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An insight into the Gibbs sampler:
keep the samples or drop them?

Julien Boissy, Jean-François Giovannelli and Pierre Minvielle

Abstract—In this letter, we propose an insight into Markov
Chain Monte Carlo (MCMC) algorithms and more precisely the
Gibbs sampler. From a didactic toy model, based on a normal
bivariate distribution, a non-asymptotic analysis is derived and
estimators are fully characterized. It provides a worthwhile and
non-empirical understanding of the Gibbs sampler behaviour.
Issues are investigated, such as the influence of the ”burn-
in” phase, useful in practice. Especially, the trade-off between
discarding samples and integrating them into estimators is
studied. On the whole, it leads to an analytical awareness of
MCMC sampler.

Index Terms—MCMC, Bayesian statistics, Gibbs, burn-in.

I. INTRODUCTION

THE Gibbs sampler is an ubiquitous MCMC algorithm in
Bayesian statistics and machine learning [1], [2]; it was

introduced in the context of image processing by [3]. Espe-
cially applied to hierarchical models, the Gibbs sampler is, as
well as the Metropolis-Hastings (MH) sampler of which it is
a special case, the workhorse of general MCMC techniques.
Hereafter, we provide an analytical insight into the standard
Gibbs algorithm and its mechanisms.

We consider a couple of real random variables (X,Y )
of joint probability density function fX,Y . Let us suppose
that though it is difficult to sample from it directly, reali-
sations can easily be obtained from the conditional distri-
butions fX|Y and fY |X . The elementary two-stage Gibbs
sampler, see below, is appropriate in such a context [1]. It
generates a realisation of the Markov chain (X(n), Y (n))n≥1

that has the target distribution fX,Y as invariant distribution.
It is typically used to solve intractable integration prob-
lems [2], central to Bayesian statistics, such as expectation
EfXY

[h(X,Y )] =
∫∫

h(x, y)fX,Y (x, y) dxdy or marginal-
ization fX(x) =

∫
fX,Y (x, y) dy.

Algorithm Two-stage Gibbs sampler

Input: N,N0, fY (0)

y(0) ∼ fY (0)(·)
for n = 1 · · ·N do
x(n) ∼ fX|Y (·|y(n−1))
y(n) ∼ fY |X(·|x(n))

end for
Output: samples (x(n), y(n))N0≤n≤N
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The algorithm is parametrized by N , the chain run length
and N0, the so-called ”burn-in” period during which sam-
ples are assumed not to be samples of the target distribu-
tion and discarded in order to reduce starting biases [2].
The initial value of Y is randomly drawn from the density
fY (0) . At the end, the Gibbs output is made of the samples:
(x(n), y(n))N0≤n≤N .

The determination of the appropriate lengths N and N0 is
known to be a tricky task. How long must the ”burn-in” period
N0 be chosen? How many samples ∆N

∆
= N−N0 +1 are re-

quired to accurately approximate for instance EfXY
[h(X,Y )]?

For a fixed N , the higher N0 is, the ”better” the samples are,
but the fewer there are. What is the optimal trade-off between
the sample length and the sample quality? Conversely, for a
fixed N0, the higher N is, the more accurate the approximation
is, but the longer the Gibbs sampler is.

Similarly to the seminal work by Gelman et al. [4] for the
Metropolis-Hastings algorithm, its optimal scale factor and its
known acceptance rate of 0.234, we intend to examine critical
parameters of the Gibbs sampler, such as the ”burn-in” length.
As extensively done in [4], our exploration makes use of a toy
model; it is of great interest to investigate such intricate issues.
Although it can be related to basic examples in [5, p. 131], [1,
p. 340] and [6], we do believe that we provide an attractive
investigation into MCMC algorithms and the ”burn-in” issue.
We consider for instance the following straightforward MCMC
estimate or approximation of E[Y ], e.g. the posterior mean in
the Bayesian setting; it consists of the empirical mean of the
samples (y(n))N0≤n≤N from the Gibbs output:

E[Y ] ≈ 1

∆N

N∑
n=N0

y(n). (1)

Our main contribution is therefore to develop closed-form
expressions for the bias and the variance of related estima-
tors, from which efficient and meaningful analyses can be
performed. It leads to a new study of the influence of the
”burn-in” length N0. It differs from former works about Gibbs
sampling: [7] is based on subsampling and stationarity con-
siderations, [8]–[11] propose improvements where numerical
experiments are developed for performance assessment and
[12] uses bivariate Gaussian toy examples again for numerical
experiments. Even more recent works, such as [12]–[15], do
not develop such a theoretical understanding of ”burn-in”.

II. NORMAL BIVARIATE TOYMODEL

We focus on a Gaussian bivariate toy model: (X,Y ) ∼
N (µ,Σ), with mean µ = [µX µY ]T and covariance matrix
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Σ =

[
σ2
X ρ · σXσY

ρ · σXσY σ2
Y

]
. (2)

Hereinafter, fX,Y represents the target distribution. It is
well-known that the conditional laws are normal (see [16,
p. 43-44]):

X|Y = y ∼ N (µX|y, σ
2
X|y), (3)

where µX|y = µX + ρσX(y − µY )/σY and σ2
X|y = σ2

X(1 −
ρ2), and symmetrically for Y |X = x. In addition, the initial
distribution is defined by:

fY (0)(y(0)) = N (y(0);mY (0) , σ2
Y (0)). (4)

The algorithm determines a realisation of the Markov chain:
y(0) → x(1) → y(1) → x(2) → y(2) → · · · → x(N) → y(N),
leading to the successive couples (x(n), y(n))1≤n≤N . It is
straightforward to check that fX,Y is a stationary distribution
[1]. Next, we determine analytical expressions of the marginal
probability densities fX(n) and fY (n) . After, we focus on the
MCMC estimator of the expectation, such as E(Y ).

A. Elementary AR(1) model

Let us note X (n) ∆
= (X(n) − µX)/σX and Y (n) ∆

= (Y (n) −
µY )/σY , it is direct to exhibit an elementary auto-regressive
AR(1) model (see toy models [1, p. 340] and [17, p. 9]):

Y (n+1)|Y (n) = y(n) ∼ N (ρ2y(n), 1− ρ4). (5)

Noting the expectation as mY (n)
∆
= E[Y (n)] and the

variance as σ2
Y (n)

∆
= V (Y (n)), the recursive expressions are

obtained:

mY (n+1) = ρ2mY (n) , σ2
Y (n+1) = 1 + ρ4(σ2

Y (n) − 1). (6)

B. Closed-form expression of marginal laws

The expectations and variances of X(n) and Y (n) are noted
respectively as mX(n) and mY (n) , σ2

X(n) and σ2
Y (n) . We have:

mY (n+1) − µY = σYmY (n+1) = ρ2(mY (n) − µY ). (7)

The following expectation can then be obtained:

mX(n) = µX + ρ2n−1σX(mY (0) − µY )/σY (8)
mY (n) = µY + ρ2n(mY (0) − µY ). (9)

Otherwise, σ2
Y (n+1) = ρ4σ2

Y (n) + 1− ρ4 directly leads to:

σ2
Y (n+1) − σ2

Y = ρ4(σ2
Y (n) − σ2

Y ). (10)

This results in the following variance:

σ2
X(n) = σ2

X + ρ4n−2σ2
X(σ2

Y (0) − σ2
Y )/σ2

Y (11)
σ2
Y (n) = σ2

Y + ρ4n(σ2
Y (0) − σ2

Y ). (12)

Similarly, the following covariance can be obtained:

Cov(X(n), Y (n))
∆
= E[(X(n) −mX(n))(Y (n) −mY (n))]

= ρσXσY ·
[
1 + ρ4n+2(σ2

Y (0)/σ
2
Y − 1)

]
. (13)
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Fig. 1: Marginal distribution convergence to the target distri-
bution (ρ = 0.95), as a function of the iteration n. In red,
the mean and covariance ellipse every 10 iterations (with 95%
confidence). In blue, a realisation of the Gibbs sampler.

Consequently, since all the distributions are normal, Eq. (8)
and (11) state the convergence of the marginal normal distribu-
tions fX(n) and fY (n) , i.e. their first two moments, respectively
towards the invariant target distribution fX and fY , when
n → ∞. It clearly depends on the correlation parameter ρ.
The lower |ρ| is, the more decorrelated the components X and
Y are and the faster the convergence is. Conversely, the more
correlated they are, the slower it converges. It also depends
on the initial distribution. Tautologically, if one initiates with
the target distribution, the convergence is already reached.
Fig. 1 provides an illustration of the convergence of the
marginal distributions fX(n),Y (n) to the target invariant normal
distribution, closely linked to the ”burn-in” period.

III. PROPERTIES OF THE EXPECTATION ESTIMATOR

We are interested in approximating expectations, such as
µX = E(X) or µY = E(Y ). For the latter, we consider the
usual MCMC estimate of Eq. (1):

A. Bias determination
The expectation of M̄Y is given by:

E(M̄Y ) =
1

∆N

N∑
n=N0

mY (n)

= µY +
σY
∆N

N∑
n=N0

mY (n)

= µY +
σY
∆N

mY (0)

N∑
n=N0

ρ2n

= µY +
mY (0) − µY

∆N
ρ2N0

1− ρ2∆N

1− ρ2
. (14)

Noting α(∆N, ρ)
∆
= (1 − ρ2∆N )/[(1 − ρ2)∆N ], the bias

B(M̄Y )
∆
= E(M̄Y )− µY is then given by:

B(M̄Y ) = α(∆N, ρ) · ρ2N0 · (mY (0) − µY ). (15)
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Fig. 2: Bias of M̄Y (ρ = 0.95), function of N0 and ∆N .
The straight isocontours of the sample budget (N0 + ∆N ) are
indicated by the red dotted line.

The bias also depends on the initial mean agreement
mY (0)−µY . Besides, the higher |ρ| is and the more correlated
the components are, the stronger the bias is. For a given ρ,
it depends on N0. A long ”burn-in” phase reduces the bias.
It also depends on ∆N . One can notice that α(1, ρ) = 1

and α(∆N, ρ)
∆N→∞−→ 0. Furthermore, consistently with well-

known general results [17, p. 21], the bias is O(∆N−1) for
high ∆N (for a given N0); it will be further shown to be
negligible for sufficiently long runs. The bias behaviour is
illustrated in Fig. 2. For a given sample budget N (in red),
the optimal trade-off between N0 and ∆N is straightforward.
Concerning the bias, it is better to have a long ”burn-in”
period, discarding many samples and keeping only a few of
the latest good ones.

B. Variance determination

The variance of M̄Y is given by:

V (M̄Y ) = E
[(
M̄Y − E(M̄Y )

)2]
=

1

(∆N)2
E

( N−1∑
n=N0

(Y (n) −mY (n))

)2


=
1

(∆N)2

N−1∑
n=N0

N−n−1∑
p=N0−n

γn,pY , (16)

noting the lag-p auto-covariance at time n

γn,pY
∆
= E

[
(Y (n) −mY (n))(Y (n+p) −mY (n+p))

]
. (17)

It can be noticed that:

Y (n) −mY (n) = σY

(
Y (n) −mY (n)

)
. (18)

Remark that γn,pY can be rewritten as:

γn,pY = σ2
Y E

[(
Y (n) −mY (n)

)(
Y (n+p) −mY (n+p)

)]
= σ2

Y

(
E
[
Y (n)Y (n+p)

]
−mY (n)mY (n+p)

)
. (19)

For p ≥ 0, it can be directly shown from Eq. (5) that:

E
[
Y (n)Y (n+p)

]
= ρ2E

[
Y (n)Y (n+p−1)

]
, (20)

ending as: E
[
Y (n)Y (n+p)

]
= ρ2pE

[
(Y (n))2

]
. Then, the

auto-covariance recurrence can be written as:

γn,pY = σ2
Y ρ

2pE
[
(Y (n))2

]
−mY (n)mY (n+p)

= σ2
Y ρ

2
(
ρ2(p−1)E

[
(Y (n))2

]
−mY (n)mY (n+p−1)

)
= ρ2γn,p−1

Y . (21)

For any p, the auto-covariance is asymmetric:

γn,pY = ρ2|p|σ2
Y + ρ4n+2p(σ2

Y (0) − σ2
Y ) (22)

Notice that it tends to be symmetric when n→∞.
From Eq. (16), the M̄Y -variance can now be expressed as:

V (M̄Y ) =
1

(∆N)2

N−1∑
n=N0

[
σ2
Y

N−n−1∑
p=N0

ρ2p +

n−N0∑
q=1

ρ2q


+ρ4n(σ2

Y (0) − σ2
Y )

N−n−1∑
p=N0−n

ρ2p

]
. (23)

A few geometric sums latter, it results in:

V (M̄Y ) = δ2(∆N, ρ) ·σ2
Y +α2(∆N, ρ) · ρ4N0 · (σ2

Y (0) −σ2
Y ),

(24)
with notations:

δ2(∆N, ρ)
∆
= α2(∆N, ρ)β(∆N, ρ) (25)

β(∆N, ρ)
∆
=

∆N(1− ρ4)− 2ρ2(1− ρ2∆N )

(1− ρ2∆N )2
. (26)

The first factor is proportional to the variance σ2
Y . The

second one is very similar to the bias of Eq. (15), with a
dependence on the initial variance agreement σ2

Y (0) −σ2
Y . For

the special case of ∆N = 1, notice that δ2(1, ρ) = 1 and
α2(1, ρ) = 1. The variance V (M̄Y ) is then determined by N0

and ρ, its lower bound being σ2
Y .

Asymptotically, for high ∆N and a given ρ, it is straightfor-
ward to show that: δ2(∆N, ρ) = O(∆N−1) and α2(∆N, ρ) =
O(∆N−2). That means that the second term and the bias of
Eq. (15) are going to be negligible, compared to the first one.
Let us stress that the convergence order O(∆N−1) of the
toy model variance V (M̄Y ) is consistent with Central Limit
Theorems for Markov chains [1], [17]. On the other hand, it
can be shown that V (M̄Y ) is non-zero when |ρ| → 1.

The variance behaviour is illustrated in Fig. 3. The con-
vergence order O(∆N−1) of the variance is confirmed. For a
given sample budget N (in red), the optimal trade-off between
N0 and ∆N corresponds to the intersection of the variance
level set and the budget line corresponding to N . It turns out
to be always around N0 = 20, whatever the value of N is.
Concerning the variance, it is better to have a short ”burn-in”
phase, discarding a few tens of samples and keeping all the
next ones.

We obtain a closed-form expression of the variance V (M̄Y )
that provides a better comprehension. Let us stress that
V (M̄Y ) cannot generally be calculated in closed-form, except
for a few small problems; it must be estimated from simula-
tions.
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Fig. 3: Variance of M̄Y (ρ = 0.95).
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Fig. 4: Mean Squared Error of M̄Y (ρ = 0.95).

C. Mean Squared Error

The Mean Squared Error (MSE) of M̄Y is given by:

MSE(M̄Y )
∆
= V (M̄Y ) +B(M̄Y )2

= δ2(∆N, ρ) · σ2
Y + α2(∆N, ρ) · ρ4N0 ·[

(σ2
Y (0) − σ2

Y ) + (mY (0) − µY )2
]
. (27)
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0 (ρ = 0.95).

The second term depends on both the initial mean and
variance agreements (σ2

Y (0)−σ2
Y )+(mY (0)−µY )2. It must be

noticed that: MSE(M̄Y ) = σ2
Y /∆N if ρ = 0. Asymptotically,

for high ∆N and a given ρ, it is again straightforward to show
that the second term in O(∆N−2) is negligible, compared to
the first one in O(∆N−1).
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The optimal values are represented in red.

The MSE behaviour, illustrated in Fig. 4, is similar to
the previous Fig. 3. For a given sample budget N (in red),
the trade-off between N0 and ∆N seems to vary slightly,
depending on N . The optimal value N?

0 is represented in Fig.
5, as a function of N . For low N , it is dominated by the
bias reduction. It increases linearly up to N ≈ 30, with the
corresponding ∆N being constant and equal to 1. Thus, for
low N , it is optimal, according to the MSE, to discard all the
samples except the last one. For higher N , the optimal N?

0

slightly decreases and stabilises around 25 for high N = 103

to 106. In addition, Fig. 6 represents the MSE as a function
of N0 for various values of N . In accordance with [17], the
”burn-in” turns out to be useless, i.e. the curve is flat for high
N .

IV. CONCLUSION

This didactic investigation ends up with a reinforced un-
derstanding of Gibbs sampling and more generally, MCMC
algorithms. Our non-asymptotical results are given in the con-
text of a normal bivariate model. The Markov chain estimator
is characterised, leading to a non-stationary analysis of the
influence of the ”burn-in” length. This theoretical work is new,
even compared to recent works [11]–[15].

So, keep the samples or drop them? The trade-off is
analysed in an original way. Roughly speaking, the answer
is to have a long run, in which case the question is useless.
Of course, there are limits to the transposition of toy models
to real-world problems [17] where there are no closed-form
expressions and where the target distribution is obviously not
known. And yet, as in [4], it can provide useful guidelines to
apply MCMC samplers.
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