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Sampling High-Dimensional Gaussian Distributions
for General Linear Inverse Problems

F. Orieux, O. Féron, and J.-F. Giovannelli

Abstract—This paper is devoted to the problem of sampling
Gaussian distributions in high dimension. Solutions exist for two
specific structures of inverse covariance: sparse and circulant.
The proposed algorithm is valid in a more general case espe-
cially as it emerges in linear inverse problems as well as in some
hierarchical or latent Gaussian models. It relies on a perturba-
tion-optimization principle: adequate stochastic perturbation
of a criterion and optimization of the perturbed criterion. It
is proved that the criterion optimizer is a sample of the target
distribution. The main motivation is in inverse problems related
to general (nonconvolutive) linear observation models and their
solution in a Bayesian framework implemented through sampling
algorithms when existing samplers are infeasible. It finds a direct
application in myopic/unsupervised inversion methods as well as
in some non-Gaussian inversion methods. An illustration focused
on hyperparameter estimation for super-resolution method shows
the interest and the feasibility of the proposed algorithm.

Index Terms—Bayesian strategy, high-dimensional sampling, in-
verse problem, myopic, stochastic sampling, unsupervised.

I. INTRODUCTION

T HIS work deals with simulation of high-dimensional
Gaussian and conditional Gaussian distributions. The

difficulty of the problem is directly related to handling high-di-
mensional covariances and precision matrices .
The problem has already been investigated and solutions exist
in two cases.
• When is sparse, two strategies are available. The first
one [1, chap. 8], relies on a parallel Gibbs sampler based on
a chessboard-like decomposition. It takes advantage of the
sparsity of to update simultaneously large blocks of vari-
ables. The second strategy [2], [3] relies on a Cholesky de-
composition : a sample is obtained by solving
the linear system , where is a zero-mean white
Gaussian vector. The sparsity of ensures feasible numer-
ical factorization and the sparsity of ensures feasible nu-
merical resolution of the linear system.

• [4], [5] propose a solution for circulant matrix , even
nonsparse. In this case, the covariance is diagonal in the
Fourier domain: the sampling is based on independent
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sampling of the Fourier coefficients. Finally, the sample is
computed by FFT and it has been used in [6]–[10].

To our knowledge there is no solution for more general structure
in high dimension because factorization (Cholesky, QR, square
root, ), diagonalization and inversion of and are numer-
ically infeasible. The obstacle is due to both computational cost
and memory footprint. The proposed algorithm overcomes this
obstacle when is of the form

(1)

as it appears in inverse problems [11]. Indeed, let us consider
the general linear forward model , where ,
and are the observation, the noise and the unknown image
and is a linear operator. Consider, again, two prior distri-
butions for and that are Gaussian conditionally on a pa-
rameter . This framework is very general: it includes linear
inverse problems [11] as well as some hierarchical or latent
Gaussian models [12] and it can be used in many applications.
In image reconstruction, it covers a majority of current prob-
lems, e.g. unsupervised [8] or myopic (semi-blind) [9] inverse
problems, by including acquisition parameters and hyperparam-
eters in . Moreover, the framework also includes nonlinear
models, based on conditional linear models such as bilinear
or multilinear ones (see Section III-B). The framework also
covers some nonstationary or inhomogeneous Gaussian priors
and non-Gaussian priors involving auxiliary/latent variables [6],
[8], [13]–[15] (e.g., location or scale mixtures of Gaussian), by
including these variables in .
Let us focus on the joint estimation of and from the pos-

terior . It commonly requires the handling of the con-
ditional posterior that is Gaussian with precision ma-
trix of the form (1), as will be shown in Section II-B. In
the general case, is neither sparse nor circulant so existing
sampling algorithms fail when the dimension of is very large
while the proposed one handles this case. It relies on a pertur-
bation-optimization principle: adequate stochastic perturbation
of a quadratic criterion and optimization of the perturbed cri-
terion. A recent paper [16] briefly describes a similar algorithm
for compressed sensing in signal processing. Our paper deepens
and generalizes this contribution.
Subsequently, Section II presents the proposed algorithm and

its direct application to linear inverse problems. Section III gives
an illustration through an academic problem in super-resolution.
Section IV presents conclusions and perspectives.

II. PERTURBATION-OPTIMIZATION ALGORITHM

A. Description

We focus on the problem of sampling from a target Gaussian
distribution whose precision matrix is in the form (1). When
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is neither sparse nor circulant, existing algorithms fail in high
dimension because of an excessive memory footprint as illus-
trated in Section III. We propose a solution based on the Pertur-
bation-Optimization (PO) algorithm described hereafter, whose
memory footprint is far smaller.
Proposition 1: The optimizer of criterion (4) resulting from

Algorithm 1 is Gaussian

(2)

Algorithm 1: Perturbation-Optimization algorithm

1: Step P (Perturbation): Generate independent vectors

(3)

2: Step O (Optimization): Compute as the minimizer of

(4)

Proof: The optimizer of criterion (4) is explicit

(5)

It is clearly a Gaussian vector as a linear combination of
Gaussian vectors. Its expectation and covariance are calculated
below using elementary algebra: from (3) and (5), we have

that completes the proof.
The feasibility of Step P depends on the capability to sample

from Gaussian distributions by an existing algo-
rithm (e.g., for a sparse or circulant structure). Regarding Step
O, being quadratic, a large literature [17] is available for its
numerical optimization, e.g. gradient procedure (standard, cor-
rected, conjugate, optimal step size ). Its feasibility depends
on the capability to compute the criterion (4) and its gradient
(that are scalar and vector) without the storage of large matrices.

These requirements are fulfilled in usual inverse problems like
the ones shown in Section III.
However, the desired sample is the exact optimizer, so, Step

O could require iterations of a conjugate gradient algorithm
for a problem of dimension . Therefore, the complexity
could be that is equivalent to the one of a Cholesky
decomposition. Nevertheless, the optimization procedure can
be stopped earlier without practical impact although theoretical
convergence towards the target law is no more guaranteed. The
complexity then falls down to for iterations. In
addition, it becomes for a band matrix while the one
of the Cholesky decomposition becomes . Anyway,
the main advantage of the proposed algorithm is its reduced
memory footprint: it avoids the storage of neither nor its
(Cholesky, QR, square root, ) factors.
Remark 1: Still regarding Step O, it would be awkward if

was badly scaled, but it is not the case here for the following
reason. In usual ill-conditioned inverse problems, is badly-
scaled but the aim of regularization is precisely to overcome
this difficulty and to produce a well-scaled matrix .

B. Application to Inverse Problems

The purpose is to solve an inverse problem, stated by the for-
ward model , in a Bayesian framework based on
the following models:
• describes any observation system that can depend on
unknown acquisition parameters;

• priors for the noise and the object are Gaussian
and , conditionally on a set of

hyperparameters and auxiliary variables.
In a general statement, acquisition parameters, hyperparam-

eters and auxiliary variables are collected in . The general in-
verse problem then consists in estimating and through the
posterior . Its exploration can be achieved by means
of a Gibbs sampler which iteratively samples from
and . The conditional posterior is a correlated
Gaussian distribution: with

where is embedded in , and for simpler notations.
If has no particular properties, is neither

sparse nor circulant, and existing sampling algorithms are not
applicable. The PO algorithm makes it possible to sample from

by applying Algorithm 1 with ,
, , , , and .
In this context, it can be said that the optimization procedure
converts prior samples into a posterior one.

III. ILLUSTRATION

The proposed PO algorithm makes it possible to resort to sto-
chastic sampling algorithms in inverse problems providing two
main advances:
• capability to jointly estimate extra unknowns included in
(acquisition parameters, hyperparameters, );

• access to the entire unknown distribution providing uncer-
tainties (standard deviation, credibility interval, ).

These advances are illustrated in the present section.
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A. Unsupervised Super-Resolution

We detail an application of the proposed PO algorithm to the
super-resolution (SR) academic problem: several blurred and
down-sampled (low resolution) images of a scene are available
in order to retrieve the original (high resolution) scene [18],
[19]. It is shown that the crucial novelty, enabled by the pro-
posed PO algorithm, is to allow the use of sampling algorithms
in SR methods and thus to provide hyperparameter estimation.
We resort to the standard forwardmodel in SR:

. In this equation, collects the pixels of the
low resolution images, here five images of 128 128 pixels

and collects the pixels of the orig-
inal image, here 256 256 pixels . The noise

accounts for measurement and modeling errors.
is a circulant convolution matrix that accounts for the
convolution part of the observation system. Practically, the im-
pulse response is a Laplace shape with FWHMof 4 pixels. is a

decimation matrix: it is a binary matrix indicating which
pixel is observed. Finally, is a matrix (that is to say
81 920 65 536). The prior distribution for is
and the one for is where is the
circulant convolution matrix of the Laplacian filter. The hyper-
parameters and are unknown and their prior law are Jef-
freys’. The posterior [9] is

(6)

It is explored by a Gibbs sampler: iteratively sampling ,
and under their respective posterior conditional distribution

The conditional posteriors for the hyperparameters are Gamma
distributions so they are easy to sample.
The conditional posterior for is Gaussian, but the use of ex-

isting algorithms is impossible due to the structure and the size
of . Regarding the structure, according to Section II-B,
with : is noncirculant due to the decimation and
is nonsparse due to large support of the impulse response.

Regarding the size, (and its Cholesky factor) is a huge
matrix, that is to say 65 536 65 536 and its footprint

in memory would be 32 GB. As a consequence, neither the pre-
cision matrix nor its Cholesky factor can be stored on standard
computers.
On the contrary, the proposed PO algorithm only requires the

storage of four 256 256 matrices and its footprint in memory
is only 2 MB that is easy to manage on standard computers.
Regarding the computational cost:
• Step P requires a sample under each prior distribution: is
computed by FFT (see item 2 of Section I) and is trivially
computed since it is a white noise.

Fig. 1. Chains and histograms of hyperparameters and . (a) ; (b) ;
(c) ; (d) .

• Step O is achieved by a conjugate gradient procedure with
optimal step size. It only requires computations of convo-
lutions (by FFT), decimation and zero-padding.

So, the proposed PO algorithm is feasible and it easily provides
a desired sample. Practically, it takes1 about 1 s (i.e., around

gradient iterations) to obtain one sample.
Fig. 1 shows the iterates and illustrates the operation and con-

vergence. After a burn-in period of about 25 iterations, the al-
gorithm is in its converged state and the total number of itera-
tions is 59 to ensure a good exploration of the distribution. His-
tograms approximating marginal posteriors are also given and
the posterior means are and .
Concerning the images themselves, results are shown in

Fig. 2: the estimated image in Fig. 2(c) clearly shows a better
resolution than the data in Fig. 2(b) and it is visually close to
the original image in Fig. 2(a). Nevertheless, it is important to
keep in mind that, w.r.t. other SR methods, the proposed PO
algorithm does not improve image quality itself but the crucial
novelty is to allow for hyperparameter estimation. In this sense,
it is clear that the approach produces correct hyperparameters
i.e. correct balance between data and prior. Moreover, uncer-
tainties are derived from the samples through the posterior
standard deviation. It is illustrated in Fig. 2(d): the true image
is inside the 99% credibility interval around the estimate. As
a conclusion, the proposed PO algorithm makes it possible to
resort to sampling algorithms in SR method whereas it was
not possible before. It then enables hyperparameter estimation
while other SR methods require hand-made hyperparameter
tuning. In addition, it enables to compute uncertainties based
on posterior standard deviation.

B. Three Other Examples

The PO algorithm has been used in three other contexts:
electromagnetic inverse scattering [14], fluorescent microscopy
trough structured illumination [20] and super-resolution in
astronomy [21].

1The algorithm is implemented within the computing environment Matlab on
a PC with a 3 GHz CPU and 3 GB of RAM.
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Fig. 2. Image reconstruction: true image 2(a), one of the low resolution images 2(b) and the proposed estimate 2(c). The plot 2(d) is a true image slice inside the
99% credibility interval around the estimate. (a) True. (b) Data. (c) Estimate. (d) Uncertainty.

The problems are tackled in a Bayesian framework and im-
plemented by means of stochastic sampling. The object distri-
bution given the other variables is Gaussian with large size pre-
cision matrix. Its structure is neither sparse nor circulant making
the use of existing algorithms impossible. This is due to nonlin-
earity and label variables in [14] and noninvariance of the ob-
servation model in [20], [21]. Nevertheless, the precision matrix
is in the form (1), so, the PO is applicable.

IV. CONCLUSION

This letter presents an algorithm for sampling high-dimen-
sional Gaussian distributions when existing algorithms are in-
feasible. It relies on a perturbation-optimization principle: ade-
quate stochastic perturbation of a criterion and optimization of
the perturbed criterion. It is shown that the criterion optimizer
is a sample of the target distribution. The algorithm is appli-
cable for a particular decomposition of the precision matrix that
emerges in general linear inverse problems.
There is a wide class of applications, in particular any pro-

cessing problem based on a conditional linear forward model
and conditional Gaussian priors for noise and object. The in-
terest and the feasibility of the proposed algorithm have been
illustrated in [14], [20], [21] and in this paper on a more aca-
demic super-resolution problem allowing automatic tuning of
hyperparameters.
An interesting perspective deals with the case of stopped op-

timization procedure. We are presently working on algorithms
that guarantees the convergence towards the target law although
a finite number of iterations, in relation with [22].

ACKNOWLEDGMENT

The authors would like to thank J. Idier (IRRCyN) for in-
spiration of this work [23], T. Rodet and A. Djafari (L2S), for
fruitful discussions, C. Vacar (IMS) and P. Szacherski (IMS and
CEA-LETI) for carefully reading the letter.

REFERENCES
[1] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte

Carlo Methods. Berlin, Germany: Springer Verlag, 2003.
[2] H. Rue, “Fast sampling of Gaussian Markov random fields,” J. R.

Statist. Soc. B, vol. 63, no. 2, 2001.
[3] P. Lalanne, D. Prévost, and P. Chavel, “Stochastic artificial retinas: Al-

gorithm, optoelectronic circuits, and implementation,” Applied Optics,
vol. 40, 2001.

[4] R. Chellappa and S. Chatterjee, “Classification of textures using
Gaussian Markov random fields,” IEEE Trans. Acoust. Speech, Signal
Processing, vol. ASSP-33, pp. 959–963, Aug. 1985.

[5] R. Chellappa and A. Jain, Markov Random Fields: Theory and Appli-
cation. New York: Academic, 1992.

[6] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Trans. Image Process., vol. 4, no. 7, pp.
932–946, Jul. 1995.

[7] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE
Trans. Image Process., vol. 6, no. 2, pp. 298–311, Feb. 1997.

[8] J.-F. Giovannelli, “Unsupervised Bayesian convex deconvolution
based on a field with an explicit partition function,” IEEE Trans.
Image Process., vol. 17, no. 1, pp. 16–26, Jan. 2008.

[9] F. Orieux, J.-F. Giovannelli, and T. Rodet, “Bayesian estimation of
regularization and point spread function parameters for Wiener-Hunt
deconvolution,” J. Opt. Soc. Amer., vol. 27, no. 7, pp. 1593–1607,
2010.

[10] H. Helgason, V. Pipiras, and P. Abry, “Fast and exact synthesis of sta-
tionary multivariate Gaussian time series using circulant embedding,”
Signal Process., vol. 91, pp. 1123–1133, 2011.

[11] Bayesian Approach to Inverse Problems, J. Idier, Ed. London, U.K.:
ISTE Ltd./Wiley, 2008.

[12] H. Rue, S. Martino, and N. Chopin, “Approximate bayesian inference
for latent gaussian models by using integrated nested laplace approxi-
mations,” J. R. Statist. Soc. B, vol. 71, pp. 1–35, 2009.

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 6, no. 6, pp. 721–741, Nov. 1984.

[14] O. Féron, B. Duchêne, and A. Mohammad-Djafari, “Microwave
imaging of piecewise constant objects in a 2D-TE configuration,” Int.
J. Appl. Electromagn. Mech., vol. 26, no. 6, pp. 167–174, 2007, IOS
Press.

[15] H. Ayasso and A. Mohammad-Djafari, “Joint NDT image restoration
and segmentation using Gauss-Markov-Potts prior models and varia-
tional Bayesian computation,” IEEE Trans. Image Process., vol. 19,
no. 9, pp. 2265–2277, 2010.

[16] X. Tan, J. Li, and P. Stoica, “Efficient sparse Bayesian learning via
Gibbs sampling,” in Proc. IEEE ICASSP, Mar. 2010, pp. 3634–3637.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, ser. Series in
Operations Research. New York: Springer Verlag, 2000.

[18] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: A technical overview,” IEEE Trans. Signal Process.
Mag., pp. 21–36, May 2003.

[19] G. Rochefort, F. Champagnat, G. Le Besnerais, and J.-F. Giovannelli,
“An improved observation model for super-resolution under affine mo-
tion,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 3325–3337,
Nov. 2006.

[20] F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-
Marin, “Bayesian estimation for optimized structured illumination mi-
croscopy,” IEEE Trans. Image Process., 2012, to be published.

[21] F. Orieux, J.-F. Giovannelli, T. Rodet, H. Ayasso, and A. Abergel,
“Super-resolution in map-making based on a physical instrument
model and regularized inversion. Application to SPIRE/Herschel,”
Astron. Astrophys., 2012.

[22] C. Fox, “A Conjugate Direction Sampler for Normal Distributions
With a Few Computed Examples,” Univ. Otago, Dunedin, New
Zealand, Electronics Tech. Rep. 2008-1, 2008.

[23] J. Idier, “Optimization and sampling in the Gaussian case,” personal
communication 1999.


