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Bayesian Interpretation of Periodograms

Jean-Francois Giovannelli and Jéréme Idier

Abstract—The usual nonparametric approach to spectral anal- modern justification for windowing techniques. Second, itintro-
ysis is revisited within the regularization framework. Both usual dyces a maximum likelihood method for automatic selection of
and windowed periodograms are obtained as the squared modulus the window shape.

of the minimizer of regularized least squares criteria. Then, par- S
ticular attention is paid to their interpretation within the Bayesian Moreover, [5] suffers from a twofold limitation. On the one

statistical framework. Finally, the question of unsupervised hyper- hand, the proposed model relies on the discrete frequency,
parameter and window selection is addressed. Itis shown that max- whereas the frequency is a continuous variable. On the other

imum likelihood solution is both formally achievable and practi-  hand, restriction to separable regularization functions does not
cally useful. allow spectral smoothness to be accounted for. The present
Index Terms—Hyperparameters, penalized criterion, peri- contribution overcomes such limitations.
odograms, quadratic regularization, spectral analysis, windowing, |t takes advantage of a natural model in spectral analysis of
window selection, zero-padding. complex discrete-time series: the sum of side-by-side pure fre-
guencies. Two cases are investigated.

NOMENCLATURE 1) the continuous frequency (CF) case, which relies on an
infinite number of pure frequencies € [0, 1] with am-

FT Fourier transform. X 5.
IFT Inverse Fourier transform. p“tUd.esa(V)’a € L7 . . -
CET Continuous frequency. 2) the discrete frequency (DF) one, which relies on a finite
DE Discrete frequency ' number, say” (usually large), of equally spaced pure fre-
UP Usual periodograrﬁ. quenciess = p/P, with e})mplitudeSap. Let us note that
WP Windowed periodogram. ﬁ)zl[l[)aowwap—l] € C", andv = [w,...,vp 1] €
L? LZ([0,1]). L .

Q CQ([ 4 For N complex observed samplgs= [yo, . . ., yn—1] € C¥,
A He([0,1]). such models read
e LE(2)
F Discrete timef'T (¢2 — L?). - S
Wy Truncated IFT(L? — CV). CF: vn —/0 a(r)e™™ " dy + by
W,J[, Adjoint operator oAy . s r-1 dimpm)
Fp Square Fourier matrigC?” — CP©). DF: g, =P /2> ae + bn )
Wip Truncated IFT matriXC” — C¥, N < P). p=0
W;{rp Hermitian matrix ofi¥x p. whereb = [bo, ...,by_1] € CV accounts for model and obser-
Ny {0,1,...,N —1}. vation uncertainties. Let us introdut®y andWy p:

: 72 N
I. INTRODUCTION CREWy:L" — C

. P N
PECTRAL analysis is a fundamental problem in signal pro- DF:Wyp: € — € )

essing. Historical papers such as [1], tutorials such as [Rk CF and DF truncated IFT so that
and books such as [3] and [4] are evidence of the basic role of
spectral analysis, whether it is parametric or not. Cry=Wna+b

The nonparametric approach has recently prompted renewed DF-y = Wypa+b. ©))

interest [5] (see also [6]) within the regularization framework, o o )
and the present contribution brings a new look at these methods! Ne current problem consists in estimating the amplitudes
It provides statistical principles rather than empirical ones f'd/ora. Thanks to the linearity of these models w.r.t. the ampli-
order to derive periodogram estimators. From this standpoiftdes. the problem clearly falls in the class of linear estimation
the major contribution of the paper is twofold. First, it prc)p_roblems [71-[9]. However, in practice, estimation relies on a fi-

poses new coherent interpretations of existing periodograms &/§- maybe small, number of data. As a consequence, in the
CF case, a continuous frequency functiotying in L? must

be selected from only data. Such a problem is known to be
Manuscript received October 24, 2000; revised March 7, 2001. The assocfétltﬂ)osed in the s_ense. of Hadamard_ [8] In the same way, und.er
editor coordinating the review of this paper and approving it for publication wdke DF formulation, since the amplitudes outnumber the avail-
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approach. This approach rests on a compromise betwéesaparable regularization,” the corresponding RLS criterion is
fidelity to the data and fidelity to some prior information i i

about the solution. As mentioned above, such an idea has ~ @u(@) =y~ Wyra)'(y — Wypa) +ra'a ™
already been introduced in several papers [5], [11]-{14]. In th@iy optimum given in the next proposition.

autoregressive spectral estimation problem, [11] proposes tgrgposition 2—(DF/UP): For any\ > 0, the unique mini-
account for spectral smoothness as a function of autoregressgjge of (7) reads
coefficients. Otherwise, high-resolution spectral estimation has
been addressed within the regularization framework, founded &t =1+ N "1Fpgp (8)
c(;r;tuh;;cr):sr:gge(lssa:r?j|ﬁsnor?go;r:eilz[elc;1]a.ls'l'?oeil2\:\(/3;ent paper deer\)/(vaﬁesregp d.enotes the vec_:tq; zero-padded up to size. [ |

Section Il focuses on the interpretation of usual periodograms Proof. See Appendix A.

p p g

(UPs), and Section Il deals with the interpretation ofwindowe& Usual Periodogram: Concluding Remarks
periodograms (WPs), both using penalized approaches with )
quadratic regularization. Results are exposed in four proposi/n the CF cases, the squared modulus of the penalized
tions, and the corresponding proofs are given in Appendix A0lutions|a*(x)|* is proportional to the usual zero-padded
A Bayesian interpretation is presented in Section IV, whereR§riodogram. Moreover|i*|? ist a discretized version of
the problem of parameter estimation and window selection dfé ()]* over the frequency grie. Therefore, within the pro-

addressed in Section V. Finally, conclusions and perspectiResed frameworkseparable quadratic regularizatioleads to
for future works are presented in Section VI. the usual zero-paddingechnique associated with the practical

computation of periodograms. Moreover, whetends to zero,
the proportionality factor tends to one. It is noticeable that in

[I. USUAL PERIODOGRAM ) L7 T
this case, the criteria (4) and (7) degenerate, but their minimizer

A. Continuous Frequency does not. They are the solution of the constraint problems
The problem at stake consists of estimating L? given data 1
y such that (3). A first possible approach is founded on the least CE mi% / la(p)|?dv sty = Wya
squares (LS) criterion acl® Jo
DF: min a'a sty =Wnpa
N-—1 1 2 accP
2iwvn
(y—Wra)'(y —Wra) = Z Yn — /0 a(v)e” ™" dv i.e., solution of the noiseless problems adressed in [5] and [6].
n=0
but sinceWy is one-to-many and not many-to-one, there exists Ill. WINDOWED PERIODOGRAM

an infinity of solutions inL?. Here, the preferred solution for The previous section investigates the relationships between

raising the ir;determination. rel_ies.on regularized least squaghg separable regularizers and the usual (nonwindowed) peri-
(RLS). The simplest RLS criterion is founded on quadratIC“SeBaograms_ The present section focuses on smoothing regular-

arable regularization” izers and windowed periodograms (see [15], which analyzes
1 dozens of windows to compute smoothed periodograms).
0(@) = (v = Wya)'(y =Wy +A [ fat )P @)
0 A. Continuous Spectra
where ‘" stands for usual. The regularization parameter 0 This subsection generalizes the usual normLito the
balances the tradeoff between confidence in the data and coBfipgley [16] regularizer
dence in the penalization term. For aky> 0, the proposition

below gives the minimizei* of (4). 1 @ dia |?
Proposition 1 (CF/UP): For anyX > 0, the unique mini- Re(a) :/ Qg ﬁ(”) dv
mizer of (4) reads =
N1 which can be interpreted as a measure of spectral smoothness.
M) = (1+ 1)L Z yne 2T (5) The «, are positive real coefficients and can be generalized to
= positive real functions [8]R ¢ is defined onto the Sobolev space

[16] H® C L2. Note thatH? = L? and that the usual norm
invoked in Section II-A is the regulariz&® with «p = 1.
Remark 1:Strictly speaking,R¢(a) is not a spectral
smoothness measure since it is not a functiota¢f)| but a
function of a(1), including phase. A true spectral smoothness
This subsection investigates the DF counterpart of the pigeasure does not depend on the phase(oj and does not

]
Proof: See Appendix A.

B. Discrete Frequency

vious result. In the DF approach, the LS criterion reads yield a quadratic criterion. The same remark holds for the
definition of spectral smoothness proposed by Kitagawa and
v =Wy (y=Wyra) ©® Gersh(11]. T

but sinceVy p is one-to-many and not many-to-one, there also; , ¢ cr |

. A . : . ‘ u|? denotes the vector of the squared moduli of the component
exists an infinity of solutions ii©”". According to the quadratic of «.
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Accounting for spectral smoothness by meansigf(a) Example 1—Zero-Order Penalizatiorthe most simple
yields a new penalized criterion example consists in retrieving the nonwindowed case of Sec-

tion II-A and B. Let us apply the previous Propositions 3 and
Qi(a) = (y—Wxa) (y— Wya) + \Rq(a)  (9) pply the p p

4 with regularizers
where the index $” stands for smoothness.

1
Proposition 3—(CF/WP):With the previous notations and CF;/ la(v)]2dv ie.,Q=0anday =1
definitions, the minimizer of (9) reads 0
N DF:afa e, I, = Ip. (16)
W) = wapne N (10) Then, we have,, = ¢, = 1; the criteria (9) and (13), respec-
n=0 tively, become (4) and (7), and the solutions (10) and (14), re-
i.e., awindowed FT. The window shape is spectively, become (5) and (8). As expected, the nonwindowed
_ 1 solutions are retrieved. A more interesting example is the one
wn _(1Q+ Aen) (11) given below.
with e, = Z g (2p)2 for p € 7. (12) terlf;(?)rgple 2—First-Order Penalizationtet the penalization
q=0
1
Proof: See Appendix A. | CF:/ |’ (V) |*dv
0
B. Discretized Spectra r

Lo 2
This subsection is devoted to the generalization of criterion DF: QP kz_o k= are—1] (17
(7) to nonseparable penalization _ o _ _ _
; ; with ap = ao for notational convenience of the circularity
Qs(a) = (y —Wnrra)' (y — Wrpa) + Aa'llaa.  (13)  assumption. Application of Propositions 3 and 4, respectively,
i _ 2.2 —
Given that the sought spectrum is circular periodic, the pen¥j€ldSe» = 4w°n* (CF case) and,, = (1 — cos 27n/P) (DF
ization term has to be designed under circularity constraint. £&S€)- The corresponding windows read
a ior:jsequen@ﬂa is abcircullarlrr:a;rix, ?rr]\d Ii:t_sl,_eifgt(:]n\/;llutes, de; CFw, =(1 4 4n%n2\)~!
notede,,, p € N,,, can be calculated as the FT of the first row o o 3 1
I1,. Moreover, without loss of generality, we assume that the di- DF:wy, =(1+A — Acos2mn/P) . (18)

agonal elements dl,, ' are equal to one, and any scaling factof, the following, we refer to them as the Cauchy and the inverse

is integrated in the parametar cosine windows. Moreover, for a finer discretization of the spec-
Proposition 4—(DF/WP):The minimizer of (13) reads tral domainJlimp_. .. ¢, = £,,, and one can retrieve the Cauchy
& = Fpi (14) \;vri]r;dcz);/v as the limit of the inverse cosine window (see Figs. 1

where they,, = w,3, for p € Np and

w, = (1+ )\ep)—l. IV. BAYESIAN INTERPRETATION

This section is devoted to Bayesian interpretations of the pe-
nalized solutions presented in Propositions 1, 2, 3, and 4. More-
over, since usual nonwindowed forms are particular cases of
C. Windowed Periodograms: Concluding Remarks W|n(jowed forms,'we focu_s on the latter. , ) L

. Since the considered criteria are quadratic, their Bayesian in-

Hence, in the CF case, the squared modulus of the penglyretations rely on Gaussian laws. Therefore, the Bayesian in-

ized solutiona* is the windowed periodogram associated ithgpretations only require the characterization of means and cor-
window w,,. Moreover, the DF solution is a discretized ver- g|ation structures for the stochastic models at work.

sion ofa* as soon as the, are identified with the,,. As a con-
clusion, quadratic smoothing regularizeristerpretwindowed A. Discrete Frequency Approach
periodograms Moreover, it is noteworthy thai~(») and a*
only depend om,, ande,, for n € Ny.

Remark 2—Empirical PowerOne can easily show that

Proof: See Appendix A

In the DF case, i.e., in the finite dimension vector space, the
Bayesian interpretation of the criteria (7) and (13) assterior
co-log-likelihood is a classical result [10]. Within this proba-

1 ) Nl s 1o bilistic framework, the likelihood of the parametersttached
OF: [ latw)Pdv = 3wl to the datay is
n=0
-1
N-1 — ()N T
f(yla) = (7)™ exp —(y — Wi pa)'(y — Wrpa).

DF:a'a = Z wﬁlanQ (15) (yla) = () ™ ( A )

n=0 From a statistical viewpoint, it essentially results from the lin-

Hence, the empirical power of the estimated spectra is smakarity of the model (3) and from the hypothesis of a zero-mean,
than the empirical power of the observed data, and equaldycular (in the statistical sense), stationary, white, and Gaussian
holds if and only ifA = 0. noise vectob, with variancer,.
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Inverse cosine window Cauchy window

asposteriormean (PM) and marginal MAP (MMAP), are equal
to the MAP solution itself.

B. Continuous Frequency Case

1) General Theory:Inthe CF case, the Bayesian interpreta-
tion is more subtle since it relies on continuous index stochastic
processes. Indeed, posteriorlikelihood for the parameteris
available. Therefore, there is no dirgmisteriorinterpretation
Fig. 1. Inverse cosine (Ihs) and Cauchy windows (rhs) as a functionof ~ Of the criteria (4) and (9), nor is there MAP interpretation of
both cases) = 0 yields a constant shape. Furthermore, foramy = wo = 1. the estimates (5) and (10). Roughly speaking pibsteriorlaw
Cogneers";’)'gﬁai"’r‘]z\ 'S';)ng?jﬁ]sistgfn‘g’('ﬂﬂg‘é". shape decreases faster to zero, and\jag,ishes everywhere. Nevertheless, there is a proper Bayesian

interpretation of the estimates (5) and (10) as PM or MMAP, as
shown below.

Letusintroduce a zero-mean, circular (in the statistical sense)
and Gaussian prior law [17] far. This law is fully characterized
by its correlation structure, (v),» € [—1, 1], which is entirely
described by its values for € [0, 1] thanks to Hermitian sym-
metry. Furthermore, the usual circular-periodicity assumption
for a(v) results in another symmetry property;(1/2 + v) =
v.(1/2 — v) anyv € [0,1/2].

By assumingy, € Ls, the latter can be expanded into a
Fourier series

Ya() =D Fap)e™> ™7, v e(0,1]
peEZ

Time Time

with Fourier coefficientsy, € ¢, given by

o]

S () = / (), pel.
[0,1]

Fig. 2. Usual windows and the corresponding correlations. The Ihs colu i i ;
shows the time window, and the rhs column shows the associated c:orrelatlr(])ln%st us note that, (V) - ,ya(l/) /7‘1 is the normalized correlation

From top to bottom: the Hamming, the Hanning, the inverse cosine, and ®8d that, € ¢ is the corresponding Fourier sequence.

triangular. Proposition 5: With the previous notations and prior choice,
the posteriormean ofa(r) is

Moreover, in order to interpret the regularization term of (13), N_1
azero-mean, circular, correlated Gaussian prior with covariance Ela(v)|y] =4~ Z W2 (19)
R, = r 1! is introducec Matrix I1; ! is the normalized =
covariance structure, i.e., all its diagonal elements are equal to . o C11—1
1, whereag, stands for the prior pgwer. Therefore, the ?)rior with wp =[1 4+ Aca(n) =] (20)
density reads [ |

) 1 Proof: See Appendix A
fa) = (mra) "N det I, exp T—aTHaa- Comparison of (19)—(20) and (10)—(11) immediately gives

_ o the Bayesian interpretation of windowed FT as®h(n) =
The Bayes rule ensures the fusion of the likelihood and the! je., identification of the Fourier coefficients of the prior

prior into theposteriordensity correlationc, () and the FT of the discrete correlatidly .
-1 2) Example 3: The present subsection is devoted to a precise
f(aly) o< exp ;Qs(a) Bayesian interpretation of deterministic Examples 1 and 2. As

we will see, there is a new obstacle in the Bayesian interpretation
where(; is given by (13). The regularization paramefefs  of these examples because the underlying correlations do not lie
clearly A = ry/r,. in Lo. In order to overcome this difficulty, we first interpret the

Thus, we have a Bayesian interpretation of the criterion (18¢nalization of both zero-order and first-order derivatives

related to windowed periodograms. Interpretation of the crite- L L
rion (7) related to usual ones results from a white pridy: = Rola) = ao/ la(v)2dv + ocl/ ()P ). (21)
Ip. Finally, interpretations of the RLS solutions (8) and (14)
themselves result from the choice of the maximaiposterior The case of pure zero order and pure first order are obtained in
(MAP) as a punctual estimate. Moreover, thanks to the Gaussggction 1V-B.11.b and ¢ as limit processes.

character oposteriorlaw, other basic Bayesian estimators such
3Sincea(w) | y is a scalar Gaussian random variatilég () | y] is also the
2Rigorously speaking, this is possible onlyT, is invertible. MMAP.
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As seen in Proposition 3, the associated coefficients are V. HYPERPARAMETER ANDWINDOW SLECTION
ao + 4n%a1p?, p € Z. According to Proposition 5, the Fourier

. ! 5 Lo The problem of hyperparameter estimation within the regu-
series coefficients fof, (1) arey,(p) = ¢, Itis clear that

larization framework is a delicate one. It has been extensively

3 € £3; henceyy, € Ly and studied, and numerous techniques have been proposed and com-
1 ‘ pared [22]-[27]. The maximum likelihood (ML) approach is
Vo) = ﬁ(i_%"p’ v€[0,1.  (22) often chosen associated with the Bayesian interpretation. In the
pez 0 tamtap following subsections, we address regularization parameter es-

Itis sh in A dix B that, withy = \/ag/a; ando’ timation and automatic window selection using ML estimation.
is shown in Appendix at, withy = \/ap/a; ande’ =

Vaoar, v, (v) reads A. Hyperparameters Estimation
cosha (|| —1/2) In our context, the ML technique consists of integrating the
Ya(V) = —5 a2 VS [—1,1] (23)  amplitudes out of the problem and maximizing the resulting

marginal likelihood w.r.t. the hyperparameters. Thanks to the
and several analytic properties are straightforwardly deducéiflear and Gaussian assumptions, the marginal law for the data,
In particular,v, has a continuous derivative over [-1,1]-{0}, namely, the likelihood function, is also Gaussian
and the slopes at = 0~ andrv = 01 are, respectivelyl /o

. . . . -1 T p—1
and—1/a;. 7, is minimum atv = 1/2 and maximum at = f@ira,m) o< (det Ry)™" exp—y' R,y @7)
—1,v = 0, andv = 1. Moreover, its integral from 0 to 1 re- pmoreover, the covariance structulg can be easily derived, as
mains constant and equalcp. shown in the two following sections.

a) Markov Property: The present paragraph addressesthe 1) piscrete Frequency Marginal Covariancdn the present

Markov property of the underlying prior proces$’) [18], [19].  case, since all random quantities are in a finite dimensional
This process cannot be seen as a Markov chain since it is ¢iizar space, the covariance is clearly

cular-periodic: “Future” frequency and “past” frequency cannot -
be independent. However, we show the Markov property for the Ry = ro(Wnpll, Wyp + M) =15,
conditional procesg(r) = [a(¥)|a(1)],cjo,1- It is shown in

. ; L Accounting for the circular structure of the matiil,, we have
Appendix B that its correlation structure reads g fi,

I, = FpAHFIJE, whereAp is the diagonal matrix of eigen-

3 Yo () v (V) (24) values:e,,p € Np. Given the property (33) in Appendix B;,
7a(0) is shown to be diagonal

:Sinh ot/ sinh CY(]. — I/) (25) Ey — dlaQ)\ + 6771]7 ne NN- (28)

o/ sinh «v

Ya(r, V') =y, (v — /')

2) Continuous Frequency Marginal Covariancén the
present case, the marginal covariance maitjxhas already
been derived in (32) in Appendix A. Henc&, andX, are

for anyr,»’ € [0,1],» > /. According to the sufficient fac-
torization of the correlation function proposed in [[20], p. 64]
it turns out that(r) is a Markov chain.

o o diagonal:
b) Limit Case asy; — 0: As «; tends to zero, it is easy g
to show that for eaclr €]0, 1], the correlationy, () tends to Y, = iRl —diagh +¢7Y, 7€ Ny. (29)
zero, i.e., there is no more correlation betweémn ) anda(1) Y o | Y
as soon asy # vz and(vi,r2) # (0,1). Moreover,v4(0) Remark 3:In both casesy, only depends or, /s, for

and-,(1) tend to infinity, whereas the integral of over [0,1] , ¢ Ny. Consequently, the likelihood function and the ML
remainsl/ao. Roughly speaking, the limit correlation is a Diragyarameter only depend on théfirst coefficients.
distribution at = 0 andr = 1 with weight1 /2o i.e., thelimit ~ 3) Maximization: The opposite of the logarithm of the like-
process is a circular white Gaussian noise with “pseudo-powgiiood, namely, the co-log-likelihood (CLL)
1/060.
c) LimitCase agyy — 0. This caseis more complexthan = CLL(rq,A) = Nlogr, + logdet &, + ;yngly (30)
the previous one sincg € [0, 1], v,(») tends to infinity asxg Ta
tends to zero. Therefore, we propose a characterization of thest be minimized w.r.tr, and . Partlial minimization is
limit processvia its increments. Let, , 1o, 1/}, 14 € [0,1],1, <  tractable w.r.tr, and yields?, = y' 3.~ y/N. Substitution
ve < 1) < 1. Letus also note the frequency increments=  of 7, in (30) gives
vy — 11 and7,, = v4 — 1/, and the vector of the increments o1

v . LL = log >, + Nlogy'X "y 1
themselves = [a(rs)—a(v1), a(vs)—alvs)] € C2. This vector CLLOY) = logdet =y + Nlogy'®, "y (31)
is clearly Gaussian and zero mean. Furthermore, it is shownHorthermore, sinc&,, is a diagonal matrix
Appendix B that its covariance matrix reads

N I )
- Yn
1 |rn(1-m7) 27,7 CLL()) = Zlog()\Jr Gnl) + Nlogz | |_1
Ri, = — ! / V/ (26) el — )\ + cn
20 27,7, (1 — 7)) g
N N 9
It turns out that the proceggr) = a(v) — a(0) is a Brownian =log H()\ et [Z Iyn|_1
bridge [21, p. 36]. o 2Nt en
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in the DF case. Substitution ef, by ¢,, yields the CF case. In
both cases, CLI() is the logarithm of the ratio of two degree
N — 1 polynomials of the variablé. with a strictly positive .
denominator. Minimization w.r.t\ is not explicit, butit can be . °
numerically performed. 20
4) Simulation ResultsML hyperparameter selection is il- 0
lustrated for the problem of Section IV-B2. Computations have o
been performed on the basis of of 512 sample signals simulatecae

by filtering standard Gaussian noises with the filter of impulse 2w 10°

responsé. = [1,-2,3,—2,1]. Let us note that* as the true 1%

spectrum. % "oz 04 o085 o8 1 0 6z o4 o6 o8 1
CLL has been computed or(ay, < )-grid of 100 x 100 log- 80

arithmically spaced values froi®—1° to 101°. The first obser- 20

vation is that CLL is fairly regular and usually shows a unique '* /\/\k g :

. —1 1 . X . .
m|n|2mum located betweei0~* and 10" for ap and between O 02 ety OO tenny
10~“ and 1 fora;. However, a few “degenerated” cases have

been observed for WhiC«ﬁlé‘“ or d{\“ seem to be null or infi- Fig. 3. Qualitative comparison. True spectra (dotted lines) and estimated

; c ML ~ML imimi ~ML ones (solid lines). The Ihs column gives linear plots and the rhs column gives
nite. Let us notev}', &ML as the CLL minimizer anda L ( ) g P g

. . logarithmic plots. From top to bottom: Usual periodogran ,atsL and
as the corresponding RLS periodogram. % . P P P gran s 5%

. . . . . ARLS
Sincea* is known in the proposed simulation study, var-
ious spectral distances [30] can be computed as functiong of TABLE |
ando;. L; distance L. distance, the Itakura—Saito divergence QUANTITATIVE COMPARISON THE FIRST LINE REFERS TO THE
(ISD) as well as the Itakura—Saito symmetric distance (SIS) USUAL PERIODOGRAM, WHEREAS THE SECOND ONE REFERS

have been considered. Each one provides an optimal couple > = R'LS SJCL;UT'ON wiTH ML HYPERIP ARAMETERS
SLy ALos /Lo ALos sA1SD ATSD 4(aSTS. 45715 HE THIRD LINE GIVES THE QUANTITATIVE |IMPROVEMENT
(040 y A )7 (040 y A )7 (040 y A1 )' an (040 ) A )’ re-

spectively. The corresponding spectra are, respectively, denoted L L, | AIS | SIS
oLy 4ISD andasSis UP 0.766 | 1.14 751 | 750
RLS»“RLS» RLS*

RLS + ML | 0.471 | 0.567 | 420 422

According to our experiments, as shown in Fig. 3, Gom 38559 1 503% | 2190 | .57

akr o,al52, and the a* can be graded by smoothness
and estimation accuracy. From the smoothest to the roughest,
the following gradation has always been obsenft; ¢, a*  rameter as well asand can be jointly estimated. The likelihood
andak52. Furthermoredls; o is systematically oversmoothed function (31) is now

whereasi 2 is systematically undersmoothed. Moreover, the

first one qualitatively approximates more preciselyin linear CLL(A, k) = logdet(X) 4 log Ny'(55) 1.

scale, whereas the second one reproduces more accusdtel L ) )

in a logarithmic scale and especially the two notches. This>ﬁ@"")('rr1'z"’ltlon w.r.t. hyperparameters can be achieved in the

due to the presence of the spectra ratio in the ltakura-Sangne Way as above for each valuekof Ny The maximum

distance that emphasizes the small values of the spectra. Mmaximorum can then be easily selected.
Finally, from our experience and as shown in Fig. 3, the Numerous simulations have been performed. They are not re-

maximum likelihood solutior /L establishes a relevant com-Ported her'eﬁlncte): they ZhOW SIC:nIrLar rre;sult.s as t?e prg\gou; onr:as_
promise betwee s ¢ andak; since it is smooth enough, Howevizr, it aIS eed” observed t a:]t e triangular window is the
whereas the two notches remain accurately described. most often selected among Cauchy, inverse cosine, Hanning,

Quantitative comparisons have been conducted between ffnming, and triangle.
two practicable methods (whesi is not known): the usual pe-
riodogram and the proposed method, i.e., the RLS solution with VI. CONCLUSION
automatic ML hyperparameters. The obtained results are reqn this paper, the usual nonparametric approach to spectral
ported in Table I. They clearly show an improvement of abodhalysis has been revisited within the regularization framework.

40-50% for all the considered distances. We have shown that usual and windowed periodograms could be
obtainedvia the minimizer of regularized least squares criteria.
B. Window Selection In turn, penalized quadratic criteria are interpreted within the

Ithas been shown that the ML technique allows the estimati§fyesian framework so that periodograms are interpreied
of the regularization parameter. The problem of window seleBayesian estimators. The corresponding prior is a zero-mean

tion is now addressed. Let us consider a sékofindows, i.e., Gaussian process, fully specified by its correlation function.
K matricesIT* for k € N Indexk becomes a new hyperpa-Particular attention is paid to the connection between correlation

structure and window shape. With regardjteadraticregular-
. , , _ . . jzation, the present study significantly deepens a recent contri-
4Efficient algorithms are available in order to maximize the likelihood, suc

as gradient-based [28] or EM type [29]. They have not been implemented hBrlétion _by Sacchet ?‘I' [5], given that the Iattgr addresses nei_'
as far as a mere feasibility study is concerned. ther windowed periodograms, nor the continuous frequencial
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setting. Extension to theonquadrati§31] and two-dimensional of summation w.r.tg and w.r.t.n gives
(time—frequency) case would be of particular interest, and we R _ 9
are presently working on this issue. Qla) = Z enln]

Whereas the first part of our contribution provides interpre- o ] _"EZ ] )
tations of pre-existing tools for spectral analysis, new estimgNere the weighting coefficients, fulfill (12). Hence, the time
tion schemes are derived in the second part: unsupervised figmain counterpart of criterion (4) reads

perparameter and window selection. It is shown that maximum Q,(a) = (y—2) (y—2) + A Z enlznl.
likelihood solutions are both formally achievable and practically nez
useful.

Thanks to separability, the solution is easily deriveéf= (1+
Aen) 7Yy, if n € Ny and2% = 0 elsewherea” is the Fourier

APPENDIX A transform of the sequende:'},.cz
PROOF OFPROPOSITIONS N-1

. Aw(’/) _ Z ;w672i7wn

A. Proof of Proposition 1 @ “n g
n=0
Several proofs are available, and the proposed one relies on
variational principles [32]. Application of these principles tqy, proof of Proposition 4
quadratic regularization of linear problem yields the functional . . L
®) Elementary linear algebra provides the minimizer of (13)
-1
AW f f
— oWl (y — Wya) + 2\ 20 = 0 a = (WNPWNP + ma) Wyry.
. . L .. Accounting for its circular structure, the Fourier basis diagonal-
wherel; - stands for the identity application fro? onto it- . 9 g
T . D izesll,
self, andW}; stands for the adjoint application ¥¥» (see Ap-
pendix B). After elementary algebra, we find I, = FpAp FIT’
Wi Wn + Mpz)a = Wiy where A is the diagonal matrix of the eigenvalues
) ) i ] ¢o,---,ep_1 Of II,. Hence
As shown in Appendix BWyW), = In; then, taking the o .
FT and, next, the IFT gives a” = Fp(Ip + Mn)yp
N—1 and we easily find
AN _ —1 T _ —1 —2imvn
a (V) - (1 + )\) W]\Ty - (1 + )\) 2:0 Ynt . a” = FP@

with g, = w7, for p € Np, i.e., the data vector windowed by

B. Proof of Proposition 2 wn = (14 )\Cn)_l.

The minimizer of the RLS criterion (7) obviously is

E. Proof of Proposition 5

Let1 € [0,1] andag = a(1p). Thanks to the linearity of
Refer to Appendix B for a detailed calculus required to analyz8e model (3) and thanks to the Gaussian assumption &md
the normal matrix W, , W p -+ \Ip). W ,Wip andIp are b, the joint law of(a, y) is also Gaussian. Hence, the random
circulant matrices, and this property also holds for their sur¥@riable(ao|y) is clearly Gaussian, and it is well known that its
which hence is diagonal in the Fourier basis. Elementary algetf§an reads
leads to

9) i Lot
a = (WNPWNP—F)\IP) Wl sy

E[a0|y] = Ragngjly

@ =Fp (1+ M)y ON,PN:||: In }

Op_n,N At p_y Op_n,N
—(14 X" Frp.

whereR,,y = Eagy', andRy = E[yy']. Elementary algebra
and independence afandb yield

1
Ra,y., :/ E[a(l/o)a(l/)*]e_%w"dl/ + E[a(10)b,]
C. Proof of Proposition 3 0

:f;/ (]/)6721‘7711071'
The proof is founded on a time domain version of the crite- @
rion (9), resulting from application of the Plancherel-Parsevifloreover, under the previously mentioned assumptions, the

theorem to the successive derivatives:of generic entryR,,,,, for R, is
Hdia N 2|, |2 R = Elymy] —//1E[a('/)a('/)*]
/0 o (v)| dv= Z(an) |2 mn mYn o

nez x exp[2im(vn — vV'm)]|dV dv + 1460 —m

wherez,, = f; a(v)e¥ ™" dy. Summation w.r.ty and inversion =(Ya (1) + 7)6n—m (32)
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whereé,, stands for the Kronecker sequence. Therefétgis This can be justified as follows: By inverting the order of the

a diagonal matrix with elements, (1) + .. Hence finite sum>_y " and the definite integrajbl, we get
N-1 1 ‘ 1 N-1
Gg = Z [1 + /\coa(n)fl} ype 2T (Wya,z)en = / alv) Z Zh 2T — (g, W]T\,zﬁz.
n=0 0 n=0
with A = 7y /rq. Finally, elementary algebra shows that the composed appli-
cationWWy WY, is the identity application fron€™ onto itself.
APPENDIX B 2) Technical Results for the Example in Section IV-B2:
TECHNICAL RESULTS a) Fourier Series (22):The proof of (22) consists of three

This appendix collects several useful properties of Fourier optePs- The first one relies on the Fourier relationship between
erators. In particular, special attention is paiditg » andVy. Cauchy and Laplace functions
Some of the stated properties are classical. We have reported 243 _ s
. . o w8l QJﬂfdf teR
them in order to make our notations and normalization conven- (2 + dr2t2 R ’ :
Eons e>t<pl_|cg.ﬁ'l'he otger pr(?pernes are less usual, but all of them.l.he second step is founded on discrete time n € Z and
ave straightiorward proots. expansion in a series of integrals

A. Discrete Case - 2p3 — :/ e—,8|f|6—2j7mfdf
Structure ofFp: In the case ofV = P, the matrixWyp % + 4mn

identifies with the square matriFIT,, where F'p performs the _ Z 1 Bl 2w g,

discrete FT for vectors of siz2. We have the well-known or- o

thogonality relations”, Fp = FpFl, = Ip andFt, = Fp. et

1
Structure ofiW yp: The matrixWy p evaluates the FT on a :/ Z = Blv=pl ,—2jmnv
discrete grid ofP points for sequences d¥ points P > N). 0

. . R pCZ
Straightforward expansion of the product provides since the invoked series are convergent. The last step is a simple
WnpFp=[In Onxp n] (33) geometric series calculus
As a consequence, we obtain Z e—Alv—pl _ COSh.ﬁ (v — 1/2)7 ve0,1]
¥ In - =t sinh 3/2
Wrpy =Fp ) y=Fpryp (34) p
P—N,N

which is easily obtained by rewriting the series as the sum of a

wherey  is the zero-padded version gfup to lengthP. series forp € Z_ (i.e.,p < v) and a series fop € 77 (i.e.,

Structure ofW}, , Wy p: The matrixWy pW} » has a very p> ).

simple s;tructure_since, fafP > N: WNPWJ_TVP = Iy. Other- b) Conditional Process:Letus note-, v/ € [0,1],» > /.
wise, W Wy p is a non-negative, Hermitia, x P circulant - The partitioned vectos = [a(1),a(+/),a(1)]! = [a|as]® is

matrix. Circularity results from digonalization in the Fouriegiearly a zero-mean Gaussian vector with covariance

basisF
asisir ’Va(o) ’Va(l/ - V/) ’Va(l/)

W pWip = FpAF}, Ra= |7 =1)  7(0) %0/
and from (33) | Yo (V) ) Yo (V') | Ya(0) |
According to the conditional covariance matrix formula
A= In On,p-n . Rgo, = Rg — RéalR;fRaal, we immediately get (24).
Or-n.n  Or—N.r-N Accounting for the explicit expression for, (/) given by (23),
As a consequencWK,PWNp has only two eigenvalues (1 andsimple expansion of hyperbolic functions yields (25).
0) of respective ordeN andP — N. Such a structure is useful c) Law of Increments:We havev,,v,,v,1v5 € [0,1],
in the proof of Propositions 2 and 4 in Appendix A. m < v < V¥, < 4. Letus introduce the collection of the
four valuesa = [a(14), a(12), a(14), a(1/4)], which is clearly a
B. Continuous Case zero-mean and Gaussian vector with covariaRgeThe incre-

1) The Wy Operator: The linear applicationVy:a € ment vectol = [a(r2) —a(11), a(14) — a(v])] € C*is alinear
L?* — z € CV is defined byz, = [ a(v)e? ™ dv for transform of the vectoa:¢ = Ha with increment covariance

n € Ny. The adjoint operatow}:z € C¥ — a = Wiz 14
is the linear operator such that

VaeL2VzeCY (Wya,z)en = (a, Wiz
where(-, -}e~ and(-, -z stand for the standard inner productVith 7 = 2(7a(0) = va(v2 = 11)), 7} = 2(7a(0) = va(v2 —11)),

-1 1 0 O

0 0 -1 1 T

}, Ry = HRqH' = [;Z p/}

D

in CY andL?, respectively. It is given by andp = v (2 — 1) +7a(v1 — 1) = Ya(v1 —V3) — Va2 —11).
N_1 Finally, Taylor development at, = 0yieldsr; = (#0—11)(1—
a(v) = Wiz = Z zpe TN (v — v1)/20q, 7t = (W — )1 — (V4 — 1)) /204, and

p = (v2 —11)(h — )/ a1 and proves(26).

n=0
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