conditional distribu-
tion is a high-dimensional Gaussian distribution.

B. Existing Approaches

The difficulty is directly related to handling the high-di-
mensional precision . The factorization (Cholesky, square
root,…), diagonalization and inversion of could be used but
they are generally unfeasible in high dimensions due to both
computational cost and memory footprint. Nevertheless, such
solutions are practicable in two famous cases.
• If is circulant or circulant-block-circulant an efficient
strategy [15], [16] relies on its diagonalization computed
by FFT. More generally, an efficient strategy exists if
is diagonalizable by a fast transform, e.g, discrete cosine
transform for Neumann boundary conditions [17], [18].

1It is based on the fact that for a couple of random variables , the con-
ditional law for is Gaussian and the marginal law for is non-Gaussian.
A famous example is a Gaussian variable with precision under a Gamma distri-
bution: the resulting marginal follow a Student distribution.
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• When is sparse, a possible strategy [13], [19], [20] re-
lies on a Cholesky decomposition and a linear system res-
olution. Another strategy is a GS [21] that simultaneously
updates large blocks of variables.

In order to address more general cases, solutions founded on
iterative algorithms for objective optimization or linear system
resolution have recently been proposed.
1) An efficient algorithm has been proposed by several au-

thors [6], [17], [18], [22], [23] (previously used in appli-
cations [8], [10]). It is founded on a Perturbation-Opti-
mization (PO) principle: adequate stochastic perturbation
of a quadratic criterion and optimization of the perturbed
criterion. However, in order to obtain a sample from the
right distribution, an exact optimization is needed, but in
practice an empirical truncation of the iterations is imple-
mented, leading to an approximate sample. [24] introduces
a Metropolis step in order to asymptotically retrieve an
exact sample and then to ensure, in a global MCMC proce-
dure, the convergence to the correct invariant distribution.

2) In [25], [26] the authors propose a Conjugate Direction
Sampler (CDS) based on two crucial properties:(i) a
Gaussian distribution admits Gaussian conditional dis-
tributions and (ii) a set of mutually conjugate directions
w.r.t. is available. The key point of the algorithm is to
sample along these mutually conjugate directions instead
of optimizing as in the classical Conjugate Gradient opti-
mization algorithm.

In the first case, the only constraint on is that a sample
from must be accessible, which is often the case in
inverse problem applications. In the second case, must have
only distinct eigenvalues to make the CDS give an exact sample.
Otherwise it leads to an approximate sample as described in
[26].
The proposed algorithm uses the same approach as the CDS

and extends the efficiency to, theoretically, any matrix .

C. Contribution
The existing methods described above and the proposed one

are both founded on a Gibbs sampler. However, the existing
ones attempt to sample the high dimensional Gaussian compo-
nent whereas the proposed method does not. Our main
contribution is to avoid the high dimensional sampling and only
requires small dimensional sampling. More precisely, given a
subspace , the objective is to sample the sub-compo-
nent of according to the subspace . It must be sampled under
the appropriate conditional distribution , with the
decomposition . The algorithm takes advan-
tage of the ease of calculating the conditional pdf of a multi-
variate Gaussian distribution, when is appropriately built, as
explained in Section II. These ideas are strongly related to other
existing works.
• If the subset is composed of only one direction in the
canonical coordinates, the algorithm amounts to a pixel-
by-pixel GS [3].

• The marginal chain can also be viewed as the one pro-
duced by a specific random scan sampler [27]–[29]. The
random scans are related to the random choice of , de-
pending on the current value .

• Other algorithms based on optimization principles [26],
[30] aim at producing a complete optimization. On the
other hand, in essence, the proposed approach only re-
quires a few steps of the optimization process.

• A similar idea is at work in Hamiltonian (or Langevin)
Monte Carlo [31]–[34] (see also [35]): the proposed distri-
bution takes advantage of an ascent direction of the target
to increase the acceptation probability. Here, the exact dis-
tribution is sampled, so the proposal is always accepted.

However, to our knowledge, the proposed algorithm does not
directly join the class of existing strategies. One contribution of
this paper is to give sufficient assumptions for convergence, i.e.,
the samples are asymptotically distributed according to the joint
pdf .

D. Outline
Subsequently, Section II presents the proposed algorithm

and Section III gives an illustration through an academic
problem in super-resolution. Section IV presents conclusions
and perspectives.

II. GRADIENT SCAN GIBBS SAMPLER

In this section we describe the proposed algorithm: a GS with
a high dimensional conditional Gaussian distribution. The ob-
jective is to generate samples from a joint distribution ,
where is highly dimensional and is a Gaussian
distribution :

(1)

with the potential defined as:

(2)

All the other variables of the problem are grouped into
and we assume that the sampling from is tractable

(directly or with several steps of the GS, including Metropolis-
Hastings steps).

A. Preliminary Results
This section presents classical definitions and results, mostly

based on [25], needed to provide convergence proof and
links between matrix factorization and optimization/sampling
procedures.
Definition 1: Consider a symmetric definite pos-

itive matrix. A set of non-zero vectors in
such that: for is

said mutually conjugate w.r.t. .
A mutually conjugate set w.r.t. is a basis of
, then, for all :

So, if is a Gaussian random vector with mean
and precision , then the are also Gaussian:

(3)
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and reciprocally if the are distributed under (3) then
.

In particular, let be a “current” point and
a given “direction”. One can find such that

is mutually conjugate w.r.t. and writes:

Consider now the -dimensional subset

We are interested in the conditional pdf . The
following result and its proof can be found in [25].
Proposition 1: A sample according to can

be obtained by:
1) sample independently the set with:

2) compute

B. Gradient Scan Gibbs Sampler (GSGS)
In the following we propose a GS in order to sample the joint

probability . The principle is to sample, at each itera-
tion of the GS, only directions of instead of sampling the
whole high dimensional variable. The chosen first direction of
the set will be the gradient of the potential of , with a
stochastic perturbation to ensure, in the general case, the conver-
gence of the resulting Markov chain. The following directions
are chosen so as to get a mutually conjugate subset with respect
to the precision of .
We call our proposed algorithm the Gradient Scan Gibbs

Sampler (GSGS) which is described by Algorithm 1. In this
algorithm the chosen first sampling direction is given by the
gradient of the potential of , with an additional random
perturbation that follows a probability density . In fact,
we expect the gradient to be a good direction towards regions
of high probabilities. Also, the gradient is easily computable
and so gives an easy rule to sample from any current point
. Moreover, the other conjugate directions are iteratively

computable as described in the Conjugate Direction Sampling
(CDS) algorithm [25] used to get an approximated sample from
a Gaussian distribution. In fact, the GSGS is embedding steps
of the CDS in a global GS.
The objective is now to study the convergence properties of

the GSGS. We begin with two classical results.
• If the Markov chain is aperiodic, –irreducible for some
nonzero measure 2, and has an invariant probability ,
then it converges to from -almost every starting point
(cf. Theorem 4.4 of [36]).

• Moreover, if the Markov chain is Harris recurrent, then it
converges to from all starting point [36], [37].

Algorithm 1 : Gradient scan Gibbs sampler (GSGS).

Define an initial point , a number and a stopping
criterion. Iterate.
1: sample
2: set and , and compute the
gradient
3: sample a perturbation
4: compute a set of mutually conjugate directions

w.r.t. such that

5: sample independently the set with:

6: compute
7:
until the stopping criterion is reached.

The Harris recurrence of GS, or more generally Metropolis-
within-Gibbs samplers is well studied in [37]. In particular, the
Theorem 12 and Corollary 13 of [37] ensures that if the Markov
chain produced by the GSGS is irreducible then it is Harris re-
current. Consequently, in the following we focus on showing
that the Markov chain is aperiodic, irreducible and with sta-
tionary distribution .
It is trivial to see that the Markov chain , pro-

duced by the GSGS, is aperiodic since for any non-negligible
subset including , . The ex-
istence of an invariant probability and the irreducibility can be
shown by thinking of a random scan GS for the marginal com-
ponent .
Proposition 2: The Markov chain produced by Algorithm 1

admits as an invariant distribution, even without pertur-
bations of the gradient direction (i.e., ).
Moreover, if the density is supported on , the Markov

chain produced by Algorithm 1 is irreducible, and therefore its
law converges to .

Proof: see Appendix A.
Proposition 2 then shows that the joint probability

remains an invariant distribution in the limit case where the first
direction is exactly the gradient of , without random
perturbation. However the perturbation is needed to ensure the
irreducibility (and then the convergence) of the chain.
If the gradient is not perturbed, the mutually conjugate set
is then given by a deterministic function of and .

In this case, we need more assumptions to ensure the Markov
chain to be irreducible. For example, we can have the following
result.
Proposition 3: Suppose the following conditions are

satisfied:

2In all the paper we will consider as the Lebesgue measure and we will
omit it for simplicity.
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H-1 The function is continuous
H-2 and , ,
with the ball in , centered in , of radius .
H-3 , such as:

H-3.1 has distinct eigenvalues,
H-3.2 is not orthogonal to any eigenvector of

,
Then the Markov chain produced by Algorithm 1 without the
perturbation step 3 is irreducible.

Proof: see Appendix B
The conditions described in Proposition 3 are very restrictive

and, in particular, condition H-3.1 is difficult, if not impossible,
to prove in practice. This condition ensures that every non-neg-
ligible subset of can be reached with a non-zero probability.
It can be interpreted in the framework of Krylov spaces as in
[26]. For example, if there is such as the Krylov space

is of rank then theMarkov chain is irreducible. This condition
can be weakened in our case because the Gaussian parameters

and are changing since is changing at each iter-
ation of the GS. Therefore a sufficient condition to ensure the
irreducibility of the chain can be expressed as follows:
Proposition 4: If there is such as the union of Krylov

spaces

is of rank then the Markov chain built by the GSGS without
perturbation of the gradient is irreducible.

Proof: The condition implies that for any non-negligible
subset , , which ensures the
irreducibility.
The issue of determining general conditions, as in Proposi-

tion 3, is an open problem at this time. The fact that the condi-
tion described in Proposition 4 is satisfied, highly depends on the
model’s characteristics. That is why the GSGS (with the random
perturbation step 3) is the one that ensures, in all cases, the con-
vergence of the Markov chain to the joint distribution .
The above results do not allow us to get any convergence rate

of the Markov chain. The latter is, in fact, very important to
ensure in practice the efficiency of the estimators produced by
simulations in finite time. In particular, the geometric ergodicity
[38] is a very well known property that gives a Central Limit
Theorem and ensures the Markov chain to quickly converge and
give estimations of standard errors. However the Algorithm 1
aims to be general while the precise study of geometric conver-
gence (especially to quantify the convergence rate) would need
to specify the distributions on the parameters and on the per-
turbation . At this time, only weak assumptions are considered
on these probabilities and the next section discusses the different
choices of from a feasibility point of view.

C. Choice of
As previously specified, the only condition to ensure the con-

vergence of the GSGS in the general case, is to choose a dis-
tribution supported in . In practice we also expect a
sample from to be easily accessible. A natural choice is

the Gaussian iid distribution , being the
identity matrix. This was already studied in [39] in the case of
only sampling from a Gaussian distribution and where re-
sults are shown in small dimensions.
Our empirical studies in high dimension (one example is

shown in Section III) incited us to choose the Gaussian distri-
bution , when it is possible. The sampling from this
distribution may actually be easily computable, provided that

has, for example, the specific factorization form described
in [30]:

In this case, the sampling from is easily computable
by using the Perturbation Optimization (PO) algorithm [30].
The latter consists in (i) randomlymodifying the potential
to get a perturbed potential and (ii) optimizing . The first
step of this optimization procedure consists in computing the
gradient and it is trivial to show that it can be decomposed:

, with . Therefore, the
perturbed gradient of the GSGS, with a random perturbation

, can be obtained by using the PO algorithm trun-
cated to one step of the optimization procedure.
Although, at this time, this choice is empirical we may have

some intuition to recommend, when it is possible, the distribu-
tion . The first direction is related to the gradient of
, in accordance with the objective to get a direction towards

regions of high probability. This gradient is mostly driven by the
highest eigenvalues of . The perturbation is only needed to
ensure the GSGS convergence, but the objective is to keep a
direction towards high probability regions. The sampling from

seems to be a good compromise: it gives values of
mostly driven by the highest eigenvalues of and then the re-
sulting direction still continues to encourage the exploration
space of high probability.
We may also notice that some relaxations of the GSGS are

possible, following classical arguments of a random scan GS.
For example, it is not necessary to sample the perturbation from

at each iteration, it is sufficient to do this an infinite number
of times to ensure the chain to be irreducible.3 As we will see
in Section III, a low frequency sampling of can improve the
algorithm’s efficiency.

III. UNSUPERVISED SUPER RESOLUTION AS
A LARGE SCALE PROBLEM

A. Problem Statement
The paper details an application of the proposed GSGS to

a super-resolution problem (identical to the one presented in
[30], [40]): several blurred, noisy and down-sampled (low reso-
lution) observations of a scene are available to retrieve the orig-
inal (high resolution) scene [41], [42].
The usual direct model reads: . In

this equation, collects the pixels of the low resolution

3From any point , let be the closest next time where
is sampled, then for any non-negligible subset , we have

.



FÉRON et al.: GSGS: AN EFFICIENT ALGORITHM FOR HIGH-DIMENSIONAL GAUSSIAN DISTRIBUTIONS 347

images (five 128 128 images, i.e., ) and
collects the pixels of the original image (one 256 256 image,
i.e., ). The noise accounts for measurement
and modeling errors. is a circulant-block-circulant
convolution matrix accounting for the optical and the sensor
parts of the observation system. Here it is a square window of
5-pixel-width. is a matrix modeling motion (here
translation) and decimation: it is a down-sampling binary matrix
indicating which pixel of the blurred image is observed.
The noise is chosen to be . Regarding

the object, the chosen prior accounts for smoothness:
where is the circulant con-

volution matrix of the Laplacian filter. The hyperparameters
and are unknown and the assigned priors are conjugate

: Gamma distributions and .
They are weakly informative for large variances and uninfor-
mative Jeffreys’ prior when the tends to . As a
consequence, the full posterior pdf writes

(4)

The conditional law of the image writes

Accordingly the negative logarithm gives the criterion

and the gradient

with , and the Hessian

B. Gibbs Sampler
The posterior pdf is explored by the proposed GS in Algo-

rithm 2, based on the GSGS, that iteratively updates , and a
sub-component of . Regarding the hyperparameters, the condi-
tional pdf are Gamma and their parameters are easy to compute.
The set of mutually conjugate directions w.r.t. , at step

4 of Algorithm 2, is computed by the Gram-Schmidt process
applied to gradient, as usually found in conjugated gradient op-
timization algorithm. The procedure is similar to the algorithm
described in [26]. Finally the estimator is the posterior mean
computed as the empirical mean of the samples.
Despite the convergence proof with almost any law for the

perturbation (provided that the density is supported in
), some tuning is necessary to practically obtain a good

space’s exploration. In practice, Step 3 has a major influ-
ence and, as already discussed in Section II-C, we observe

Algorithm 2: GSGS for super-resolution.

Set , define an initial point , and repeat
1: Sample as

and as

2: Set and compute the gradient

3: Sample a perturbation
4: Compute a set of mutually conjugate directions

with the first being .
5: Sample independently the set with:

6: Compute .
7:
until the stopping criterion is reached.

that a working perturbation corresponds to those of the PO
algorithm [30]

where are two Gaussian normalized random vectors, leading
to a Gaussian perturbation of covariance . However, the
proposed algorithm has numerous advantages over the PO al-
gorithm. First the proposed algorithm has a convergence proof
because it does not suffer from truncation, even in the extreme
case with . Second the perturbation has the sole con-
straint of having as support. Moreover a perturbation is not
required at each iteration.

C. Numerical Results
The posterior law (4) has been explored with the following

four algorithms or settings.
• The adaptive RJ-PO algorithm [40], directly tuned with the
acceptance probability, here chosen to be 0.9. This accep-
tance probability leads to an average number of around 150
iterations of the conjugate gradient algorithm to compute
the proposal, and with 6% of rejected samples.

• The PO algorithm [30] with a number of 150 iterations for
the optimization.

• Algorithm 2 with . The idea is to build an algo-
rithm close to RJ-PO’s computing time.

• Algorithm 2 with . The idea is to show that our
algorithm offers the possibility to reduce the number of
iterations while still offering a good exploration and with
guaranteed convergence.
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Fig. 1. Image results. (a) RJ-PO PM (b) PO PM (c) RJ-PO PSD (d) PO PSD (e) GSGS PM (f) GSGS PM (g) GSGS PM (h) GSGS
PSD (i) GSGS PSD (j) GSGS PSD .

• Algorithm 2 with . The idea is to show a very fast
algorithm that offers a partially correct exploration. This
case is particular in the sense that the perturbation is done
only once for the whole algorithm.

The posterior mean (PM) estimations of the high-resolution
image are given in Fig. 1 as well as the posterior standard de-
viation (PSD). From these results we can say that all algorithms
provide similar quality for the image estimation. The same state-
ment can be made for the standard deviation. However the pos-
terior standard deviation with seems incorrect. A pos-
sible interpretation is that the perturbation vector is simulated
only once during the whole algorithm. Thus, the space is surely

not sufficiently explored and the covariance estimation is se-
verely biased. Indeed, since are drawn only once, the sto-
chastic explorations are limited to the conjugate direction plus
the two directions and . However themean estimation does
not seem to be affected and this algorithm is able to provide
very quickly a good estimation of the image and hyperparam-
eter values. We must notice that in our test with the
chain converged to a close, but wrong distribution, giving good
results in the image but an slightly underestimation of .
The chains of the hyperparameters are illustrated in Fig. 2.

Figs. 2(a) and 2(c) represent the samples as a function of the
iterations. We observe that, except for , all the chains
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Fig. 2. Chains of hyper parameters and . (a) as iteration (b) as
time (c) as iteration (d) as time.

TABLE I
HYPERPARAMETER ESTIMATES AND ESTIMATION VARIANCES FOR

TABLE II
HYPERPARAMETER ESTIMATES AND ESTIMATION VARIANCES

FOR

have the same behavior with the same convergence period. The
has slower (in terms of the number of iterations) con-

vergence but reaches the same stationary distribution.
Figs. 2(b) and 2(d) represent the samples as a function of time

(in seconds). The chain behavior of algorithms PO, RJ-PO and
GSGS(150) is very similar. This result is obvious since these
algorithms compute almost the same number of gradients per
iteration. That said, we see that for and ,
the impact on the convergence time is significant. Table I shows
some quantitative results. In particular the case is five
times faster than RJ-PO.
In addition, Table II shows the estimated values of the hyper-

parameters with a higher noise level. Again the results are close
with a good estimation of .
To illustrate the effect of the perturbation for good space

exploration, Fig. 3 shows the results when no perturbations
are introduced and with . In this case, the hy-

potheses of Proposition 2 are no longer verified and those of
Proposition 3 cannot be verified in practice. Moreover, the
results show that both the covariance and the hyperparameters
are wrongly estimated. This effect leads to an over-regularized
image. A possible explanation is that the conjugate directions

Fig. 3. Results without perturbation and . (a) PM (b) PSD (c)
(d) .

of the GSGS explore in a privileged way the directions of small
variance (highest eigenvalues of ).
Regarding the computational cost, all the presented al-

gorithms are dominated by the cost of the matrix-vector
product . The cost thus depends on the specific problems
and the structure of in the same way as for the conjugate
gradient algorithm. For super-resolution problems, the cost
of the matrix-vector product is almost equal to two discrete
Fourier transforms of images. That said, the total number of
matrix-vector products is related to and the number of
Gibbs iterations. Moreover, the computational cost is linear
with respect to .
The main concluding comment is that the proposed algorithm

allows a great improvement in the convergence time of the GS.
However the speed improvement can come with a bad covari-
ance estimation if the number of directions for the image
is not sufficient.

IV. CONCLUSION
The handling of high-dimensional distribution, especially

Gaussian, appears in many linear inverse and estimation prob-
lems. With growing interest in “Big Data” and non stationary
problems this task becomes critical. Moreover, the uncertainty
around the estimated values, or the confidence interval, remains
one of the difficult points combined with the hyperparameter
estimation for automatic method designs.
The main contributions of this paper are (i) the proposition of

a new algorithm in the class of the Gibbs samplers, able to ad-
dress the case of high-dimensional Gaussian conditional distri-
butions, and (ii) the convergence proof of the algorithm. It relies
on a random excursion along a small set of directions instead of
working with high dimensional distributions. The directions are
appropriately chosen according to the gradient of the potential
of the distribution.
This new algorithm is shown to be an efficient alternative to

existing work like the PO-type algorithms: we ensure the theo-
retical convergence of the algorithm and, in some cases, we can
show a drastic computing-time improvement.
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The convergence of the algorithm is proved, provided that a
random perturbation around the gradient direction is introduced.
Even if in theory the only condition to ensure convergence is to
choose a perturbation distribution supported in the whole space,
it appears in practice that the results are sensitive to the choice
of the distribution. Moreover, the choice of the Gaussian distri-
bution is the only case where the algorithm is more
efficient than the PO and RJ-PO algorithms. The objective of
further work will be to better understand this sensitivity and the
open problem of the choice of the perturbation’s distribution.
In further work the objective will be to study the convergence

rate of the GSGS. In particular, the geometric ergodicity is an
important property that ensures a fast convergence and allows us
to give estimations of standard errors. The geometric ergodicity
of Gibbs samplers has long been studied [43] and a lot of results
are shown in the Gaussian case [44], as well as for applications
in Bayesian hierarchical models [45], also in the case of joint
Gaussian and Gamma distributions [46], [47], the latter being
close to our illustration example.
Also, one has to choose the number of mutually conju-

gate directions to sample at each iteration of the algorithm. In
theory, this does not affect the convergence properties of the al-
gorithm. As a perspective, one can propose an automatic choice
of , following the work in [40] for the RJ-PO. A research
field could be the study of the algorithm’s efficiency with re-
spect to the eigenvalues of Q in the high dimensional case. The
proposed algorithm is somewhat independent of the chosen di-
rection. The use of a preconditioner to compute direction, as in
preconditioned conjugate gradient, should improve the compu-
tational cost by an parameter smaller than at the present
time. It depends, however, on each problem addressed.
From an experimental standpoint an additional assessment of

the proposed method could rely on a numerical comparison with
other existing approaches, for instance Hamltonian or Langevin
algorithm [31]–[34].
This paper is focused on linear conditionally Gaussian

models. By use of hidden variables, the algorithm should
also be able to work with non Gaussian models that are still
conditionally Gaussian.

APPENDIX

Proof of Proposition 2:

This appendix is devoted to prove Proposition 2. It is mainly
inspired by the proofs presented in [28] (see also [27], [29]) for
different random scan strategies in order to sample . The
only difference is that the random choice is not according to a
set of coordinates of in the canonical basis, but according to
a mutually conjugate set with respect to a current matrix .
Therefore the same arguments as detailed in [28] can be used to
prove the irreducibility: if the support of the density is ,
all the directions can be explored in one step of the algorithm.
Therefore any can be reached in one step by taking, for
example, , , , .
Using classical continuity arguments, we can deduce that the
probability of reaching any open ball , centered in of
radius , conditional to any current point , is strictly positive,
which ensures the chain to be irreducible.

The rest of the proof focuses on the fact that is an
invariant probability of the chain. We use the same arguments
and notations of [28]. Let and a set of mutually
conjugate directions with respect to a definite positive matrix
. We decompose which is always possible as

explained in Section II-A.
Define a current point and

the point obtained by Algorithm 1 with the transition
Kernel:

with denoting any conditional probability and is the Dirac
function. The objective is to show that if is distributed
according to the joint distribution , then is also dis-
tributed according to .
Let be a measurable set. The following lines are the

result of the definition of the transition Kernel, the use of the
general product rule, and of sequential integration with respect
to , and :

Hence the joint probability is an invariant probability
of the Markov chain produced by Algorithm 1.

Proof of Proposition 3:
This appendix is dedicated to prove Proposition 3. Let

be a current point and
the point produced by the chain of Algorithm 1 at iter-
ation . The objective is to prove that for any non-neg-
ligible subset , there is such as

. Using the hypothesis
H-2, it is sufficient to prove that for any non-negligible subset

, there is such as:

(5)

Given , we denote by the corresponding element that re-
spects conditions H-3. It is sufficient to prove the Proposition in
the following framework:

F-1 ,
F-2 ,
F-3 is diagonal.
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Indeed, if we prove the inequality (5) with fixed for iter-
ations, continuity arguments using conditions H-1 and H-2 will
end the proof of the Proposition. The simplifications F-2 and
F-3 can be assumed by a change of variable
and by considering the basis of formed by the eigenvectors
of .
In this simplified framework, the chain of Algorithm 1 pro-

duces such as:

with the identity matrix in and, noting ,
we have, for :

(6)

The hypothesis H-3.2 ensures that , ,
therefore we can assume without loss of generality that

, and (6) is, in this case:

(7)

The following Lemma proves that any point in can be
reached by the chain in iterations.
Lemma 1: For any , there is

such as , where is defined by (7) with
.

Proof: This can be done by interpreting it as an interpola-
tion problem: given , the objective is to show that there
is a polynomial such as:

(8)
(9)

with defined by the right hand side of (7) with .
The constraint (9) is due to the specific form of . Also
the fact that the parameters must be real, implies that the
polynomial must have only real roots. It is well known
that there is a polynomial of degree that respects (8) and (9).
Let us denote by such a polynomial. But the roots of may
be complex. However we can show that there is a polynomial of
degree with real roots that respects the conditions (8) and
(9). Indeed, let us consider the polynomial and a polynomial
of degree such as

. Therefore any polynomial ,
, respects conditions (8) and (9), and it is trivial to show that

for sufficiently large, the polynomial has all its roots
. Therefore, taking , i.e.,

ends the proof of the lemma.
Using this lemma and the continuity of with respect to
, it is trivial to prove (5) and then the Proposition.
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