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Bayesian Interpretation of Periodograms
Jean-François Giovannelli and Jérôme Idier

Abstract—The usual nonparametric approach to spectral anal-
ysis is revisited within the regularization framework. Both usual
and windowed periodograms are obtained as the squared modulus
of the minimizer of regularized least squares criteria. Then, par-
ticular attention is paid to their interpretation within the Bayesian
statistical framework. Finally, the question of unsupervised hyper-
parameter and window selection is addressed. It is shown that max-
imum likelihood solution is both formally achievable and practi-
cally useful.

Index Terms—Hyperparameters, penalized criterion, peri-
odograms, quadratic regularization, spectral analysis, windowing,
window selection, zero-padding.

NOMENCLATURE

FT Fourier transform.
IFT Inverse Fourier transform.
CFT Continuous frequency.
DF Discrete frequency.
UP Usual periodogram.
WP Windowed periodogram.

.
.

Discrete time .
Truncated IFT .

Adjoint operator of .
Square Fourier matrix .
Truncated IFT matrix .

Hermitian matrix of .
.

I. INTRODUCTION

SPECTRAL analysis is a fundamental problem in signal pro-
cessing. Historical papers such as [1], tutorials such as [2]

and books such as [3] and [4] are evidence of the basic role of
spectral analysis, whether it is parametric or not.

The nonparametric approach has recently prompted renewed
interest [5] (see also [6]) within the regularization framework,
and the present contribution brings a new look at these methods.
It provides statistical principles rather than empirical ones in
order to derive periodogram estimators. From this standpoint,
the major contribution of the paper is twofold. First, it pro-
poses new coherent interpretations of existing periodograms and
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modern justification for windowing techniques. Second, it intro-
duces a maximum likelihood method for automatic selection of
the window shape.

Moreover, [5] suffers from a twofold limitation. On the one
hand, the proposed model relies on the discrete frequency,
whereas the frequency is a continuous variable. On the other
hand, restriction to separable regularization functions does not
allow spectral smoothness to be accounted for. The present
contribution overcomes such limitations.

It takes advantage of a natural model in spectral analysis of
complex discrete-time series: the sum of side-by-side pure fre-
quencies. Two cases are investigated.

1) the continuous frequency (CF) case, which relies on an
infinite number of pure frequencies with am-
plitudes ;

2) the discrete frequency (DF) one, which relies on a finite
number, say (usually large), of equally spaced pure fre-
quencies , with amplitudes . Let us note that

, and
.

For complex observed samples ,
such models read

CF

DF (1)

where accounts for model and obser-
vation uncertainties. Let us introduce and :

CF

DF (2)

the CF and DF truncated IFT so that

CF

DF (3)

The current problem consists in estimating the amplitudes
and/or . Thanks to the linearity of these models w.r.t. the ampli-
tudes, the problem clearly falls in the class of linear estimation
problems [7]–[9]. However, in practice, estimation relies on a fi-
nite, maybe small, number of data. As a consequence, in the
CF case, a continuous frequency functionlying in must
be selected from only data. Such a problem is known to be
ill-posed in the sense of Hadamard [8]. In the same way, under
the DF formulation, since the amplitudes outnumber the avail-
able data, the problem is underdeterminate.

This kind of problem is nowadays well identified [8], [10]
and can be fruitfully tackled by means of the regularization
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approach. This approach rests on a compromise between
fidelity to the data and fidelity to some prior information
about the solution. As mentioned above, such an idea has
already been introduced in several papers [5], [11]–[14]. In the
autoregressive spectral estimation problem, [11] proposes to
account for spectral smoothness as a function of autoregressive
coefficients. Otherwise, high-resolution spectral estimation has
been addressed within the regularization framework, founded
on the Poisson-Gaussian model [14]. The present paper deepens
Gaussian models and is organized as follows.

Section II focuses on the interpretation of usual periodograms
(UPs), and Section III deals with the interpretation of windowed
periodograms (WPs), both using penalized approaches with
quadratic regularization. Results are exposed in four proposi-
tions, and the corresponding proofs are given in Appendix A.
A Bayesian interpretation is presented in Section IV, whereas
the problem of parameter estimation and window selection are
addressed in Section V. Finally, conclusions and perspectives
for future works are presented in Section VI.

II. USUAL PERIODOGRAM

A. Continuous Frequency

The problem at stake consists of estimating given data
such that (3). A first possible approach is founded on the least

squares (LS) criterion

but since is one-to-many and not many-to-one, there exists
an infinity of solutions in . Here, the preferred solution for
raising the indetermination relies on regularized least squares
(RLS). The simplest RLS criterion is founded on quadratic “sep-
arable regularization”

(4)

where “ ” stands for usual. The regularization parameter
balances the tradeoff between confidence in the data and confi-
dence in the penalization term. For any , the proposition
below gives the minimizer of (4).

Proposition 1 (CF/UP): For any , the unique mini-
mizer of (4) reads

(5)

Proof: See Appendix A.

B. Discrete Frequency

This subsection investigates the DF counterpart of the pre-
vious result. In the DF approach, the LS criterion reads

(6)

but since is one-to-many and not many-to-one, there also
exists an infinity of solutions in . According to the quadratic

“separable regularization,” the corresponding RLS criterion is

(7)

with optimum given in the next proposition.
Proposition 2—(DF/UP): For any , the unique mini-

mizer of (7) reads

(8)

where denotes the vector zero-padded up to size.
Proof: See Appendix A.

C. Usual Periodogram: Concluding Remarks

In the CF cases, the squared modulus of the penalized
solutions is proportional to the usual zero-padded
periodogram. Moreover, is1 a discretized version of

over the frequency grid. Therefore, within the pro-
posed framework,separable quadratic regularizationleads to
theusual zero-paddingtechnique associated with the practical
computation of periodograms. Moreover, whentends to zero,
the proportionality factor tends to one. It is noticeable that in
this case, the criteria (4) and (7) degenerate, but their minimizer
does not. They are the solution of the constraint problems

CF s.t.

DF s.t.

i.e., solution of the noiseless problems adressed in [5] and [6].

III. W INDOWED PERIODOGRAM

The previous section investigates the relationships between
the separable regularizers and the usual (nonwindowed) peri-
odograms. The present section focuses on smoothing regular-
izers and windowed periodograms (see [15], which analyzes
dozens of windows to compute smoothed periodograms).

A. Continuous Spectra

This subsection generalizes the usual norm in to the
Sobolev [16] regularizer

which can be interpreted as a measure of spectral smoothness.
The are positive real coefficients and can be generalized to
positive real functions [8]. is defined onto the Sobolev space
[16] . Note that and that the usual norm
invoked in Section II-A is the regularizer with .

Remark 1: Strictly speaking, is not a spectral
smoothness measure since it is not a function of but a
function of , including phase. A true spectral smoothness
measure does not depend on the phase of and does not
yield a quadratic criterion. The same remark holds for the
definition of spectral smoothness proposed by Kitagawa and
Gersh [11].

1If u 2 ; juj denotes the vector of the squared moduli of the component
of u.
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Accounting for spectral smoothness by means of
yields a new penalized criterion

(9)

where the index “” stands for smoothness.
Proposition 3—(CF/WP):With the previous notations and

definitions, the minimizer of (9) reads

(10)

i.e., a windowed FT. The window shape is

(11)

with for (12)

Proof: See Appendix A.

B. Discretized Spectra

This subsection is devoted to the generalization of criterion
(7) to nonseparable penalization

(13)

Given that the sought spectrum is circular periodic, the penal-
ization term has to be designed under circularity constraint. As
a consequence, is a circular matrix, and its eigenvalues, de-
noted , can be calculated as the FT of the first row of

. Moreover, without loss of generality, we assume that the di-
agonal elements of are equal to one, and any scaling factor
is integrated in the parameter.

Proposition 4—(DF/WP):The minimizer of (13) reads

(14)

where the for and

Proof: See Appendix A

C. Windowed Periodograms: Concluding Remarks

Hence, in the CF case, the squared modulus of the penal-
ized solution is the windowed periodogram associated with
window . Moreover, the DF solution is a discretized ver-
sion of as soon as the are identified with the . As a con-
clusion,quadratic smoothing regularizersinterpretwindowed
periodograms. Moreover, it is noteworthy that and
only depend on and for .

Remark 2—Empirical Power:One can easily show that

CF

DF (15)

Hence, the empirical power of the estimated spectra is smaller
than the empirical power of the observed data, and equality
holds if and only if .

Example 1—Zero-Order Penalization:The most simple
example consists in retrieving the nonwindowed case of Sec-
tion II-A and B. Let us apply the previous Propositions 3 and
4 with regularizers

CF i.e., and

DF i.e., (16)

Then, we have ; the criteria (9) and (13), respec-
tively, become (4) and (7), and the solutions (10) and (14), re-
spectively, become (5) and (8). As expected, the nonwindowed
solutions are retrieved. A more interesting example is the one
given below.

Example 2—First-Order Penalization:Let the penalization
term be

CF

DF (17)

with for notational convenience of the circularity
assumption. Application of Propositions 3 and 4, respectively,
yields (CF case) and (DF
case). The corresponding windows read

CF

DF (18)

In the following, we refer to them as the Cauchy and the inverse
cosine windows. Moreover, for a finer discretization of the spec-
tral domain, , and one can retrieve the Cauchy
window as the limit of the inverse cosine window (see Figs. 1
and 2).

IV. BAYESIAN INTERPRETATION

This section is devoted to Bayesian interpretations of the pe-
nalized solutions presented in Propositions 1, 2, 3, and 4. More-
over, since usual nonwindowed forms are particular cases of
windowed forms, we focus on the latter.

Since the considered criteria are quadratic, their Bayesian in-
terpretations rely on Gaussian laws. Therefore, the Bayesian in-
terpretations only require the characterization of means and cor-
relation structures for the stochastic models at work.

A. Discrete Frequency Approach

In the DF case, i.e., in the finite dimension vector space, the
Bayesian interpretation of the criteria (7) and (13) as aposterior
co-log-likelihood is a classical result [10]. Within this proba-
bilistic framework, the likelihood of the parametersattached
to the data is

From a statistical viewpoint, it essentially results from the lin-
earity of the model (3) and from the hypothesis of a zero-mean,
circular (in the statistical sense), stationary, white, and Gaussian
noise vector , with variance .
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Fig. 1. Inverse cosine (lhs) and Cauchy windows (rhs) as a function of�. In
both cases,� = 0 yields a constant shape. Furthermore, for any�! = ! = 1.
Otherwise, as� increases, the window shape decreases faster to zero, and the
corresponding spectrum is smoothed.

Fig. 2. Usual windows and the corresponding correlations. The lhs column
shows the time window, and the rhs column shows the associated correlations.
From top to bottom: the Hamming, the Hanning, the inverse cosine, and the
triangular.

Moreover, in order to interpret the regularization term of (13),
a zero-mean, circular, correlated Gaussian prior with covariance

is introduced.2 Matrix is the normalized
covariance structure, i.e., all its diagonal elements are equal to
1, whereas stands for the prior power. Therefore, the prior
density reads

The Bayes rule ensures the fusion of the likelihood and the
prior into theposteriordensity

where is given by (13). The regularization parameteris
clearly .

Thus, we have a Bayesian interpretation of the criterion (13)
related to windowed periodograms. Interpretation of the crite-
rion (7) related to usual ones results from a white prior:

. Finally, interpretations of the RLS solutions (8) and (14)
themselves result from the choice of the maximuma posterior
(MAP) as a punctual estimate. Moreover, thanks to the Gaussian
character ofposteriorlaw, other basic Bayesian estimators such

2Rigorously speaking, this is possible only if� is invertible.

asposteriormean (PM) and marginal MAP (MMAP), are equal
to the MAP solution itself.

B. Continuous Frequency Case

1) General Theory:In the CF case, the Bayesian interpreta-
tion is more subtle since it relies on continuous index stochastic
processes. Indeed, noposteriorlikelihood for the parameter is
available. Therefore, there is no directposterior interpretation
of the criteria (4) and (9), nor is there MAP interpretation of
the estimates (5) and (10). Roughly speaking, theposteriorlaw
vanishes everywhere. Nevertheless, there is a proper Bayesian
interpretation of the estimates (5) and (10) as PM or MMAP, as
shown below.

Let us introduce a zero-mean, circular (in the statistical sense)
and Gaussian prior law [17] for. This law is fully characterized
by its correlation structure , which is entirely
described by its values for thanks to Hermitian sym-
metry. Furthermore, the usual circular-periodicity assumption
for results in another symmetry property:

any .
By assuming , the latter can be expanded into a

Fourier series

with Fourier coefficients given by

Let us note that is the normalized correlation
and that is the corresponding Fourier sequence.

Proposition 5: With the previous notations and prior choice,
theposteriormean of is

(19)

with (20)

Proof: See Appendix A
Comparison of (19)–(20) and (10)–(11) immediately gives

the Bayesian interpretation of windowed FT as PM3 :
, i.e., identification of the Fourier coefficients of the prior

correlation and the FT of the discrete correlation .
2) Example 3: The present subsection is devoted to a precise

Bayesian interpretation of deterministic Examples 1 and 2. As
we will see, there is a new obstacle in the Bayesian interpretation
of these examples because the underlying correlations do not lie
in . In order to overcome this difficulty, we first interpret the
penalization of both zero-order and first-order derivatives

(21)

The case of pure zero order and pure first order are obtained in
Section IV-B.II.b and c as limit processes.

3Sincea(�) j y is a scalar Gaussian random variable,E[a(�) j y] is also the
MMAP.
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As seen in Proposition 3, the associated coefficients are
. According to Proposition 5, the Fourier

series coefficients for are . It is clear that

; hence, and

(22)

It is shown in Appendix B that, with and
reads

(23)

and several analytic properties are straightforwardly deduced.
In particular, has a continuous derivative over [-1,1]-{0},
and the slopes at and are, respectively,
and . is minimum at and maximum at

, and . Moreover, its integral from 0 to 1 re-
mains constant and equals .

a) Markov Property: The present paragraph addresses the
Markov property of the underlying prior process [18], [19].
This process cannot be seen as a Markov chain since it is cir-
cular-periodic: “Future” frequency and “past” frequency cannot
be independent. However, we show the Markov property for the
conditional process . It is shown in
Appendix B that its correlation structure reads

(24)

(25)

for any . According to the sufficient fac-
torization of the correlation function proposed in [[20], p. 64],
it turns out that is a Markov chain.

b) Limit Case as : As tends to zero, it is easy
to show that for each , the correlation tends to
zero, i.e., there is no more correlation between and
as soon as and . Moreover,
and tend to infinity, whereas the integral of over [0,1]
remains . Roughly speaking, the limit correlation is a Dirac
distribution at and with weight i.e., the limit
process is a circular white Gaussian noise with “pseudo-power”

.
c) Limit Case as : This case is more complex than

the previous one since tends to infinity as
tends to zero. Therefore, we propose a characterization of the
limit processvia its increments. Let

. Let us also note the frequency increments
and , and the vector of the increments

themselves . This vector
is clearly Gaussian and zero mean. Furthermore, it is shown in
Appendix B that its covariance matrix reads

(26)

It turns out that the process is a Brownian
bridge [21, p. 36].

V. HYPERPARAMETER ANDWINDOW SLECTION

The problem of hyperparameter estimation within the regu-
larization framework is a delicate one. It has been extensively
studied, and numerous techniques have been proposed and com-
pared [22]–[27]. The maximum likelihood (ML) approach is
often chosen associated with the Bayesian interpretation. In the
following subsections, we address regularization parameter es-
timation and automatic window selection using ML estimation.

A. Hyperparameters Estimation

In our context, the ML technique consists of integrating the
amplitudes out of the problem and maximizing the resulting
marginal likelihood w.r.t. the hyperparameters. Thanks to the
linear and Gaussian assumptions, the marginal law for the data,
namely, the likelihood function, is also Gaussian

(27)

Moreover, the covariance structure can be easily derived, as
shown in the two following sections.

1) Discrete Frequency Marginal Covariance:In the present
case, since all random quantities are in a finite dimensional
linear space, the covariance is clearly

Accounting for the circular structure of the matrix , we have

, where is the diagonal matrix of eigen-
values: . Given the property (33) in Appendix B,
is shown to be diagonal

diag (28)

2) Continuous Frequency Marginal Covariance:In the
present case, the marginal covariance matrixhas already
been derived in (32) in Appendix A. Hence, and are
diagonal:

diag (29)

Remark 3: In both cases, only depends on for
. Consequently, the likelihood function and the ML

parameter only depend on thefirst coefficients.
3) Maximization: The opposite of the logarithm of the like-

lihood, namely, the co-log-likelihood (CLL)

CLL (30)

must be minimized w.r.t. and . Partial minimization is
tractable w.r.t. and yields . Substitution
of in (30) gives

CLL (31)

Furthermore, since is a diagonal matrix

CLL
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in the DF case. Substitution of by yields the CF case. In
both cases, CLL is the logarithm of the ratio of two degree

polynomials of the variable with a strictly positive
denominator. Minimization w.r.t. is not explicit, but it can be
numerically performed.

4) Simulation Results:ML hyperparameter selection is il-
lustrated for the problem of Section IV-B2. Computations have
been performed on the basis of of 512 sample signals simulated
by filtering standard Gaussian noises with the filter of impulse
response . Let us note that as the true
spectrum.

CLL has been computed on a -grid of log-
arithmically spaced values from to . The first obser-
vation is that CLL is fairly regular and usually shows a unique
minimum located between and for and between

and 1 for . However, a few “degenerated” cases have
been observed for which or seem to be null or infi-
nite. Let us note , as the CLL minimizer4 and
as the corresponding RLS periodogram.

Since is known in the proposed simulation study, var-
ious spectral distances [30] can be computed as functions of
and . distance, distance, the Itakura–Saito divergence
(ISD) as well as the Itakura–Saito symmetric distance (SIS)
have been considered. Each one provides an optimal couple

, and , re-
spectively. The corresponding spectra are, respectively, denoted

and .
According to our experiments, as shown in Fig. 3,

, and the can be graded by smoothness
and estimation accuracy. From the smoothest to the roughest,
the following gradation has always been observed:
and . Furthermore, is systematically oversmoothed,
whereas is systematically undersmoothed. Moreover, the
first one qualitatively approximates more preciselyin linear
scale, whereas the second one reproduces more accurately
in a logarithmic scale and especially the two notches. This is
due to the presence of the spectra ratio in the Itakura-Saito
distance that emphasizes the small values of the spectra.

Finally, from our experience and as shown in Fig. 3, the
maximum likelihood solution establishes a relevant com-
promise between and since it is smooth enough,
whereas the two notches remain accurately described.

Quantitative comparisons have been conducted between the
two practicable methods (when is not known): the usual pe-
riodogram and the proposed method, i.e., the RLS solution with
automatic ML hyperparameters. The obtained results are re-
ported in Table I. They clearly show an improvement of about
40–50% for all the considered distances.

B. Window Selection

It has been shown that the ML technique allows the estimation
of the regularization parameter. The problem of window selec-
tion is now addressed. Let us consider a set ofwindows, i.e.,

matrices for . Index becomes a new hyperpa-

4Efficient algorithms are available in order to maximize the likelihood, such
as gradient-based [28] or EM type [29]. They have not been implemented here
as far as a mere feasibility study is concerned.

Fig. 3. Qualitative comparison. True spectra (dotted lines) and estimated
ones (solid lines). The lhs column gives linear plots and the rhs column gives
logarithmic plots. From top to bottom: Usual periodograms,â ; â , and
â .

TABLE I
QUANTITATIVE COMPARISON. THE FIRST LINE REFERS TO THE

USUAL PERIODOGRAM, WHEREAS THE SECOND ONE REFERS

TO THE RLS SOLUTION WITH ML HYPERPARAMETERS.
THE THIRD LINE GIVES THE QUANTITATIVE IMPROVEMENT

rameter as well asand can be jointly estimated. The likelihood
function (31) is now

CLL

Maximization w.r.t. hyperparameters can be achieved in the
same way as above for each value of . The maximum
maximorum can then be easily selected.

Numerous simulations have been performed. They are not re-
ported here since they show similar results as the previous ones.
However, it has been observed that the triangular window is the
most often selected among Cauchy, inverse cosine, Hanning,
Hamming, and triangle.

VI. CONCLUSION

In this paper, the usual nonparametric approach to spectral
analysis has been revisited within the regularization framework.
We have shown that usual and windowed periodograms could be
obtainedvia the minimizer of regularized least squares criteria.
In turn, penalized quadratic criteria are interpreted within the
Bayesian framework so that periodograms are interpretedvia
Bayesian estimators. The corresponding prior is a zero-mean
Gaussian process, fully specified by its correlation function.
Particular attention is paid to the connection between correlation
structure and window shape. With regard toquadraticregular-
ization, the present study significantly deepens a recent contri-
bution by Sacchiet al. [5], given that the latter addresses nei-
ther windowed periodograms, nor the continuous frequencial
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setting. Extension to thenonquadratic[31] and two-dimensional
(time–frequency) case would be of particular interest, and we
are presently working on this issue.

Whereas the first part of our contribution provides interpre-
tations of pre-existing tools for spectral analysis, new estima-
tion schemes are derived in the second part: unsupervised hy-
perparameter and window selection. It is shown that maximum
likelihood solutions are both formally achievable and practically
useful.

APPENDIX A

PROOF OFPROPOSITIONS

A. Proof of Proposition 1

Several proofs are available, and the proposed one relies on
variational principles [32]. Application of these principles to
quadratic regularization of linear problem yields the functional
(8)

where stands for the identity application from onto it-
self, and stands for the adjoint application of (see Ap-
pendix B). After elementary algebra, we find

As shown in Appendix B, ; then, taking the
FT and, next, the IFT gives

B. Proof of Proposition 2

The minimizer of the RLS criterion (7) obviously is

Refer to Appendix B for a detailed calculus required to analyze
the normal matrix . and are
circulant matrices, and this property also holds for their sum,
which hence is diagonal in the Fourier basis. Elementary algebra
leads to

C. Proof of Proposition 3

The proof is founded on a time domain version of the crite-
rion (9), resulting from application of the Plancherel–Parseval
theorem to the successive derivatives of

where . Summation w.r.t. and inversion

of summation w.r.t. and w.r.t. gives

where the weighting coefficients fulfill (12). Hence, the time
domain counterpart of criterion (4) reads

Thanks to separability, the solution is easily derived:
if and elsewhere. is the Fourier

transform of the sequence

D. Proof of Proposition 4

Elementary linear algebra provides the minimizer of (13)

Accounting for its circular structure, the Fourier basis diagonal-
izes

where is the diagonal matrix of the eigenvalues
of . Hence

and we easily find

with for , i.e., the data vector windowed by

E. Proof of Proposition 5

Let and . Thanks to the linearity of
the model (3) and thanks to the Gaussian assumption forand
, the joint law of is also Gaussian. Hence, the random

variable is clearly Gaussian, and it is well known that its
mean reads

where , and . Elementary algebra
and independence ofand yield

Moreover, under the previously mentioned assumptions, the
generic entry for is

(32)
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where stands for the Kronecker sequence. Therefore,is
a diagonal matrix with elements . Hence

with .

APPENDIX B
TECHNICAL RESULTS

This appendix collects several useful properties of Fourier op-
erators. In particular, special attention is paid to and .
Some of the stated properties are classical. We have reported
them in order to make our notations and normalization conven-
tions explicit. The other properties are less usual, but all of them
have straightforward proofs.

A. Discrete Case

Structure of : In the case of , the matrix
identifies with the square matrix , where performs the
discrete FT for vectors of size. We have the well-known or-
thogonality relations and .

Structure of : The matrix evaluates the FT on a
discrete grid of points for sequences of points ( ).
Straightforward expansion of the product provides

(33)

As a consequence, we obtain

(34)

where is the zero-padded version ofup to length .
Structure of : The matrix has a very

simple structure since, for . Other-
wise, is a non-negative, Hermitian, circulant
matrix. Circularity results from digonalization in the Fourier
basis

and from (33)

As a consequence, has only two eigenvalues (1 and
0) of respective order and . Such a structure is useful
in the proof of Propositions 2 and 4 in Appendix A.

B. Continuous Case

1) The Operator: The linear application
is defined by for

. The adjoint operator
is the linear operator such that

where and stand for the standard inner product
in and , respectively. It is given by

This can be justified as follows: By inverting the order of the
finite sum and the definite integral , we get

Finally, elementary algebra shows that the composed appli-
cation is the identity application from onto itself.

2) Technical Results for the Example in Section IV-B2:
a) Fourier Series (22):The proof of (22) consists of three

steps. The first one relies on the Fourier relationship between
Cauchy and Laplace functions

The second step is founded on discrete time and
expansion in a series of integrals

since the invoked series are convergent. The last step is a simple
geometric series calculus

which is easily obtained by rewriting the series as the sum of a
series for (i.e., ) and a series for (i.e.,

).
b) Conditional Process:Let us note , .

The partitioned vector is
clearly a zero-mean Gaussian vector with covariance

According to the conditional covariance matrix formula
, we immediately get (24).

Accounting for the explicit expression for given by (23),
simple expansion of hyperbolic functions yields (25).

c) Law of Increments:We have ,
. Let us introduce the collection of the

four values , which is clearly a
zero-mean and Gaussian vector with covariance. The incre-
ment vector is a linear
transform of the vector with increment covariance

with , ,
and .
Finally, Taylor development at yields

, , and
and proves(26).
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