
IEEE SIGNAL PROCESSING MAGAZINE   [97]   JANUARY 20101053-5888/10/$26.00©2010IEEE

© PHOTODISC

 Digital Object Identifier 10.1109/MSP.2009.934870

Image Reconstruction 
in Optical Interferometry

S
ince the first multitelescope optical inter-
ferometer [1],  considerable technologi-
cal improvements have been achieved. 
Optical (visible/infrared) interferom-
eters are now widely open to the 

astronomical community and provide the 
means to obtain unique information from 
observed objects at very high angular resolution 
(submilliarcsecond). There are numerous astro-
physical applications, such as stellar surfaces, 
environment of premain sequence or evolved 
stars, and central regions of active galaxies. See 
[2]–[4] for comprehensive reviews about optical 
interferometry and recent astrophysical results. As 
interferometers do not directly provide images, recon-
struction methods are needed to fully exploit these 
instruments. This article aims at reviewing image recon-
struction algorithms in astronomical interferometry using a 
general framework to formally describe and compare the differ-
ent methods. The challenging issues in image reconstruction 
from interferometric data are introduced in the general frame-
work of inverse problem approach. This framework is then used 
to describe existing image reconstruction algorithms in radio 
interferometry and the new methods specifically developed for 
optical interferometry.

Multitelescope interferometers provide sparse measurements of 
the Fourier transform of the brightness distribution of the observed 
objects (cf. the section “Interferometric Data”). Hence the first prob-
lem in image reconstruction from interferometric data is to cope 
with voids in the sampled spatial frequencies. This can be tackled in 
the framework of inverse problem approach (cf. the section 
“Imaging from Sparse Fourier Data”). At optical wavelengths, addi-

tional problems arise due to the  missing of part of Fourier phase 
information, and to the nonlinearity of the direct model. These 
issues had led to the development of  specific algorithms which can 
also be formally described in the same general framework (cf. the 
section “Image Reconstruction from Nonlinear Data”). 

INTERFEROMETRIC DATA
The instantaneous output of an optical interferometer is the so-
called complex visibility Vj1, j2

1t 2  of the fringes given by the 
interferences of the monochromatic light from the j1th and the 
j2th telescopes at instant t [3] 

 Vj1, j2
1t 2 5 gj1

1t 2 * gj2
1t 2  Î 1nj1, j2

1t 2 2 , (1)
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where Î 1n 2  is the Fourier transform of I 1u 2 , the brightness dis-
tribution of the observed object in angular direction u, gj 1t 2  is 
the complex amplitude throughput for the light from the jth 
telescope and nj1, j2

1t 2  is the spatial frequency sampled by the 
pair of telescopes 1 j1, j2 2  (see Figure 1) 

 nj1, j2
1t 2 5 rj2

1t 2 2 rj1
1t 2

l
 (2) 

with l the wavelength and rj 1t 2  the projected position of the 
jth telescope on a plane perpendicular to the line of sight. These 
equations assume that the diameters of the telescopes are much 
smaller than their projected separation and that the object is an 
incoherent light source. An interferometer therefore provides 
sparse measurements of the Fourier transform of the brightness 
distribution of the observed object. Figure 2(a) shows an example 
of the sampling of spatial frequencies by an interferometer. 

In practice, the complex visibility is measured during a finite 
exposure duration 

 Vj1, j2, m
data 5 8Vj1, j2

1t 2 9m1 Vj1, j2, m
err , (3)

where 8 9m denotes averaging during the mth exposure and 
Vj1, j2, m

err  stands for the errors due to noise and modeling 
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[FIG1] Geometrical layout of an interferometer where B is 
the projected baseline, u is the view angle, and d is the 
geometrical optical path difference that is compensated by 
the delay lines.
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[FIG2] (a) 1u, v 2 coverage, (b) observed object, (c) dirty beam, and (d) dirty image. Object model and 1u, v 2 coverage are from the 
“2004 Beauty Contest” [16].
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 approximations. The exposure duration is short enough to 
consider the projected baseline rj2

1t 2 2 rj1
1t 2  as constant, thus 

 8Vj1, j2
1t 2 9m . Gj1, j2, m Î 1nj1, j2, m

2  (4) 

with nj1, j2, m5 8nj1, j2
1t 2 9m . nj1, j2

1tm 2 , tm5 8t9m the mean expo-
sure time and Gj1, j2,m5 8gj1

1t 2 * gj2
1t 2 9m the effective optical 

transfer function (OTF). The fast variations of the instantaneous 
OTF are mainly due to the random optical path differences 
(OPD) caused by the atmospheric turbulence. In long baseline 
interferometry, two telescopes are separated by more than the 
outer scale of the turbulence, hence their OPDs are indepen-
dent. Furthermore, the exposure duration is much longer than 
the evolution time of the turbulence (a few tens of milliseconds) 
and averaging can be approximated by expectation 

 8gj1
1t 2 * gj2

1t 2 9m . E5gj1
1t 2 *6m E5gj2

1t 2 6m

with E56m the expectation during the mth exposure. During this 
exposure, the phase of gj 1t 2  is fj 1t 2 5fj, m1 12 p/l 2  dj 1t 2  with 
fj, m5 8fj 1t 2 9m the static phase aberration and dj 1t 2~N 10,sd

2 2  
the OPD which is a zero-mean Gaussian variable with the same 
standard deviation for all telescopes [5]. For a given telescope, 
the amplitude and phase of the complex throughput can be 
assumed independent, hence 

 E5gj 1t 2 6m . E5|gj 1t 2 |6m E5eifj1t26m . gj, m e2
1
2s

2
f 

with gj, m5 |gj 1tm 2 | exp 12i wj, m 2  and sw
2 5 12 p/l 2 2 sd2 the vari-

ance of the phase during an exposure. The OTF is finally 

 Gj1, j2,m5 8gj1
1t 2 * gj2

1t 2 9m . gj1, m
*  gj2,m e2sf

2

. (5) 

At long wavelengths (radio), the phase variation during each 
exposure is small, hence Gj1, j2,m . gj1,m

*  gj2,m 2 0. If some means 
to calibrate the gj, ms are available, then image reconstruction 
amounts to deconvolution (cf. the section “Imaging from Sparse 
Fourier Data”); otherwise, self- calibration has been developed to 
jointly  estimate the OTF and the brightness distribution of the 
object given the measured complex visibilities. 

At short wavelengths (optical), the phase variance exceeds a 
few squared radians and Gj1, j2, m . 0, hence the object’s com-
plex visibility cannot be directly measured. A first solution 
would be to compensate for the OPD errors in real time using 
fast delay lines. This solution, however, requires a bright refer-
ence source in the vicinity of the observed object and dedicated 
instrumentation [6] that is currently in development and not 
yet available. An alternative solution consists in integrating 
nonlinear estimators that are insensitive to telescope-wise 
phase errors. This requires high acquisition rates (about 
1,000 Hz in the near infrared) and involves special data pro-
cessing but otherwise no special instrumentation. 

To overcome loss in visibility transmission due to fast vary-
ing OPD errors, current optical interferometers integrate the 
power spectrum (for j12 j2) 

 Sj1, j2, m5 8|Vj1, j2
1t 2 |29m . rj1, m rj2, m | Î 1nj1, j2, m

2 |2 (6) 

with rj, m5 8|gj 1t 2 |29m the mean squared modulus of the complex 
throughput of the jth telescope during the mth exposure. By con-
struction, the rj, ms are insensitive to the phase errors and so is 
the power spectrum. Unlike that of the complex visibility, the 
transfer function rj1, m rj2, m of the power spectrum is not negligi-
ble. This transfer function can be estimated by simultaneous pho-
tometric calibration and, to compensate for remaining static 
effects, from the power spectrum of a reference source (a so-called 
calibrator). Hence the object power spectrum | Î 1nj1, j2, m

2 |2 can be 
measured by Sj1, j2, m in spite of phase errors due to the turbulence. 

To obtain Fourier phase information (which is not provided 
by the power spectrum), the bispectrum of the complex visibili-
ties is measured 

 Bj1, j2, j3, m5 8Vj1, j2
1t 2  Vj2, j3

1t 2  Vj3, j1
1t 2 9m 

 . rj1, m rj2, m rj3, m

 3 Î 1nj1, j2, m
2 Î 1nj2, j3, m

2  Î 1nj3, j1, m
2 , (7) 

where j1, j2 and j3 denote three different telescopes. As for the 
power spectrum, the transfer function rj1, m rj2, m rj3, m of the 
bispectrum can be calibrated. Since this transfer function is 
real, it has no effect on the phase of the bispectrum (the so-
called phase closure) that is equal to that of the object 

 bj1, j2, j3, m ; arg 1Bj1, j2, j3, m
2

 5 arg 1 Î 1nj1, j2, m
2  Î 1nj2, j3, m

2  Î 1nj3, j1, m
22 . (8) 

However, some phase information is missing. Indeed, from 
all the interferences between T telescopes (in a nonredundant 
configuration), T 1T2 1 2 /2 different spatial frequencies are 
sampled but the phase closure only yields 1T2 1 2  1T2 2 2 /2 
linearly independent phase estimates [3]. The deficiency of 
phase information is most critical for a small number of tele-
scopes. Whatever the number of telescopes is, at least the infor-
mation of absolute position of the observed object is lost. 

In practice, obtaining the power spectrum and the bispec-
trum involves measuring the instantaneous complex visibili-
ties (that is, for a very short integration time compared to the 
evolution of the turbulence) and averaging their power spec-
trum and bispectrum over the effective exposure time. Being 
nonlinear functions of noisy variables, these quantities are bi-
ased but the biases are easy to remove [7], [8]. To simplify the 
description of the algorithms, we will consider that the debi-
ased and calibrated power spectrum and bispectrum are avail-
able as input data for image reconstruction, thus 

 Sj1, j2, m
data 5 |Î 1nj1, j2, m

2 |21 Sj1, j2, m
err , (9)

 Bj1, j2, j3, m
data 5 Î 1nj1, j2, m

2  Î 1nj2, j3, m
2  Î 1nj3, j1, m

2 ,
  1Bj1, j2, j3, m

err  (10) 

where Sj1, j2, m
err  and Bj1, j2, j3, m

err  are zero-mean terms that account for 
noise and model errors. Instead of the complex bispectrum data, 
we may consider the phase closure data 
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 bj1, j2, j3, m
data 5 arc 1w 1nj1, j2, m

2 1w 1nj2, j3, m
2  

 1w 1nj3, j1, m
2 1 bj1, j2, j3, m

err 2 , (11)

where w 1n 2 5 arg 1 Î 1n 2 2  is the Fourier phase of the object 
brightness distribution, arc 1  2  wraps its argument in the range 
12p, 1p 4 and bj1, j2, j3, m

err  denotes the errors. 

IMAGING FROM SPARSE FOURIER DATA
We consider here the simplest problem of image reconstruction 
given sparse Fourier coefficients (the complex visibilities) and 
first assuming that the OTF has been calibrated. 

DATA AND IMAGE MODELS
To simplify the notation, we introduce the data vector y [ CL 
that collates all the measurements y,5 Vj1, j2, m

data  with 
,~ 1 j1, j2, m 2  to denote a one-to-one mapping between index , 
and triplet 1 j1, j2, m 2 . Long baseline interferometers provide 
data for a limited set L5 5nk6k51, c, K of observed spatial fre-
quencies. For each nk, there is a nonempty set Bk of telescope 
pairs and exposures such that 

 1 j1, j2, m 2 [ Bk 3 rj2,  m2rj1, m5l nk

or equivalently 

 Bk 
def 5 1 j1, j2, m 2 [ A2 3 [ ; rj2, m2 rj1, m5l nk6  (12)

with A and E the sets of apertures (telescopes or antennae) 
and exposure indexes, and rj, m5 8rj 1t 2 9m the mean position of 
the jth telescope during the mth exposure. Introducing Bk 
and the set L of observed frequencies is a simple way to 
account for all possible cases (with or without redundancies, 
multiple data sets, or observations from different interferome-
ters). Note that, if every spatial frequency is only observed 
once, then L5K and we can use ,5 k. 

The image is a parametrized representation of the object 
brightness distribution. A very general description is given by a 
linear expansion 

 I 1u 2 5 a
N

n51
xn bn 1u 2   F.T.

>
 Î 1n25a

N

n51
xn b̂n 1n 2 , (13)

where 5bn 1u 2 6n51, c, N are basis functions and x [ RN are the 
image parameters, for instance, the values of the image pixels, 
or wavelet coefficients. Given a grid of angular directions 
G5 5un6n51, c, N and taking bn 1u 2 5 b 1u 2 un 2 , a grid model 
is obtained 

 I 1u 2 5 a
N

n51
xnb 1u2un 2  F.T.

>
  Î 1n 2 5  b̂ 1n2  a

N

n51
xn e2i 2 p un # n. 

    (14) 

Using an equispaced grid, the usual pixelized image representa-
tion is obtained with pixel shape b 1u 2 . The function b 1u 2  can 
also be used as a building block for image reconstruction [9]. 
Alternatively, b 1u 2  may be seen as the neat beam that sets the 
effective resolution of the image [10]. 

The size of the synthesized field of view and the image reso-
lution must be chosen according to the extension of the 
observed object and to the resolution of the interferometer; see 
e.g., [10]. To avoid biases and rough approximations caused by 
the particular image model, the grid spacing Du should be well 
beyond the limit imposed by the longest baseline 

 Du V
l

2 Bmax
, (15)

where Bmax5maxj1, j2, t|rj1
1t 2 2 rj2

1t 2 | is the maximum projected 
separation between interfering telescopes. Oversampling by a 
factor of at least two is usually used and the pixel size is given by 
Du ( l/ 14 Bmax 2 . To avoid aliasing and image truncation, the 
field of view must be chosen large enough and without forget-
ting that the reciprocal of the width of the field of view also sets 
the sampling step of the spatial frequencies. 

The model of the complex visibility at the observed spatial 
frequencies is 

 Vk 1x 2 5 Î 1nk 2 5 a
N

n51
Tk, n xn, (16)

where the coefficients of the matrix T [ CK3N are Tk, n5 
b̂n 1nk 2  or Tk,n5 b̂ 1nk 2  e2i 2 p un # nk depending which model of 
(13) or (14) is used. The matrix T performs the Fourier trans-
form of nonequispaced data, which is a very costly operation. 
This problem is not specific to interferometry, similar needs in 
crystallography, tomography, and biomedical imaging have led 
to the development of fast algorithms to approximate this 
operation [11]. For instance 

 T . R # F # S, (17) 

where F [ CN3N is the fast Fourier transform (FFT) operator, 
R [ CK3N is a linear operator to interpolate the discrete 
Fourier transform of the image x̂5 F # x at the observed spatial 
frequencies, and S is diagonal and compensates the field of view 
apodization (or spectral smoothing) caused by R. 

In radio astronomy a different technique called regridding 
[12], [13] is generally used, which consists of interpolating the 
data (not the model) onto the grid of discrete frequencies. The 
advantage is that, when there is a large number of measurements, 
the number of data points is reduced, which speeds up further 
computations. There are, however, a number of drawbacks to the 
regridding technique. First, it is not possible to apply the tech-
nique to nonlinear estimators such as the power spectrum and 
the bispectrum. Second, owing to the structure of the regridding 
operator, the regridded data are correlated even if the original 
data are not. These correlations are usually ignored in further 
processing and the pseudodata are assumed to be independent, 
which results in a poor approximation of the real noise statistics. 
This can be a critical issue with low signal to noise data [14]. 

Putting all together, the direct model of the data is affine 

 y5 A # x1 e (18)

with e the error vector (e,5 V j1, j2, m
err ), A5G # T the linear model 

operator and G [ CL3K the OTF operator given by 
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 G,,k5 e gj1,m
*  gj2,m if ,~ 1 j1, j2,m 2 [ Bk

0 else.
 (19)

Applying the pseudoinverse T1 5 S21 # F21 # R1 of T to the 
data yields the so-called dirty image [see Figure 2)] 

 y° 5 T1 # y5H # x1 e° , (20)

where e° 5 T1 # e and H5 T1 # G # T. Apart from the apodization, 
H essentially performs the convolution of the image by the dirty 
beam (see Figure 2). From (18) and (20), image reconstruction 
from interferometric data can be equivalently seen as a problem of 
interpolating missing Fourier coefficients or as a problem of 
deconvolution of the dirty map by the dirty beam [15]. 

INVERSE PROBLEM APPROACH
Since many Fourier frequencies are not measured, fitting the data 
alone does not uniquely define the sought image. Such an ill-
posed problem can be solved by an inverse problem approach [17] 
by imposing a priori constraints to select a unique image among 
all those that are consistent with the data. The requirements for 
the priors are that they must help to smoothly interpolate voids in 
the 1u, v 2  coverage while avoiding high frequencies beyond the 
diffraction limit. Without loss of generality, we assume that these 
constraints are monitored by a penalty function fprior 1x 2  that mea-
sures the agreement of the image with the priors: the lower 
fprior 1x 2 , the better the agreement. In inverse problem framework, 
fprior 1x 2  is termed as the regularization. Then the parameters x1 
of the image which best matches the priors while fitting the data 
are obtained by solving a constrained optimization problem 

 x1 5 arg min fprior 1x 2 ,   subject to:  A # x5 y . (21) 

Other strict constraints may apply. For instance, assuming 
the image brightness distribution must be positive and normal-
ized, the feasible set is 

 X5 e x [ RN; x $ 0, a
n

xn5 1 f , (22) 

where x $ 0 means 4n, xn $ 0. Besides, due to noise and model 
approximations, there is some expected discrepancy between the 
model and actual data. As for the priors, the distance of the model to 
the data can be measured by a penalty function fdata 1x 2 . We then 
require that, to be consistent with the data, an image must be such 
that fdata 1x 2 # hdata where hdata is set according to the level of errors 

 x1 5 arg min
x[X  

fprior 1x 2 ,     subject to:  fdata 1x 2 # hdata. (23) 

The Lagrangian of this constrained optimization problem 
can be written as 

 L 1x;, 2 5 fprior 1x 2 1 , 1 fdata 1x 2 2hdata 2 , (24)

where , is the Lagrange multiplier associated to the inequality 
constraint fdata 1x 2 # hdata. If the constraint is active, then , . 0 

and fdata 1x 2 5hdata [18]. Conversely, the constraint being inac-
tive would imply that ,5 0, which would mean that the data 
are useless, which is hopefully not the case. Dropping the con-
stant hdata, which does not depend on x, the solution is obtained 
by solving either of the following problems: 

 x1 5 arg min
x[X  

5fprior 1x 2 1 , fdata 1x 2 6
 5 arg min 

x[X
f 1x; m 2 , 

where 

 f 1x; m 2 5 fdata 1x 2 1m fprior 1x 2  (25) 

is the penalty function and m5 1/, . 0 has to be tuned to 
match the constraint fdata 1x 2 5hdata. Hence, we can equivalently 
consider that we are solving the problem of maximizing the 
agreement of the model with the data subject to the constraint 
that the priors be below a preset level 

 x1 5 arg min 
x[X

fdata 1x 2 ,     subject to:  fprior 1x 2 # hprior . (26) 

For convex penalties and providing that the Lagrange multi-
pliers (m and ,) and the thresholds (hdata and hprior) are set 
consistently, the image restoration is achieved by solving 
either of the problems in (23) and (26) or by minimizing the 
penalty function in (25). However, choosing which of these 
particular problems to solve can be a deciding issue for the 
efficiency of the method. For instance, if fdata 1x 2  and fprior 1x 2  
are both smooth functions, direct minimization of f 1x;m 2  in 
(25) can be done by using general-purpose optimization algo-
rithms [18] but requires to know the value of the Lagrange 
multiplier. If the penalty functions are not smooth or if one 
wants to have the Lagrange multiplier automatically tuned 
given hdata or hprior, specific algorithms must be devised. As 
we will see, specifying the image reconstruction as a con-
strained optimization problem provides a very general frame-
work suitable to describe most existing methods; it however 
hides important  algorithmic details about the strategy to 
search the solution. In what remains of this section, we first 
derive expressions of the data penalty terms and, then, the 
various regularizations that have been considered for image 
reconstruction in interferometry. 

DISTANCE TO THE DATA
The ,2 norm is a simple means to measure the consistency of 
the model image with the data 

 fdata 1x 2 5 0 0 y2 A # x 0 0 22 . (27) 

However, to account for correlations and for the inhomogeneous 
quality of the measurements, the distance to the data has to be 
defined according to the statistics of the errors e5 y2 A # x given 
the image model. Assuming Gaussian statistics, this leads to 

 fdata 1x 2 5 1y2 A # x 2T # Werr
# 1y2 A # x 2 , (28) 
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where the weighting matrix Werr5 Cerr
21 is the inverse of the 

covariance matrix of the errors. There is a slight issue because 
we are dealing with complex values. Since complex numbers are 
just pairs of reals, complex valued vectors (such as y, e and A # x) 
can be flattened into ordinary real vectors (with doubled size) to 
use standard linear algebra notation and define the covariance 
matrix as Cerr5 8e # eT9. This is what is assumed in (28). 

There are some possible simplifications. For instance, the 
complex visibilities are measured independently, hence the 
weighting matrix Werr is block diagonal with 2 3 2 blocks. 
Furthermore, if the real and imaginary parts of a given mea-
sured complex visibility are uncorrelated and have the same 
variance, then fdata takes a simple form 

 fdata 1x 2 5 a
,

w, |y,2 1A # x 2 ,|2, (29)

where the weights are given by 

 w,5 Var 1Re 1y, 2 2215 Var 1Im 1y, 2 221 . (30) 

This expression of fdata 1x 2 , popularized by Goodman [19], is very 
commonly used in radio interferometry. 

Real data may, however, have different statistics. For instance, 
OI-FITS, which is the standard file exchange format for optical 
interferometric data, assumes that the amplitude and the phase of 
complex data (complex visibility or triple product) are indepen-
dent [20]. The thick lines in Figure 3 display the isocontours of 
the corresponding log-likelihood that forms a nonconvex valley in 
the complex plane. Assuming Goodman statistics would yield cir-
cular isocontours in this figure and is obviously a bad approxima-
tion of the true criterion in that case. To improve on the Goodman 
model while avoiding nonconvex criteria, Meimon et al. [14] have 
proposed quadratic convex approximations of the true log-likeli-
hood (see Figure 3) and have shown that their so-called local 

approximation yields the best results, notably when dealing with 
low signal-noise data. For a complex datum y,5r, exp 1 i w, 2 , 
their local quadratic approximation writes 

 fdata 1x 2 5 a
,

e Re 1e, e2i w, 2 2
s//, ,

2 1
Im 1e, e2i w, 2 2

s', ,
2 f , (31) 

where e5 y2 A # x denotes the complex residuals and the vari-
ances along and perpendicular to the complex datum vector are 

 s//, ,
2 5 Var 1r, 2  (32)

 s', ,
2 5r,

2 Var 1w, 2 . (33)

The Goodman model is retrieved when r,
2 Var 1w, 2 5 Var 1r, 2 .

MAXIMUM ENTROPY METHODS
Maximum entropy methods (MEMs) are based on the 1950s work 
of Jaynes on information theory; the underlying idea is to obtain 
the least informative image that is consistent with the data [21]. 
This amounts to minimizing a criterion like the one in (25) with 
fprior 1x 2 5 2S 1x 2 , where the entropy S 1x 2  measures the informa-
tional contents of the image x. In this framework, fprior 1x 2  is some-
times called negentropy. Among all the expressions considered for 
the negentropy of an image, one of the most popular is [22] 

 fprior 1x 2 5 a
j

3xj log 1xj/xj 2 2 xj1 xj 4 (34) 

with x the default image; that is, the one that would be recov-
ered in the absence of any data. Back to information theory, this 
expression is similar to the Kullback-Leibler divergence between 
x and x (with additional terms that cancel for normalized distri-
butions). The default image x can be taken as being a flat image, 
an image previously restored, or an image of the same object at 
a lower resolution. Narayan and Nityananda [23] reviewed 
MEMs for radio-interferometry imaging and compared the other 
forms of the negentropy that have been proposed. They argued 
that only nonquadratic priors can interpolate missing Fourier 
data and noted that such penalties also forbid negative pixel val-
ues. The fact that there is no need to explicitly impose positivity 
is sometimes put forward by the proponents of these methods. 

MEM penalties are usually separable, which means that they do 
not depend on the ordering of the pixels. To explicitly enforce some 
correlation between close pixels in the sought image x (hence, 
some smoothness), the prior can be chosen to depend on x. For 
instance: x5 P # x, where P is some averaging or smoothing linear 
operator. This type of floating prior has been used to loosely enforce 
constraints such as radial symmetry [24]. Alternatively, an intrinsic 
correlation function (ICF) can be explicitly introduced by a convo-
lution kernel to impose the correlation structure of the image [25]. 

Minimizing the joint criterion in (25) with entropy regulariza-
tion has a number of issues as the problem is highly nonlinear and 
as the number of unknowns is very large (as many as there are pix-
els). Various methods have been proposed, but the most effective 
algorithm [26] seeks for the solution by a  nonlinear optimization 
in a local subspace of search directions with the Lagrange multipli-
er m tuned on the fly to match the constraint that fdata 1x 2 5hdata. 

ee
Im

Re

ρ

ϕ

[FIG3] Convex quadratic approximations of complex data. 
Thick lines are isocontours of the log-likelihood fdata (at 1, 
2, and 3 rms levels) for a complex datum with independent 
amplitude and phase. Dashed lines are isocontours for the 
global quadratic approximation. Thin lines are isocontours 
for the local quadratic approximation.
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OTHER PRIOR PENALTIES
Bayesian arguments can be invoked to define other types of reg-
ularization. For instance, assuming that the pixels have a 
Gaussian distribution leads to quadratic penalties such as 

 fprior 1x 2 5 1x2 x 2T # Cprior
21 # 1x2 x 2  (35) 

with Cprior the prior covariance and x the prior solution. 
Tikhonov’s regularization [27], fprior 1x 2 5 ||x||2

2, is the simplest of 
these penalties. By Parseval’s theorem, this regularization favors 
zeroes for unmeasured frequencies, it is therefore not recom-
mended for image reconstruction in interferometry. Yet, this 
does not rule out all quadratic priors. For instance, compactness 
is achieved by a very simple quadratic penalty 

 fprior 1x 2 5 a
n

wn
prior xn

2,  (36) 

where the weights are increasing with the distance to the cen-
ter of the image thus favoring structures concentrated within 
this part of the image. Under strict normalization constraint 
and in the absence of any data, the default image given by this 
prior is xn ~ 1/wn

prior where the factor comes from the normal-

ization requirement [28]. Although simple, this regularizer, 
coupled with the positivity constraint, can be very effective as 
shown by Figure 4(b). Indeed, smooth Fourier interpolation 
follows from the compactness of the brightness distribution 
which is imposed by fprior 1x 2  in (36) and by the positivity as it 
plays the role of a floating support. 

Other prior penalties commonly used in image restoration 
methods can be useful for interferometry. For instance, edge- 
preserving smoothness is achieved by 

 fprior 1x 2 5 a
n1, n2

"P 21 |=x|n1, n2

2 , (37)

where P . 0 is a chosen threshold and |=x|2 is the squared magni-
tude of the spatial gradient of the image 

 |=x|n1, n2

2 5 1xn111, n2
2 xn1, n2

2 21 1xn1, n2112 xn1, n2
2 2.

The penalization in (37) behaves as a quadratic (respectively. 
linear) function where the magnitude of the spatial gradient is 
small (respectively,  large) compared to P. Thus reduction of 
small local variations without penalizing too much strong sharp 
features is achieved by this regularization. In the limit P S 0, 

[FIG4] Image reconstruction with various types of regularization.  (a) Original object smoothed to the resolution of the interferometer 
(FWHM~15 marcsec); (b) reconstruction with a quadratic regularization given by (36) and that imposes a compact field of view; 
(c) reconstruction with edge-preserving regularization as in (37); and (d) reconstruction with maximum entropy regularization as in 
(34). All reconstructions by algorithm MiRA and from the power spectrum and the phase closures.
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edge-preserving smoothness behaves like total variation [29], 
which has proved successful in imposing sparsity. 

CLEAN METHOD
Favoring images with a limited number of significant pixels is a way 
to avoid the degeneracies of image reconstruction from sparse 
Fourier coefficients. This could be formally done by searching for 
the least ,0-norm image consistent with the data; hence using 
fprior 1x 2 5 ||x||0. However, due to the number of parameters, mini-
mizing the resulting mixed criterion is a combinatorial problem 
that is too difficult to solve directly. The CLEAN algorithm [30], [31] 
implements a matching pursuit strategy to attempt to find this kind 
of solution. The method proceeds iteratively as follows. Given the 
data in the form of a dirty image, the location of the brightest point 
source that best explains the data is searched. The model image is 
then updated by a fraction of the intensity of this component, and 
this fraction times the dirty beam is subtracted from the dirty image. 
The procedure is repeated for the new residual dirty image that is 
searched for evidence of another point-like source. When the level of 
the residuals becomes smaller than a given threshold set from the 
noise level, the image is convolved with the clean beam [usually a 
Gaussian-shaped point spread function (PSF)] to set the resolution 
according to the extension of the 1u, v 2 coverage. Once most point 
sources have been removed, the residual dirty image is essentially 
due to the remaining extended sources that may be smooth enough 
to be insensitive to the convolution by the dirty beam. Hence, add-
ing the residual dirty image to the clean image produces a final 
image consisting in compact sources (convolved by the clean beam) 
plus smooth extended components. Although designed for point 
sources, CLEAN works rather well for extended sources and remains 
one of the preferred methods in radio interferometry. 

It has been demonstrated that the matching pursuit part of 
CLEAN is equivalent to an iterative deconvolution with early stop-
ping [32] and that it is an approximate algorithm for obtaining the 
image of minimum total flux consistent with the observations 
[33]. Hence, under the nonnegativity constraint, this would, at 
best, yield the least ,1-norm image consistent with the data. This 
objective is supported by recent results in Compressive Sensing 
[34] showing that, in most practical cases, regularization by the 
,1-norm of x enforces the sparsity of the solution. However, the 
matching pursuit strategy implemented by CLEAN is slow, it has 
some instabilities and it is known to be suboptimal [33]. 

OTHER METHODS
This section briefly reviews other image reconstruction methods 
applied in astronomical interferometry. 

Multiresolution:1)  These methods aim at reconstructing 
images with different scales. They basically rely on recursive 
decomposition of the image in low and high frequencies. 
Multiresolution CLEAN [35] first reconstructs an image of the 
broad emission and then iteratively updates this map at full 
resolution as in the original CLEAN algorithm. This approach 
has been generalized by using a wavelet expansion to describe 
the image, which could be formally expressed in terms of (13), 
and achieved multiresolution deconvolution by a matching 

pursuit algorithm applied to the wavelet coefficients and such 
that the solution satisfies positivity and support constraints 
[36]. The multiscale CLEAN algorithm [37] explicitly 
describes the image as a sum of components with different 
scales and makes use of a weighted matching pursuit algo-
rithm to search for the scale and position of each image 
update. The main advantages of multiscale CLEAN are its abil-
ity to leave very few structures in the final residuals and to 
correctly estimate the total flux of the observed object. This 
method is widely used in radio astronomy and is part of stan-
dard data processing packages [38]. In the context of MEM, 
the multichannel maximum entropy image reconstruction 
method [39] introduces a  multiscale structure in the image by 
means of different intrinsic correlation functions [25]. The 
reconstructed image is then the sum of several extended 
sources with different levels of correlation. This approach was 
extended by using a pyramidal image decomposition [40] or 
wavelet expansions [41], [42]. 

WIPE method:2)  The WIPE method [10] is a regularized fit of 
the interferometric data under positivity and support con-
straints. The model image is given by (13) using an equally 
spaced grid and the effective resolution is explicitly set by the 
basis function b 1u 2 , the so-called neat beam, with an additional 
penalty to avoid super resolution. The image parameters are the 
ones that minimize 

 fWipe 1x 2 5 a
,

w, |b̂, y,2 1A # x 2 ,|21 a
k,|nk|.neff

| 1F # x 2 k|2

with y the calibrated complex visibility data, b̂, the Fourier 
transform of the neat beam at the spatial frequency of datum 
y,, neff * supn[L|n| an effective cutoff frequency, F the 
Fourier transform operator, A the model matrix given by 
(18) accounting for the subsampled Fourier transform and 
the neat beam, and 

 w,5 1/ as,2 a
,r
s,r
22b , 

where s,
25 |b̂,|

2 Var 1y, 2  assumes the Goodman approxima-
tion. In the criterion minimized by WIPE, one can identify 
the distance of the model to the data and a regularization 
term. There is no hyper-parameter to tune the level of this 
latter term. The optimization is done by a conjugate gradient 
search with a stopping criterion derived from the analysis of 
the conditioning of the problem. This analysis is built up 
during the iterations.

Bimodel method:3)  The case of an image model explicitly 
mixing extended source and point sources has also been 
addressed [43], [44] and more recently [15]. The latter have 
considered an image x5 xe1 xp made of two maps: xe for 
extended structures and xp for point-like components. The 
maps xe and xp are respectively regularized by imposing 
smoothness and sparsity. With additional positivity and, option-
ally, support constraints, it turns out that the two kinds of reg-
ularization can be implemented by quadratic penalties. Their 
method amounts to minimize 
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 fmix 1xe, xp 2 5 0 0 y2 A # 1xe1 xp 2 0 0 21ls c
T # xp

  1 Ps ||x||p
21lc ||xe||Cprior

2 1 Pm 1cT # xe 2 2 
with ||xe||Cprior

2  a local finite difference norm similar to (35), and c a 
vector with all components set to one, hence, cT # x5 a

n
xn. 

There are four tuning parameters for the regularization terms: 
ls $ 0 and Ps . 0 control the sparsity of xp, lc . 0 controls the 
level of smoothness in the extended map xe, and Pm . 0 (or 
Pm $ 0 if there is a support constraint) insures strict convexity of 
the regularization with respect to xe. Circulant approximations 
are used to implement a very fast minimization of fmix 1xe, xp 2  
under the constraints that xe $ 0 and xp $ 0 [15]. 

SELF-CALIBRATION
When the OTF cannot be calibrated (e.g., there is no reference 
or the OTF is significantly varying due to the turbulence), the 
problem is not only to derive the image parameters x, but also 
the unknown complex throughputs g. As there is no correlation 
between the throughputs and the observed object, the inverse 
approach leads to solve 

 1x, g 21 5 arg min
x[X,g

 5fdata 1x, g 2 1mimg fprior
img 1x 2

  1mgain fprior
gain 1g 2 6 (38) 

with mimg fprior
img 1x 2  and mgain fprior

gain 1g 2  the regularization terms for 
the image parameters and for the complex throughputs. The lat-
ter can be derived from prior statistics about the turbulence [5]. 
In principle, global optimization should be required to minimize 
the nonconvex criterion in (38). Fortunately, a simpler strategy 
based on alternate minimization with respect to x only and then 
with respect to g only has proved effective to solve this problem. 
This method has been called self- calibration because it uses the 
current estimate of the sought image as a reference source to 
calibrate the throughputs. The algorithm begins with an initial 
image x304 and repeats until convergence the following steps 
(starting with n5 1 and incrementing n after each iteration): 

Self-calibration step1) . Given the image x3n214, find the best 
complex throughputs g3n4 by solving 

 g3n45 arg min
g  

5fdata 1x3n214, g 2 1mgain fprior
gain 1g 2 6.

Image reconstruction step2) . Apply image reconstruction 
algorithm to recover a new image estimate given the data 
and the complex throughputs 

 x3n45 arg min 
x

5fdata 1x, g3n4 2 1mimg fprior
img 1x 2 6.

Note that any image reconstruction algorithm described previ-
ously can be used in the second step of the method. The criteri-
on in (38) being nonconvex, the solution should depend on the 
initialization. Yet, this does not appear to be an issue in practice 
even if simple local optimization methods are used to solve the 
self-calibration step (such as the one recently proposed by [45]). 

Self-calibration was initially proposed by Readhead and 
Wilkinson [46] to derive missing Fourier phase information 

from phase closure data, and the technique was later improved 
by Cotton [47]. Schwab [48] was the first to solve the problem 
by explicitly minimizing a nonlinear criterion similar to 
fdata 1x, g 2  in (29). Schwab’s approach was further improved by 
Cornwell and Wilkinson [49] who introduced priors for the 
complex gains, that is, the term mgain f prior

gain 1g 2  in the global pen-
alty. However, for most authors, no priors about the through-
puts are assumed, hence mgain5 0. 

Self-calibration is a particular case of the blind, or myopic, 
deconvolution methods [50] that have been developed to 
improve the quality of blurred images when the PSF is 
unknown. Indeed, when the PSF can be completely described 
by phase aberrations in the pupil plane, blind deconvolution 
amounts to solving the same problem as self-calibration [51]. 

IMAGE RECONSTRUCTION FROM NONLINEAR DATA
At optical wavelengths, the complex visibilities (whether they 
are calibrated or not) are not directly measurable, the available 
data (cf. the section “Interferometric Data”) are the power spec-
trum, the bispectrum, and/or the phase closure. Image recon-
struction algorithms can be designed following the same 
inverse problem approach as before. In particular, the regular-
ization can be implemented by the same fprior penalties as in the 
section “Imaging From Sparse Fourier Data.” However, the 
direct model of the data is now nonlinear and specific expres-
sions to implement fdata have to be derived. The nonlinearity 
has also some incidence on the optimization strategy. 

DATA PENALTY
The power spectrum, the bispectrum, and the phase closure 
data have non-Gaussian statistics: the power spectrum is a posi-
tive quantity, the phase closure is wrapped in 12p, 1p 4, etc. 
Most algorithms, however, make use of quadratic penalties with 
respect to the measurements that implies Gaussian statistics in 
a Bayesian framework. Another assumption generally made is 
the independence of the measurements, which leads to separa-
ble penalties. Under such approximations, the penalty with 
respect to the power spectrum data writes 

 fdata
ps 1x 2 5 a

m, j1, j2

1Sdata
j1, j2, m2 Sj1, j2, m

model 1x 2 2 2
Var 1Sdata

j1, j2, m
2 ,  (39) 

with Sj1, j2, m
model 1x 2 5 | Î 1nj1, j2, m

2 |2 the model of the power spectrum. 
For the penalty with respect to the bispectrum data, there is 
the additional difficulty to deal with complex data. The 
Goodman approximation [19] yields 

 f data
bisp 1x 2 5 a

m, j1, j2, j3

 wj1, j2, j3, m
bisp  |Bj1, j2, j3, m

data 2 Bj1, j2, j3, m
model 1x 2 |2 (40) 

with Bj1, j2, j3, m
model 1x 2 5 Î 1nj1, j2, m

2  Î 1nj2, j3, m
2  Î 1nj3, j1, m

2  the model of 
the bispectrum and weights derived from the variance of the 
bispectrum data. An expression similar to that in (31) can be 
derived for bispectrum data with independent modulus and phase 
errors. To account for phase wrapping, Haniff [52] proposed to 
define the penalty with respect to the phase closure data as 
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 fdata
cl 1x 2 5 a

m, j1, j2, j3

arc 
2 1 bdata

j1, j2, j3, m2 bj1, j2, j3, m
model 1x 2 2

Var 1 bdata
j1, j2, j3, m

2  (41) 

w i t h  bj1, j2, j3, m
model 1x 2 5w 1nj1, j2, m

2 1w 1nj2, j3, m
2 1w 1nj3, j1, m

2  t h e 
model of the phase closure. This penalty is, however, not con-
tinuously differentiable with respect to x, which can prevent 
the convergence of optimization algorithms. This problem can 
be avoided by using the complex phasors [53] 

 fdata
cl 1x 2 5 a

m, j1, j2, j3

|ei bdata
j1, j2, j3, m2 ei bmodel

j1, j2, j3, m 1x2|2

Var 1 bdata
j1, j2, j3, m

2 ,  (42) 

which is approximately equal to the penalty in (41) in the limit 
of small phase closure errors. 

Depending on which set of data is available, and assuming 
that the different types of data have statistically independent 
errors, the total penalty with respect to the data is simply a 
sum of some of the penalties given by (39)–(42). For instance, 
to fit the power spectrum and the phase closure data 

 fdata 1x 2 5 fdata
ps 1x 2 1 fdata

cl 1x 2 .  (43)

IMAGE RECONSTRUCTION ALGORITHMS
We describe here the image reconstruction methods used with 
some success on realistic optical interferometric data in astron-
omy and that can be considered as ready to process real data. In 
addition to cope with sparse Fourier data, these methods were 
specifically designed to tackle the nonlinear direct model, to 
account for the particular statistics of the data [14], and to han-
dle the new data format [20]. These image reconstruction 
methods can all be formally described in terms of a criterion to 
optimize, perhaps under some strict constraints, and an opti-
mization strategy. Some of these algorithms have clearly inher-
ited from methods previously developed: BSMEM [54], the 
building block method [9], and WISARD [55] are related to 
MEM, CLEAN, and self-calibration, respectively. 

The BSMEM1)  algorithm [54], [56] makes use of a MEM to 
regularize the problem of image restoration from the mea-
sured bispectrum (hence its name). The improved BSMEM 
version [56] uses the Gull and Skilling entropy, see (34), 
and a likelihood term with respect to the complex bispec-
trum, which assumes independent Gaussian noise statistics 
for the amplitude and phase of the measured bispectrum. 
The optimization engine is MEMSYS, which implements 
the strategy proposed by Skilling and Bryan [26] and auto-
matically finds the most likely value for the hyper-parameter 
m. The default image is either a Gaussian, a uniform disk, or 
a Dirac centered in the field of view. Because it makes no 
attempt to directly convert the data into complex visibilities, 
a strength of BSMEM is that it can handle any type of data 
sparsity (such as missing closures). Thus, in principle, 
BSMEM could be used to restore images when Fourier 
phase data are completely missing (see Figure 5). 

The building block method2)  [9] is similar to the CLEAN 
method but designed for reconstructing images from bispec-
trum data obtained by means of speckle or long baseline inter-
ferometry. The method proceeds iteratively to reduce a cost 
function fdata

bisp equal to that in (40) with weights set to a con-
stant or to an expression motivated by Wiener filtering. The 
minimization of the penalty is achieved by a matching pursuit 
algorithm which imposes sparsity of the solution. The image is 
given by the building block model in (13) and (14) and, at the n
th iteration, the new image I3n4 1u 2  is obtained by adding a new 
building block at location u 3n4 with a weight a3n4 to the previous 
image, so as to maintain the normalization 

 I3n4 1u 2 5 112a3n4 2  I3n214 1u 2 1a3n4 b 1u 2 u 3n4 2 . 
The weight and location of the new building block is derived by 
minimizing the criterion fdata

bisp with respect to these parameters. 
Strict positivity and support constraint can be trivially enforced 
by limiting the possible values for a3n4 and u 3n4. To improve the 
convergence, the method allows to add/remove more than one 
block at a time. To avoid super resolution artifacts, the final 
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[FIG5] Image reconstruction with (a) phase closure and (b) without any Fourier phase information.
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image is convolved with a smoothing function with size set 
according to the spatial resolution of the instrument. 

The Markov Chain Imager (MACIM) algorithm3)  [57], aims 
at maximizing the posterior probability 

 Pr 1x|y 2 ~ expa2 1
2

 fdata 1x 2 2 m2  fprior 1x 2 b. 

MACIM implements MEM regularization and a specific regu-
larizer that favors large regions of dark space in-between bright 
regions. For this latter regularization, fprior 1x 2  is the sum of all 
pixels with zero flux on either side of their boundaries. MACIM 
attempts to maximize Pr 1x|y 2  by a simulated annealing algo-
rithm with the Metropolis sampler. Although maximizing 
Pr 1x|y 2  is the same as minimizing fdata 1x 2 1m fprior 1x 2 , the 
use of normalized probabilities is required by the Metropolis 
sampler to accept or reject the image samples. In principle, 
simulated annealing is able to solve the global optimization 
problem of maximizing Pr 1x|y 2  but the convergence of this 
kind of Monte-Carlo method for such a large problem is very 
slow and critically depends on the parameters that define the 
temperature reduction law. A strict Bayesian approach can also 
be exploited to derive, in a statistical sense, the values of the 
hyper-parameters (such as m) and some a posteriori informa-
tion such as the significance level of the image. 

The multitelescope image reconstruction (MiRA) algo-4) 
rithm [53] defines the sought image as the minimum of the 
penalty function in (25). Minimization is done by a limited 
variable memory method (based on BFGS updates) with bound 
constraints for the positivity [58]. Since this method does not 
implement global optimization, the image restored by MiRA 
depends on the initial image. MiRA is written in a modular 
way: any type of data can be taken into account by providing a 
function that computes the corresponding penalty and its gra-
dient. For the moment, MiRA handles complex visibility, power 
spectrum, and closure-phase data via penalty terms given by 
(31), (39), and (42). Also, many different regularizers are built 
into MiRA (such as negentropy, quadratic or edge-preserving 
smoothness, compactness, and total variation) and provisions 
are made to implement custom priors. MiRA can cope with 
any missing data, in particular, it can be used to restore an 
image given only the power spectrum (i.e., without any Fourier 
phase information) with at least a 180° orientation ambiguity. 
An example of reconstruction with no phase data is shown in 
Figure 5. In the case of nonsparse 1u, v 2  coverage, the prob-
lem of image reconstruction from the modulus of its Fourier 
transform has been addressed by Fienup [59] by means of an 
algorithm based on projections onto convex sets (POCS). 

The WISARD algorithm5)  [55] recovers an image from 
power spectrum and phase closure data. It exploits a self-cali-
bration approach (cf. the section “Self-Calibration” for a more 
detailed look at this approach) to recover missing Fourier 
phases. Given a current estimate of the image and the phase 
closure data, WISARD first derives missing Fourier phase 
information in such a way as to minimize the number of 
unknowns. Then, the synthesized Fourier phases are com-

bined with the square root of the measured power spectrum 
to generate pseudocomplex visibility data that are fitted by the 
image restoration step. This step is performed by using 
the chosen regularization and a penalty with respect to the 
pseudocomplex visibility data. However, to account for a more 
realistic approximation of the distribution of complex visibility 
errors, WISARD make uses of a quadratic penalty that is dif-
ferent from the usual Goodman approximation [14]. Taken 
separately, the image restoration step is a convex problem 
with a unique solution, the self-calibration step is not strictly 
convex but (like in original self-calibration method) does not 
seem to pose insurmountable problems. Nevertheless, the 
global problem is multimodal and, at least in difficult cases, 
the final solution depends on the initial guess. There are many 
possible regularizers built into WISARD, such as the one in 
(36) and the edge-preserving smoothness prior in (37). 
MiRA and WISARD have been developed in parallel and share 

some common features. They use the same optimization engine 
[58] and means to impose positivity and normalization [28]. 
They, however, differ in the way missing data is taken into 
account: WISARD takes a self-calibration approach to explicitly 
solve for missing Fourier phase information; while MiRA implic-
itly accounts for any lack of information through the direct 
model of the data [28]. 

All of these algorithms have been compared on simulated 
data during “Interferometric Beauty Contests” [16], [60], [61]. 
The results of the contest were very encouraging. Although 
quite different algorithms, BSMEM, the building block method, 
MiRA, and WISARD give good image reconstructions where the 
main features of the objects of interest can be identified in spite 
of the sparse 1u, v 2  coverage, the lack of some Fourier phase 
information and the nonlinearities of the measurements. 
BSMEM and MiRA appear to be the most successful algorithms 
(they respectively won the first two and last contests). 

With their tuning parameters and, for some of them, the 
requirement to start with an initial image, these algorithms still 
need some expertise to be used successfully. But this is quite 
manageable. For instance, the tuning of the regularization level 
can be derived from Bayesian considerations but can also almost 
be done by visual inspection of the restored image. From Figure 
6, one can see the effects of under-regularization (which yields 
more artifacts) and over-regularization (which yields over sim-
plification of the image). In that case, a good regularization level 
is probably between m5 105 and m5 104 and any choice in this 
range would give a good image. Figure 4 shows image recon-
structions from one of the data sets of the “2004 Beauty 
Contest” [16] and with different types of regularization. These 
synthesized images do not greatly differ and are all quite accept-
able approximations of the reality (compare, for instance, with 
the dirty image in Figure 2). Hence, provided that the level of 
the priors is correctly set, the particular choice of a given regu-
larizer can be seen as a refinement that can be done after some 
reconstruction attempts with a prior that is simpler to tune. At 
least, the qualitative type of prior is what really matters, not the 
specific expression of the penalty imposing the prior. 
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DISCUSSION
The main issues in image reconstruction from interferometric 
data are the sparsity of the measurements (which sample the 
Fourier transform of the object brightness distribution) and the 
lack of part of the Fourier phase information. The inverse prob-
lem approach appears to be suitable to describe the most impor-
tant existing algorithms in this context. Indeed, the image 
reconstruction methods can be stated as the minimization of a 
mixed criterion under some strict constraints such as positivity 
and normalization. Two different types of terms appear into this 
criterion: likelihood terms that enforce consistency of the model 
image with the data, and regularization terms that maintain the 
image close to the priors required to lever the degeneracies of 
the image reconstruction problem. Hence, the differences 
between the various algorithms lie in the kind of measurements 
considered, in the approximations for the direct model and for 
the statistics of the errors and in the prior imposed by the regu-
larization. For nonconvex criteria that occur when the OTF is 
unknown or when nonlinear estimators are measured to over-
come turbulence effects, the initial solution and the optimization 
strategy are also key components of the algorithms. Although 
global optimization is required to solve such multimodal prob-
lems, most existing algorithms are successful whereas they only 

implement local optimization. These algorithms are not fully 
automated black boxes: at least some tuning parameters and the 
type of regularization are left to the user choice. Available meth-
ods are however now ready for image reconstruction from real 
data. Nevertheless, a general understanding of the mechanisms 
involved in image restoration algorithms is mandatory to cor-
rectly use these methods and to analyze possible artifacts in the 
synthesized images. From a technical point of view, future devel-
opments of these algorithms will certainly focus on global opti-
mization and unsupervised reconstruction. However, to fully 
exploit the existing instruments, the most worthwhile tracks to 
investigate are multispectral imaging and accounting for addi-
tional data such as a low-resolution image of the observed object 
to overcome the lack of short baselines. 
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[FIG6] Image reconstruction under various regularization levels. Algorithm is MiRA with edge-preserving regularization given in (37) 
with (a) P5 1024 and m5 106, (b) m5 105, (c) m5 104, and (d) m5 3 3 103.
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