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Regularized Estimation of Mixed Spectra Using a
Circular Gibbs–Markov Model

Philippe Ciuciu, Jérôme Idier, and Jean-François Giovannelli

Abstract—Formulated as a linear inverse problem, spectral es-
timation is particularly underdetermined when only short data
sets are available. Regularization by penalization is an appealing
nonparametric approach to solve such ill-posed problems. Fol-
lowing Sacchi et al., we first address line spectra recovering in
this framework. Then, we extend the methodology to situations of
increasing difficulty: the case of smooth spectra and the case of
mixed spectra, i.e., peaks embedded in smooth spectral contribu-
tions. The practical stake of the latter case is very high since it
encompasses many problems of target detection and localization
from remote sensing.

The stress is put on adequate choices of penalty functions: Fol-
lowing Sacchi et al., separablefunctions are retained to retrieve
peaks, whereas Gibbs–Markov potential functions are introduced
to encode spectral smoothness. Finally, mixed spectra are obtained
from the conjunction of contributions, each one bringing its own
penalty function.

Spectral estimates are defined as minimizers of strictly convex
criteria. In the cases of smooth and mixed spectra, we obtain non-
differentiable criteria. We adopt a graduated nondifferentiability
approach to compute an estimate. The performance of the pro-
posed techniques is tested on the well-known Kay and Marple ex-
ample.

Index Terms—High-resolution, mixed spectra, regularization,
spectral estimation, spectral smoothness.

I. INTRODUCTION

T HE PROBLEM of spectral estimation has been receiving
considerable attention in the signal processing commu-

nity since it arises in various fields of engineering and applied
physics, such as spectrometry, geophysics [1], biomedical
Doppler echography [3], radar, etc. In particular, our pri-
mary field of interest is short-time estimation of atmospheric
sounding or wind profiling, possibly superimposed on a small
set of targets, from radar Doppler data [4].

A survey of classical methods for spectral estimation can be
found in [2]. When the problem at hand is the restoration of
smooth spectra(SS), basic nonparametric methods based on
the discrete Fourier transform (DFT) such as periodograms are
often taken up. Such techniques usually involve a windowing or
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an averaging step, which requires a sufficiently large data set.
By contrast, estimation ofline spectra(LS) is more often dealt
with in parametric methods, such as Pisarenko’s harmonic de-
composition [5], Prony’s approaches [6], [7], or autoregressive
(AR) methods [2], [8], [9]. These techniques are known for
their ability to separate close harmonics. Consequently, they
are usually considered under the heading ofhigh-resolution
methods [2].

In the more difficult case ofmixed spectra(MS), i.e., small
sets of harmonics embedded in smooth spectral components,
no satisfying techniques exist according to [2], [9], and [10].
The main aim of the present paper is to contribute to filling
the gap within a nonparametric framework related to a recent
contribution due to Sacchiet al. [1]. One important conclusion
drawn in the latter was that enhanced nonparametric methods
can reach high resolution, which somewhat contradicts the state
of the art sketched in [2].

Following [1], Section II starts with modeling the unknown
spectral amplitudes as the DFT of the available observations. In
particular, the number of Fourier coefficients to be estimated is
larger than the length of the data sequence. The current problem
is therefore underdetermined. Then, we resort to regularization
by penalization to balance the lack of information provided by
data with an available prior knowledge, such as spikyness or
spectral regularity. Since the main part of our construction is
made in a deterministic framework, Section II is also devoted
to a natural question: Is it theoretically justified to resort to our
approach to estimate power spectral densities (PSDs).

Three penalty functions are designed for solving the LS, SS,
and MS issues, respectively (see Section III). Following [1], a
separablefunction is retained for line spectra (Section III-B). To
deal with smooth spectra estimation, our construction is inspired
by Gibbs–Markov edge-preserving models for image restora-
tion [11]–[13] (see Section III-C). Finally, mixed spectra are ob-
tained from the conjunction of contributions, each one bringing
its own penalty function (Section III-D).

In all cases, the spectral estimate is defined as the minimizer
of a strictly convex criterion, which is chosen nonquadratic to
avoid oversmoothing effects [1], [14]. Practical computation
of spectral estimates is tackled in Section IV. In the cases of
smooth and mixed spectra, we obtain a nondifferentiable cri-
terion, and we adopt agraduated nondifferentiabilityapproach
to compute an estimate. The performances of our spectral esti-
mates are tested in Section V on the well-known Kay and Marple
example [2]. Finally, concluding remarks and perspectives are
drawn in Section VI.
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II. PROBLEM STATEMENT

A. Deterministic Framework

Following contributions such as [1] and [15], we formulate
spectral estimation as a linear underdetermined inverse problem
in a deterministic framework. Given discrete time observations

, the goal is to recover the energy dis-
tribution of data between frequencies 0 and 1. In the general set-
ting of the paper, complex discrete data are processed to estimate
spectral coefficients for normalized frequencies between 0 and
1 (the real data case is specifically examined in Appendix D).

The harmonic frequency model is usually considered for this
task. In such a model, the distribution of spectral amplitudes

is continuous with respect to (w.r.t.) frequencies. Then,
the inverse discrete-time Fourier transform links the unknown
spectral function to a complex time series

(of finite energy) according to

(1)

The signal is partially observed through the data

Within this setting, our approach consists in extracting a de-
terministic extension of the data . Since this exten-
sion is of finite energy, it cannot be interpreted in general as a
sample path of a stationary random process (see Section II-B for
details).

Estimating from is a discrete-time continuous-fre-
quency problem. Akin to [1], we propose to solve a discrete
frequency approximation. It corresponds to the juxtaposition of
a large number of sinusoids, say , at equally sampled
frequencies . The accuracy of the approxi-
mation depends strongly on since the discrete counterpart of
(1) reads

(2)

where are unknown spectral amplitudes. In the case of
line spectrum estimation, choosing a largeseems clear since
the harmonic components do not necessarily coincide with any
sample of the grid. In the case of a continuous background,
is selected for suitably balancing the tradeoff between an effi-
cient computation of the estimate and a more accurate result. If

could be satisfactory for smooth spectra (e.g., Gaussian
spectra with variance ), it could be preferable to con-
sider higher values for piecewise smooth spectra with sharp
transitions, such as ARMA PSDs with zeros of the MA part
close to the poles of the AR part [16].

Let so that is an
Fourier matrix, and an equivalent formulation of (2) is

(3)

where . Since , (3) is un-
derdetermined, and there exists an infinite number of solutions.

The problem is to incorporate structural information to raise the
underdeterminacy in an appropriate manner.

B. Random Processes

Following [1], our spectral estimation approach is based on
the ground of deterministic Fourier analysis. Hence, a natural
question arises: Is it theoretically justified to resort to our con-
struction to estimate PSDs. In this subsection, we put forward
that our approach is not a natural tool as far as PSD estimation
is concerned.

Let be a complex-valued random time series defined
by

(4)

where stands for the random spectral measure of. In a
discrete-frequency framework, (4) can be approximated by

Our approach consists in estimating the variables
and then in evaluating a spectrum ofthrough the vector

of squared modulus (see Section III).
In the case of a regular random process, such quantities are
random. Thus, they do not identify with a discretized version
of the PSD.

Nonetheless, as shown in [17], it is possible to exhibit a family
of singular random processes for which our approach allows us
to characterize the power spectral measure of such processes.

III. M ETHODOLOGY

A. General Setting

Sacchiet al. [1] have proposed a penalized approach, where
an estimator of spectral amplitudes is defined as

minimizes in (5)

with

(6)

(7)

and the power spectrum estimator easily deduces as the squared
modulus of the components of.

The hyperparameter controls the tradeoff between the
closeness to data and the confidence in a structural prior em-
bodied in . In particular, in the case ofaccurate data( ;
see [1, Sec. 4.A]), Sacchiet al.resort to Lagrange multipliers to
prove that identifies with the constrained minimizer of
subject to (3).

In [1], the chosen penalty function reads

(8)

where is a tunable scaling parameter that controls the
amount of sparseness in the solution. In [18] and [19], the abso-
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lute norm is used instead because of its
convexity, even if it is nonsmooth at zero. In both cases, let us
remark that is

separable, i.e., it is a sum of scalar functions (9a)

shift-invariant:

(9b)

symmetry-invariant:

(9c)

circular:

(9d)

Reference [1] adopts the classical Bayesian interpretation of
as a maximuma posterioriestimate. As a random vector,
is given a prior neg-log-density proportional to , which
amounts to choosing a product of circular Cauchy density func-
tions as thea priori model. In such a probabilistic framework,
properties of can be restated as properties of the complex
random vector ; it is white according to (9a), stationary ac-
cording to (9b), reversible according to (9c), and phases are uni-
formly distributed according to (9d).

Considering a circular model is rather natural since no phase
information is available. Stationarity and reversibility are also
fair assumptions, unless some specific frequency domain shape
information is knowna priori (see [15] and references therein).
Finally, choosing an independent prior seems justified as far as
line spectra estimation is concerned. In the present paper, this
framework is generalized to other kinds of spectra. More specif-
ically, a stationary Gibbs–Markov model in the frequency do-
main will be introduced to incorporate spectral smoothness (see
Section III-C).

From the computational viewpoint, (8) may not be the better
choice since is not a convex function on :
is not necessarily unique, and minimizing (6) using a local
method such as theiterative reweighted least squares(IRLS)
algorithm used in [1] may provide a local minimizer instead of
a global solution. The absolute norm is also a possible choice
[18], [19]. However, because it is nondifferentiable at zero,
its optimization requires more sophisticated numerical tools,
such as quadratic programming methods. In the present paper,
we restrict the choice tostrictly convexpenalty functions in
order to ensure that is also strictly convex. As a consequence,

admits no local minima. Moreover, the minimizer is
unique and continuous w.r.t. the data [21]; this guarantees the
well-posedness of the regularized problem [22]. Finally, many
deterministic descent methods (such as gradient-based methods
and the IRLS algorithm [23], [24]) will be ensured to converge
toward if is

continuously differentiable (10a)

strictly convex (10b)

infinite at infinity : (10c)

The construction of penalty functions that fulfill (10) forms
the guideline of the next three subsections in the LS, SS, and
MS cases, respectively.

B. Line Spectra

We are naturally led to penalty functions that satisfy (9)
and (10) (the subscript “” stands forline). It is not difficult to
see that (9) imposes the following form for :

(11)

where and . Then, the following propo-
sition characterizes those functions that ensure the convexity
of .

Proposition 1: Let be a circular function. Then,
is (resp. strictly) convexif and only if its restriction on is

a (resp. strictly) convex, nondecreasing (resp. increasing) func-
tion.

Proof: This property corresponds to the scalar case
( ) of Theorem 2 (Section III-C), which is proved in
Appendix B.

From Proposition 1, it is apparent that is not convex
if . Moreover, it can be then proved
that is not convex either. Thus, we prefer an alternateconvex
function that would enhance spectral peaks like the Cauchy
prior does. We have borrowed such penalty functions from the
field of edge-preservingimage restoration [11]–[13], [25]–[27].
More precisely, we propose to resort to the following set of func-
tions:

convex, increasing,

If , the global criterion clearly fulfills (10). On the
other hand, functions in behave quadratically around zero and
linearly at infinite

This is a relevant behavior for erasing small variations, as well
as for preserving large peaks and discontinuities that would be
oversmoothed by quadratic penalization.

Some functions of , such as thefair function
[12], [28] or Huber’s function

if otherwise [29], have also been known
for a long time in the field of robust statistics [28], [29]. They
behave quadratically under the thresholdand linearly above.
In practical simulations (see Section V-B-2), we have selected
thehyperbolicpotential in .

C. Smooth Spectra

1) Complex Gibbs–Markov Regularization:In the field of
signal and image restoration, Gibbs–Markov potential functions
are often used as roughness penalty functions [11]–[13], [21],
[26], [27], [30]. Adopting this approach in the case of spectral
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regularity, one might think of simply penalizing differences be-
tween complex coefficients, using

(12)

where because of the circularity constraint. In
(12), the subscript “” stands forsmooth. Then, provided that

is convex and nondecreasing on , it is not difficult to
deduce that is convex from Proposition 1. When is
quadratic, the estimated spectrum is a windowed periodogram,
i.e., a low-resolution solution [14]. In Section V-B3, we
have performed simulations using the hyperbolic function

in order to obtain solutions of higher
resolution. The corresponding results are actually disappointing
(e.g., Fig. 3). Empirically, we observe that the penalty term
(12) corresponds to spectral smoothness only roughly, whereas
it produces hardly controllable artifacts. In fact, (12) is not
a circular function of : does not satisfy (9d). The
regularization function also introduces a
smoothness constraint on the phases of the sinusoids, which
does not coincide with some available prior knowledge. For
this reason, let us examine the consequences of restricting to
circular penalty terms.

2) Circular Gibbs–Markov Regularization:The simplest
circular energy coding spectral continuity is clearly

(13)

since only two magnitudes and are involved. As an
extension, one could consider higher order smoothness terms
such as , which would be better adapted
to restore piecewise linear unknown functions.

It is readily seen that (13) satisfies all conditions (9), save
separability. Unfortunately, is not convex if is an even,
convex function. This negative result is a solidforward conse-
quence of Corollary 1, which is stated below. Therefore, we pro-
pose to retain a slightly more general circular expression

(14)

where parameter tunes the amount of spectral smooth-
ness, and . Expression (14) still satisfies conditions
(9b)–(9d).

In the following, a necessary and sufficient condition for the
convexity of is given. For this purpose, the definition of aco-
ordinatewise nondecreasingfunction is a prerequisite. We also
provide a useful theorem regarding the composition of convex
functions.

Definition 1: A function is said to becoordi-
natewise nondecreasing if and only if

where is the th canonical vector. The functionis said to be
coordinatewise increasingif the latter inequalities are strict.

Theorem 1: Let be a convex, coordinatewise
nondecreasing (resp. increasing) function, and let
be a function such that each component is (resp.
strictly) convex. Then, is (resp. strictly) convex on .

Proof: See Appendix A.
Theorem 2: Let be a circular function. Then,
is (resp. strictly) convexif and only if its restriction on

is a (resp. strictly) convex coordinatewise nondecreasing (resp.
increasing) function.

Proof: See Appendix B.
Because is not a coordinatewise nonde-

creasing function of , (13) is not convex,
according to Theorem 2. In the case of (14), application of
Theorem 2 yields the following result.

Corollary 1: Let and be
functions that satisfy the following assumptions:

is even and convex (15a)

is (resp. strictly) convex and

nondecreasing (resp. increasing) (15b)

(15c)

Then, function defined by (14) is (resp. strictly) convex.
Proof: See Appendix C.

Inequality (15c) gives an upper bound on the smoothness
level that can be introduced while maintaining convexity of.
It is important to notice that imposes . In
the rest of the paper, we have selected the simplest potential
that satisfies , i.e., . Combined with the
hyperbolic function , such a choice yields
that is convex if .

The condition means that is not dif-
ferentiable on at zero, and therefore, is nondifferentiable.
Although conditions (15) are only sufficient, we have the intu-
ition that convexity and differentiability are actually incompat-
ible properties of , as defined by (14). In Section IV, we pro-
pose to minimize a close approximation of that conciliates
convexity and differentiability so that a converging approxima-
tion of can be easily computed.

D. Mixed Spectra

A mixed spectrum consists of both frequency peaks and
smooth spectral components; therefore, we propose to split
vector into two sets of unknown variables: for the
frequency peaks and for the smoother components. The
resulting fidelity to data term reads

where is a complex matrix. The subscript
“ ” stands formixed.

Then, it is only natural to introduce [which is defined by
(11)] and [which is defined by (14)] as specific penalty terms
for and , respectively. The resulting criterion reads

(16)

which is a nondifferentiable function w.r.t. vanishing compo-
nents of , if . On the other hand, is (resp.
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strictly) convex w.r.t. if , and are (resp. strictly)
convex. Then, the global minimizer is uniquely defined by

In the Bayesian framework adopted in [1], it is not dif-
ficult to see that corresponds to the joint MAP
solution obtained from a prior neg-log-density proportional to

. Finally, the estimated frequency
distribution is taken as the squared modulus of the components
of .

Among possible refinements, a shorter vector could be
introduced to encode the smooth components of the spectrum,
as long as they require less accuracy. Then, the fidelity to data
term would become

where . Such a modification could provide a (probably
slight) increase of overall convergence speed at roughly constant
quality of estimation.

IV. OPTIMIZATION STAGE

A. Graduated Nondifferentiability

Nondifferentiable (i.e.,nonsmooth) convex criteria can nei-
ther be straightforwardly minimized by gradient-based algo-
rithms since the gradient is not defined everywhere nor by coor-
dinate descent methods [31, p. 61]. Nonetheless, there exist sev-
eral ways to efficiently minimize such criteria [31]–[34]. Here,
we resort to the so-calledregularization method[31], [32], [35],
[36]. In the following, it is instead referred to as agraduated
nondifferentiability(GND) approach, in order to avoid the pos-
sible confusion with the notion of regularization for ill-posed
problems. The principle is to successively minimize a discrete
sequence of convex differentiable approximations that converge
toward the original nonsmooth criterion.

We have adopted the GND approach because it is flexible,
easy to implement, and mathematically convergent. Under suit-
able conditions, the series of minimizers converges to the solu-
tion of the initial nonsmooth programming problem [31], [32],
[35], [36]. More specifically, we have the following result, based
on [31, pp. 21–22].

Proposition 2: Let fulfill (10b) and (10c) but
not (10a), and let be a series of approximations of

that fulfills the three conditions (10). If converges toward
in the following sense:

(17)

where

then

Remark 1: In more general settings, convergence results akin
to Proposition 2 can be obtained using the theory ofconver-

gence, which is a powerful mathematical tool in the study of the
limiting behavior of the minimizer of a series of functions [37].

The remaining part of the section is devoted to the case of
smooth spectra, i.e., to the minimization of defined by (6),
(7), and (14). Extension to the minimization of is straight-
forward.

B. Differentiable Approximation of Convex Gibbs–Markov
Penalty Function

Practically, it is a prerequisite to build a differentiable convex
approximation of the penalty term such that the series

(18)

satisfies the conditions of Proposition 2. Our construction of
is based on the hyperbolic differentiable approximation

of the magnitude function :

(19)

where . Such an approximation is known to satisfy con-
ditions (17) [31, pp. 21–22] and has been already used in the
field of image restoration [26], [27]. It is also called thestan-
dard mollifier procedure[26].

Let denote the above differentiable
approximation of and . Then, the
resulting modified smoothness penalty term satisfies (10),
whereas only satisfies (10b) and (10c), according to the fol-
lowing consequence of Theorem 1 and of Corollary 1.

Corollary 2: Let meet the weak form of conditions (15)
in Corollary 1, along with . Then, the modified
penalty term

(20)

is a strictly convex function of .
Proof: Let us remark that , where

and is defined by (14) with . Then,
the proof is an application of Theorem 1, with and

, given that i) each is strictly convex, and ii) ac-
cording to Corollary 1, the restriction of on is convex
and coordinatewise increasing.1

C. Minimization of

According to the principle of GND, for a finite sequence
, the minimizers are recursively

computed. At the th iteration, a standard iterative descent al-
gorithm is used to compute . At iteration , is used
as the initial solution, and the process is repeated until .
Practical considerations regarding the stopping criterion, the up-
dating rule of , and the number of iterations are reported
in Section V.

For any , the computation of can be obtained with
many mathematically converging descent algorithms since
fulfills (10). Practically, several numerical strategies are studied
and compared in [38].

1Rigorous application of Corollary 1 only provides that the restriction ofR

on is nondecreasing. A careful inspection of Appendix C is needed to check
that the strict result actually holds.
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• The Polak–Ribiere version of conjugate gradient (CG) al-
gorithm is implemented with a 1-D search [39].

• It is shown that the IRLS method proposed in [38] does not
extend beyond the case of separable penalty functions.

• An original residual steepest descent(RSD) [23] method
is developed. It can also be seen as a deterministichalf-
quadratic algorithm based on Geman and Yang’s con-
struction [24], [30].

For a small value of , GND coupled with CG is more effi-
cient than a single run of CG at . This point is illustrated
in Section V. In [38], the same conclusion is drawn concerning
GND coupled with RSD.

V. EXPERIMENTS

We illustrate the performances of the proposed spectral esti-
mators in the context of short-time estimation by processing the
well-known Kay and Marple example [2]. Such data have been
extracted from a realization of a second-order stationary random
process. Since our approach is not theoretically well-suited for
dealing with such processes, the spectral estimates will not be
consistent with the true spectrum. Nonetheless, the results pre-
sented in the following prove that consistency is not a crucial
issue as short-time estimation is addressed. As a preliminary
question, the next subsection addresses the problem of hyper-
parameter selection.

A. Hyperparameter Selection

In the first set of simulation results (Section V-B), hyperpa-
rameter values have been empirically selected after several trials
as those that visually work “the best.” An alternative way for
solving this step could be automatic hyperparameter selection.
More specifically, when the sample size of the observations is
large enough (several hundreds of data), the maximum likeli-
hood estimate (MLE) can provide a valuable solution. In the
last ten years, efficient Monte Carlo Markov chain methods have
been proposed to compute the MLE, for instance, in the context
of unsupervised line spectrum estimation [40].

In the case of small data sets, the MLE would probably lack of
reliability, and more realistic solutions must be found, depending
on the application. Automatic or assisted calibration of hyperpa-
rameters based on a training data set is sometimes possible. For
instance, in the context of Doppler radar imaging as addressed in
[41, Ch. V], an initial data set is recorded as the radar points at
a reference direction that corresponds to an identified scenario,
such as atmospheric sounding and wind profiling. This step al-
lows us to calibrate the radar sensor, but it could also be used to
choose the hyperparameters for the whole recording.

B. Kay and Marple Example

1) Practical Considerations:Following [1], the perfor-
mances of the proposed methods are tested using the Kay and
Marple reference data set [2], which allows easy comparison
with pre-existent approaches. The data sequence is real, of
length , and consists of three sinusoids at fractional
frequencies 0.1, 0.2, and 0.21 superimposed on an additive
colored noise sequence. The SNR of each harmonic is 10, 30,

Fig. 1. True spectrum.

and 30 dB, respectively, where the SNR is defined as the ratio
of the sinusoid power to the total power in the passband of the
colored noise process. The passband of the noise is centered at
0.35. The true spectrum appears in Fig. 1.

Given the real nature of data and the symmetry properties
studied in Appendix D, the spectra are only plotted on a half pe-
riod . The different estimates have been computed using

. In practice, taking does not markedly im-
prove the resolution.

With regard to the numerical implementation of CG, the fol-
lowing conjunction has been selected as stopping criterion:

where denotes the solution at theth iteration of the mini-
mization stage, andis 1 or 2. Following Vogel and Oman [26],
we have chosen the norm instead, and the thresholds have
been set to .

The same stopping criterion has been adopted for RSD, ex-
cept that the third condition has not been tested.

2) Estimation of LS:The spectrum estimates depicted in
Fig. 2 minimize penalized criteria with a separable penalty
function: Fig. 2(a) corresponds to the quadratic potential

, and Fig. 2(b) corresponds to the hyperbolic
potential for .

As shown in [1] and [14], quadratic regularization yields the
zero-padded periodogram of the data sequence up to a multi-
plicative constant. Since the nominal resolution of a 64-point
sequence is 0.015, close sinusoids at 0.2 and 0.21 are not re-
solved. Moreover, this estimate is dominated by sidelobes that
mask important features of the signal. In the following, the DFT
of the zero-padded data sequence has been used to initialize all
iterative minimization procedures.

The line spectra estimate depicted in Fig. 2(b) is very sim-
ilar to the spectral estimate computed with the Cauchy–Gauss
model [1 , Fig. 6], as well as to the result given by the Hilde-
brand–Prony method [2, Fig. 6(b)]; the sinusoids are retrieved
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Fig. 2. Spectra reconstructed with separable regularization. (a) Zero-padded
periodogram. (b) Line spectra reconstructed with the hyperbolic potential
(�; � ) = (0:06; 0:002).

at the exact frequencies but with powers different from the orig-
inal ones. Nonetheless, the power ratio (20 dB) is preserved be-
tween the three harmonics. On the other hand, the broadband
part of the spectrum is not recovered. It is replaced by several
spectral lines. This problem is also encountered in [1] and [15]
and in high-resolution parametric methods discussed by Kay
and Marple [2].

From a computational standpoint, the IRLS method of [1] has
been used as minimization tool. It is known to be convergent in
the present situation [23], [24]. The solution is reached in about
5–10 s on a standard Pentium II PC.

3) Estimation of SS:
a) Complex Regularization:Fig. 3 shows the spectrum

estimate computed from a convex penalized criterion with the
noncircular penalty function defined by (12). It has been
obtained with and . Although the latter value
corresponds to a high level of regularization, there remain some
artifacts, where the reversal of the lowest sinusoid is the main
defect. In our opinion, such results definitely disqualify noncir-
cular penalty functions.

b) Regularization of the Power Spectrum:The three
spectrum estimates depicted in Fig. 4 are obtained with a
penalty function defined by (20). Three hyperparameters

need to be adjusted, let alone the target value

Fig. 3. Smooth spectrum reconstructed with a complex Gibbs–Markov penalty
function. Parameters have been fixed to(�; � ) = (0:6; 0:1).

for the closest approximation of . The results of
Fig. 4 have been computed with .

First, let us begin with general comments on Fig. 4. Akin to
Fig. 2(b), the three results produce nearly no sidelobes, com-
pared with the periodogram. None of the three results allow
us to separate the two close harmonics, although a narrowband
component around frequency 0.2 is clearly distinguished. Sim-
ilarly, the lowest sinusoid at frequency 0.1 is recovered under
a broaden format. This is not surprising since smoothness has
been incorporated through the penalty function.

In Fig. 4(a) and (b), the value of has been chosen to corre-
spond to the bound of convexity of : ,
according to Section III-C2, and different values of have
been compared. A small parameter value yields
a rather inadequate blocky result, as shown in Fig. 4(b). The
discontinuities are due to the quasinondifferentiability of .
The rougher approximation depicted in Fig. 4(a) ( )
provides a smoother estimate. However, it is not smooth enough
compared with the broadband part of the true spectrum. In-
creasing beyond the bound of convexity is necessary to get
smoother results. The spectrum of Fig. 4(c) has been computed
with and . It provides a more regular broad-
band response that is quite close to the smooth part of the true
spectrum. Among the estimators tested in [2], the MLE (Capon
method) shown in [2, Fig. 16(l)] provides a somewhat similar re-
sult. We retain such a tuning as a good candidate for the smooth
part of the mixed model.

With regard to practical aspects of minimization, the three
results correspond to contrasted situations.

• In the case of Fig. 4(a), yields a criterion that is
sufficiently far from nondifferentiability to be efficiently
minimized in a single run of CG (i.e., ), spending
about 25 s of CPU time.

• Fig. 4(b) has been obtained after three iterations of GND
based on CG: , which
globally took about 35 s of CPU time. In comparison, a
single run at takes about 60 s, as depicted in Fig. 5.

• The value corresponding to Fig. 4(c) does not en-
sure that the criterion is convex. Hence, it is possibly mul-
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Fig. 4. Smooth spectra reconstructed with a circular Gibbs–Markov penalty
function (�; � ) = (0:05; 0:001). (a) Convex case where� = � =
0:5, " = 0:9. (b) Convex case where� = � = 0:5, " = 0:001.
(c) Nonconvex case where� = 5, " = 0:9.

timodal. For this reason, we gradually increase the value of
, following thegraduated nonconvexity(GNC) approach

[42], [43]. The principle is very similar to the GND tech-
nique described in Section IV. The empirically chosen law
of evolution for is simply , and there-
fore, the initial criterion is convex, as prescribed by
the GNC approach.

Fig. 5. Performance of the GND algorithm coupled with CG in the SS case.
The solid line corresponds to the minimization ofJ in a single run, and
dashed-dotted lines correspond to the GND process coupled with CG.

4) Estimation of MS:The spectrum estimates depicted in
Fig. 6(a) and (b) are obtained from the minimization of a dif-
ferentiable approximation of the penalized criterion defined
by (16):

(21)

The regularizing terms (11) and (20) depend on and
on , respectively. Given the results presented in the
two previous subsections, we have retained

, and we have tested the two settings
and .

Two additional hyperparameters appear in (21). It
is a priori suited to choose the same order of magnitude for the
values of and ; otherwise, the overpenalized term would
yield a vanishing component. The values ,

have been retained.
Fig. 6(a) corresponds to ; therefore, the minimized

criterion is strictly convex. The result has been computed with
CG. It clearly shows that the mixed model is able to resolve close
sinusoids, whereas the broadband response is much closer from
the SSestimateof Fig.4(a) than from theLS estimateofFig.2(b).
However, the broadband response is not smooth enough, and the
small sinusoidal component is not as sharp as expected.

Fig. 6(b) corresponds to ; therefore, the minimized
criterion is not convex and possibly multimodal. The result has
been computed with GNC based on CG. The three spectral lines
have sharp responses at the sinusoid frequencies, and the power
ratio between the different harmonics is preserved. Moreover,
its smooth part is very close to the broadband component of the
true spectrum. It is clearly the most satisfactory result among all
estimates proposed in this paper. It also outperforms classical
solutions computed on the same data set in [2].

Fig. 6(c) and (d) separately show and , which
are the components of the solution depicted in Fig. 6(b). As ex-
pected, the former is rather spiky, whereas the latter is rather
smooth. However, perfect separation was not the goal since it
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Fig. 6. Mixed spectra. (a) Convex case� = 0:5. (b) Nonconvex extension� = 5. (c) and (d) correspond respectively to the line(jX̂XX j ) and smooth(jX̂XX j
parts ofjX̂XXj depicted in (b).

would require that true decisions be taken regarding the pres-
ence of a line at each frequency sample, whereas our motivation
was only to accurately estimate the whole spectrum. There is a
somewhat similar difference betweenimage segmentationand
edge-preserving restoration.

VI. CONCLUDING REMARKS

Inthecontextofshort-timeestimation,wehaveproposedanew
class of nonlinear spectral estimators, defined as minimizers of
strictly convex energies. First, we have addressed separable pe-
nalization introduced in [1]and [18] forenhancingspectral lines.

Then, a substantial part of the paper has been devoted
to smooth spectra restoration. We have introduced circular
Gibbs–Markov penalty functions inspired from common
models for signal and image restoration. However, the fact that
penalization applies to moduli of complex quantities introduces
specific difficulties. A rigorous mathematical study has been
conducted in order to build criteria gathering the expected
properties such as differentiability, strict convexity, and the
ability to discriminate spectra in favor of the smoothest.

Finally, since many practical spectral analysis problems in-
volve both spectral lines and smooth components, we have pro-
posed an original form of mixed criterion to superimpose the
two kinds of components. We argue that this approach provides

a very sharp tool for the detection of isolated objects embedded
in broadband events. One possible application is the tracking of
planes using a Doppler radar instrument since the informative
data is often embedded on meteorological clutter at low SNR.
The proposed spectral estimators have then been extended to
this framework to additionally take spatial or temporal conti-
nuity into account [41, ch. V].

After the present study, some issues remain open. On the one
hand, we observed in Section V that minimizing a convex crite-
rion did not always yield a sufficiently smooth estimate. In prac-
tice, we resorted to graduated nonconvexity to overcome the lim-
itation found in the convex analysis framework. By now, it is hard
to tellwhether the latter takes root in fundamental reasonsor ifwe
simply failed in finding the “good” convex penalty function.

On the other hand, the proposed penalty functions are quite
sophisticated. In practice, several hyperparameters have to be
tuned, which is not always a simple task. In some situations,
hyperparameter values can be selected using training data. Oth-
erwise, depending on the size of the data set, automatic selection
using an MLE approach may provide an alternative solution.

Finally, the question of asymptotic properties remains open.
For instance, given the well-known properties of the averaged
periodogram, it could be interesting to study the properties of
averaged versions of our smooth spectra estimator.
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APPENDIX A
PROOF OFTHEOREM 1

The stated sufficient condition is acknowledged in the scalar
case [44, Th. 5.1].

First, let us prove the implication in the large sense. For any
and any , let and

. Each is convex:

(22)

Then, using repeatedly the fact thatis a coordinatewise non-
decreasing function, we deduce

(23)

(24)

where the latter inequality holds becauseis convex.
In order to prove the strict formulation, we remark that there is

at least one such that ; therefore, the corresponding in-
equality (22) becomes strict becauseis strictly convex. Then,
the strict counterpart of inequalities (23) and (24) also holds
since is coordinatewise increasing (remark that the strict con-
vexity of is unnecessary here).

APPENDIX B
PROOF OFTHEOREM 2

A. Sufficient Condition

Let be a (resp. strictly) convex and co-
ordinatewise nondecreasing (resp. increasing) function,
and let be the mapping of the moduli:

. We have to prove
that is (resp. strictly) convex.

In the large sense, this result is an immediate consequence
of Theorem 1 for . However, the strict counterpart of
Theorem 1 does not apply since is not astrictly convex
function. We need a more specific derivation, which is actually
generalizable to any function with hemivariate[45] convex
components.

Let us consider the proof of Theorem 1. Ifis strictly convex,
(24) readily becomes strict, provided that . Oth-
erwise, assume so that (24) reads

. Since , there exists at least one such that
. Then, implies since belongs

to the cord of the centered circle of radius . Since
is coordinatewise increasing, it follows that ,
which is the expected strict counterpart of inequality (24).

B. Necessary Condition

Let be a strictly convex, circular function. Its
restriction on is obviously strictly convex. We have to prove
that it is also coordinatewise increasing.

Let be the th canonical vector in , and let
be the restriction of to the line

for any . First, let us prove that all

such restrictions are even functions, i.e., that

if
if .

Consequently, ,
and hence, since is
circular. Therefore, is even.

Since is even and strictly convex on, it is increasing
on , as shown below: , let so
that . Since and is strictly
convex,
because is even.

As a conclusion, all restrictions are increasing on ,
i.e., is coordinatewise increasing on .

APPENDIX C
PROOF OFCOROLLARY 1

First, let us decompose according to
, with

(25)

and let us prove that conditions (15) imply the convexity of
on , which is a sufficient condition for the convexity of
on . Apply Theorem 2 to . On one hand, is convex on

as a sum of convex functions of . It is even strictly
convex if is strictly convex.

On the other hand, let us prove thatis coordinatewise non-
decreasing or even increasing as a function of if con-
ditions (15) hold. Since is even, ;
therefore, we need only to study the behavior ofas a function
of, say, . Since is even and convex on, it is nondecreasing
on (the strict counterpart of this result is shown at the end
of Appendix B). As a sum of nondecreasing functions of, it
is obvious that is nondecreasing if . If , the
condition reads

which is equivalent to (15c) since and are nondecreasing.
Finally, if is strictly convex, is shown to be coordinatewise
increasing along the same lines.

APPENDIX D
REAL DATA CASE

The purpose of this Appendix is to show that the proposed
spectral estimation method (in either versions, LS, SS, and MS)
automatically preserves the Hermitian structure of the spectrum
when real data are processed so that the estimated power spec-
trum is symmetric.

Let us denote as the expected Hermitian property
of , with
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Equivalently, means that the inverse DFT
is a real vector. Convexity of the minimized crite-

rion plays a basic role in the fulfillment of the Hermitian prop-
erty of , as stated in the following proposition.

Proposition 3: Consider a real data set and a penalty
function that fulfills (9b)–(9d) and (10b)–(10c).
First, the criterion defined by (6) and (7) possesses the Her-
mitian symmetry . Second, the
unique minimizer of satisfies .

Proof: Let us consider a non-Hermitian complex vector
, i.e., . Introduce so that

Obviously, since ,
. On the other hand, the modulus of the

components of reads
, which proves that

since is shift-invariant (9b), symmetry-invariant (9c),
and circular (9d). Finally, the identity
gathers the two results. The first part of the proof is completed.

Now, consider the middle point

(26)

which obviously satisfies . Since is strictly convex

As a consequence, .
Proposition 3 directly applies to the LS and SS cases

(including differentiable approximations considered in Sec-
tion IV-B), whereas a straightforward generalization is needed
in the MS case. Along the same lines, it can be proved that

, , in and that
, , if both penalty functions

and fulfill (9b)–(9d) and (10b)–(10c).
The remaining question concerns the situation where the cri-

terion is nonconvex, as encountered in [1], or in GNC experi-
ments, which are reported in Section V. Then, it does not seem
possible to show that all minimizers (global or local) are Her-
mitian. However, the Hermitian symmetry of the criterion itself
still holds (the corresponding part of the proof of Proposition 3
remains valid). This property has two favorable consequences.

• If is unimodal, i.e., it has one global minimizer and
no local minimizer, then . Since strict con-
vexity implies unimodality, this is an alternate argument
for the second part of the proof of Proposition 3.

• The gradient of is Hermitian: ;
therefore, gradient-based algorithms can be expected to
propagate Hermitian symmetry along iterations from a
Hermitian initialization point. We have also checked the
same property for the IRLS algorithm used in [1].
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