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A Bayesian Method for Long AR Spectral
Estimation: A Comparative Study

Jean-Francois Giovannelli, Guy Demoment, and Alain Herment

Abstract— In this paper, we address the problem of smooth
power spectral density estimation of zero-mean stationary Gauss-
ian processes when only a short observation set is available for
analysis. The spectra are described by a long autoregressive
model whose coefficients are estimated in a Bayesian regular-
ized least squares (RLS) framework accounting for the spec-
tral smoothness prior. The critical computation of the trade-
off parameters is addressed using both maximum likelihood
(ML) and generalized cross-validation (GCV) criteria in order to
automatically tune the spectral smoothness. The practical interest
of the method is demonstrated by a computed simulation study in
the field of Doppler spectral analysis. In a Monte Carlo simulation
study with a known spectral shape, investigation of quantitative
indexes such as bias and variance, but also quadratic, logarithmic,
and Kullback distances shows interesting improvements with
respect to the usual least squares method, whatever the window
data length and the signal-to-noise ratio (SNR).

I. INTRODUCTION

HE SPECTRAL estimation problem has been extensively

studied because of its obvious practical importance as
well as its theoretical interest. Literature on the spectral estima-
tion problem is abundant and varied since this problem arises
in very different branches of engineering and applied physics:
nondestructive testing, attenuation measurements, Doppler ve-
locimetry, etc. This paper deals with the particular situation
when only a short set of data is available for spectral estimation
and when the spectra are known to be smooth in some sense.
This paper’s objective is to obtain improvement in terms of
resolution of fine details of analyzed structure by processing
very short windows.

The well-known periodogram is the most popular spectral
estimation approach for two reasons. The first one is the
computational efficiency of the fast Fourier transform (FFT)
algorithm which simplifies real time applications. The second
reason is its good performance when sufficient data are avail-
able. Unfortunately, when the window data length decreases,
the bias and variance of the periodogram both increase, to
which the literature often refers [1]-[3]. Many variations of the
periodogram are also described in the literature: windowed,
averaged periodograms, etc. The conclusion of the study
of these methods is that the bias of this estimator can be
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reduced if an increase in variance is accepted, and vice
versa, but bias and variance cannot be reduced simultaneously.
Hence, such a method is unusable in the particular situation
when only a very short set of data is available for spectral
estimation.

Parametric spectral estimation methods have gained atten-
tion as potentially interesting tools in the last two decades.
They allow the improvement of the statistical properties of
spectral estimators with respect to the Fourier-based methods.
Estimation of the parameters of ARMA and MA models needs
the resolution of a set of nonlinear equations, whereas the AR
parameters estimates can be calculated by solving a set of
linear ones. Moreover, algorithms, such as Levinson’s, used to
solve this set of equations are computationally efficient. When
the AR modeling assumption is valid, spectral estimates are
less biased and have lower variability than the Fourier-based
ones. For these reasons, the AR method became the most
popular approach to parametric spectral estimation [1]-[3].
However, as often noticed in the literature, two facts make
this method less statistically reliable for a shorter observation
vector. The first fact is the instability of techniques used
to determine the model order, especially for short sets of
data. The second fact is that the conventional least squares
framework leads to a parsimonious parametric model (i.e.,
small number of parameters with respect to large number of
data), which cannot be a good replica of the true power spectral
density.

The Bayesian method used within the scope of this paper
helps to alleviate this problem. The basic idea of this approach,
introduced by Kitagawa and Gersch [4], is to take into account
the spectral smoothness assumption in the estimation method.
Such a Bayesian method is free from the parsimony principle,
and allows the reliable estimation of N parameters from only
N observations. Hence, this method enables the estimation of
the PSD in a broader class of spectra and the description of
various spectral shapes.

The paper is organized as follows. In Section II, the problem
of spectral estimation of a zero-mean stationary Gaussian
process is summarized, with particular attention paid to its
connection to AR modelization and estimation strategy. After
a short description of the Bayesian approach to parameter
estimation, Section III is devoted to the presentation of the
Bayesian spectral analysis method. Special attention is paid to
the problem of automatic estimation of the trade-off parameters
in Section IV. Section V and VI are respectively devoted to
simulation methodology and description of results obtained in
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the field of Doppler velocimetry. Finally, conclusions are pre-
sented in Section VII as well as points still to be investigated.

II. CONVENTIONAL AR PARAMETER ESTIMATION

A. The Spectral Estimation Problem

The problem of spectral estimation is to determine the
spectral content of a random process based on a finite number
of observations. Mathematically, the spectral content is the
PSD of a discrete-time second-order stationary process and is
defined as

+oo

Sa(f) =Y r(k)exp (=2in fk),

—0oC

where 7(k) are the correlation lags of the process.

Qur field of interest is the case of real zero-mean
stationary Gaussian /N-dimensional observation vector £ =
[€1,T2, -, zN]'. Hence, the probability density function for
such a vector is

fX|9($|0) =fX|R(-"’|R)
=(2r)"N?(det Ry 2exp (-1 3'R7'z), (1)

where the Toeplitz positive covariance matrix R is parame-
terized by an N-dimensjonal parameter vector § which may
be equivalently chosen as N correlation lags, N reflection
coefficients, or N — 1 autoregressive parameters and the noise
power.

The density given by (1), seen as a function of @, is the
likelihcod of @, denoted L(#) and gathers all the information
provided by the data. Since L(@) is a function of the N-
dimensional parameter @, it is important to note that the
spectral estimation problem requires estimation of 6 i.e.,
estimation of N coefficients from N observations.

B. Maximum Likelihood (ML) and Least Squares Estimation

A common approach to the parameter estimation problem is
the ML approach, but the likelihood given by (1) is nonlinear
with respect to @ due to the nonlinear dependence of R with
respect to # and to the presence of the determinant and inverse
of R. Several techniques [5], [6] were proposed in order
to maximize L(#) with respect to #, but such a nonlinear
optimization problem is impractical for real-time applications.
In order to avoid this problem, a particular choice for # and
an approximation of the likelihood are achieved, leading to a
computationally efficient estimator. Generally, @ is chosen as
the AR coefficients & = [a1, a2, +,an—1]%, and as long as
the PSD is not sharply peaked, as in our case by hypothesis,
an approximate expression for the likelihood is

Ixalzla) = (2m0}) N/

exp (-%g(z ~ Xa)'(z — Xa)) @)

“HMau

(see [2, p. 185]). The data vector z and the data matrix X
(also called observation vector & and observation matrix X)
are designed in the classical manner [2], [3] as follows:

(21 ] r o 0 0
TIo T 0 0
3 2 1 0
T4 T3 X2 0
z=|zn|, X=|ZN-1 ZnN-2 T2 z1 |- 3)
0 IN  TN-1 T2
0 0 IN-1 TN-2
0 0 TN IN_1
L0 J L O e 0 TN

Equation (2) clearly shows that the maximization of the
AR parameter approximated likelihood is equivalent to the
minimization of the usual least squares criterion [2], [3]

Qo(a) = (z — Xa)'(z — Xa). ey

The explicit expression for the minimizer of this criterion, the
least squares estimate, is well known

drs = argmin Qo(a)
=(XtX) ' X'z )

C. Short Time Case

As pointed out above, the signal is parameterized by N
parameters, thus estimation of N autoregressive coefficients
from N observations is desirable. In such a situation, least
squares estimation techniques lead to a large variance and
results in many spurious spectral peaks, hence even if the
solution has small bias, it yields to an unacceptable spectra.
An alternative is possible to alleviate the conflict between
long model and least squares methods: on the one hand,
the usual approach gives up the very first idea of estimating
N coefficients, on the other hand, Kitagawa and Gersch [4]
propose to abandon the usual least squares principle.

As already mentioned, the first solution is often adopted. In
order to reduce the estimation variance and avoid spurious
peaks, in a least squares framework, the model order is
drastically reduced, for instance, to one-third or one-quarter
of the observation vector length. Such an approach is efficient
when enough data are available, but fails for a short data set
because the model is then too poor to describe a wide class
of spectra.

Our approach is on the opposite method, and we propose to
adopt the second solution: our criterion is a modified version
of the least squares, and we go on estimating a long model. Es-
timation of IV parameters from N observations is an ill-posed
problem which suffers from a lack of information to infer N
AR parameters from N data. Literature about these problems is
abundant and varied since they arise in almost every branch of
engineering and applied physics [7]. The resolution of ill-posed
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problems needs the use of the regularization concept, i.e., the
introduction of prior information in the solution. The Bayesian
framework provides an attractive and coherent framework to
deal with these problems. This standpoint is developed in the
next section.

TII. BAYESIAN APPROACH TO SPECTRAL ESTIMATION

A. Theoretical Background

In a Bayesian framework, introduction of prior information
in the solution involves a change in the estimation criterion:
instead of maximizing a likelihood of the parameter, the
posterior likelihood is maximized, which contains information
provided by the observations (via the likelihood) and by the
a priori assumption about the expected solution (via the prior
law). This compound criterion incorporates both “data-based
knowledge” and “prior knowledge” about @ [4], [7].

The first problem to address is the choice of a prior
probability density feo(#) for the vector @. This density is
supposed to contain the prior knowledge about the expected
solution (see Section III-B). The information provided by the
data is introduced through the conditional density for the
observations, fx|o(x|#). Finally, the Bayes rule combines data
and prior in the posterior density for 8

fxi0(zl0) fo(8)
fx(z)

In a strict Bayesian sense, (6) yields the solution to the
problem since it gathers all the information about the AR
coefficients. However, the need of one spectrum implies the
choice of an estimator, and a popular choice is the maximum
a posteriori (MAP). This punctual estimator is defined as the
maximizer of the posterior density

foix(0lz) = (6)

Oriap = arg max fo|x (0]).

The computation of this solution requires values for remain-
ing parameters, called the hyperparameters, (parameters of the
prior law, noise variance, etc.) which balance the solution
between the data and the prior. The crucial problem of tuning
the compromise between the fidelity to the data and the fidelity
to the prior knowledge is addressed in Section IV.

B. Spectrum Smoothness Prior

The aim of this section is to design a prior law for the AR
coefficients, modeling the PSD smoothness and leading to an
easily computable solution.

The choice of a particular class of prior law is first driven by
the need for a real-time computable estimation. This constraint
leads to the consideration of the class of Gaussian prior

fa(a) = 2m)V?det R, *exp (~ a'R;'a),  (7)

where the smoothness information about the PSD is introduced
via the prior correlation IZ,. Hence the objective of the
followings is to find such a prior correlation.

The power spectral density for an AR process is [2]

0.2

Sﬂ:(f) = = 29 )

P
1- ZakerWfk
k=1

which can be rewritten

2

P
S=(f) % B with A(f)zzakezjwfk. )
k=1

T LA

When the PSD is known to be smooth, Kitagawa and
Gersch [4] proposed to constrain the PSD variations, i.e., to
penalize its high variations. They consider the kth derivative
of A(f) defined in (9) in order to measure the PSD variations.
Averaging the squared modulus of this derivative over the
whole reduced frequency domain, they define the PSD kth

$moo [hneSS by
1
/
0

After elementary algebra, Kitagawa and Gersch showed in [4]
that

2

k
g df. (10)

WA(JE)

(1D

Dy x atAza,

where the A matrix, called the kth smoothness matrix, is
defined by

i 0 0 . 0
0 22 o ... 0
Ap=|0 0 3% ... 0
0o 0 0 ... p*k

A small value of Dy means a small value of the averaged
kth derivative of A(f), hence a rather smooth PSD. At the
limit, if Dy, = 0, then @ = 0 and S,.(f) = C* over the whole
frequency domain, i.e., the PSD estimate is completely flat.
On the contrary, a large value of Dy, implies strong variations
of A(f), hence a peaky PSD.

The covariance matrix R, is designed from the kth order
smoothness matrix Ay through the following:

R;' = %Ak.
Uu

The Gaussian prior defined in (7) with covariance R, ! favors
smooth over peaked spectra.

C. Posterior Law and MAP Estimate

Section II shows that the approximated likelihood fx|4
(z|a) for the AR coefficients is built up as given in (2).
The previous section gives a prior law fa(a) for the AR
coefficients in (7). The posterior probability density function
for a is then derived by applying the Bayes rule (6)

fx[A(l'|a)fA(a)_

fx(x) (12)

fax(alz) =
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The denominator of (12), fx(z), being independent from
a, contributes nothing more than a normalizing constant K.
Elementary algebra leads to the posterior law

1
fax(alz) = Kexp —EQ(GL (13)
where Q(a) is given by
Q(a) = (x — Xa)'(z — Xa) + \a'AL'a (14)

and called the regularized least squares (RLS) criterion.

Since both the prior law f4(a) and the conditional law
fx|a(z|a) are Gaussian, and the model is linear, the posterior
density is also Gaussian. Hence the choice of an estimator
is no longer crucial: the MAP, the posterior mean, etc., are
strictly equal. The MAP estimator ayap is defined as the
posterior probability density maximizer, or equivalently as the
minimizer of the RLS criterion )(a) of (14)

GRLS = AMAP
argmax f4 x(a|z)
argmin Q(a).

fl

(15)

Since the problem is linear and Gaussian, we still have an
explicit expression for its minimum

arLs = (X'X + AAy) " 1X1x. (16)

The crucial parameter A, called the regularization parameter,
balances between the prior and data-based solutions; the
question of its estimation is addressed in Section IV.

D. Quadratic Regularization Interpretation

This section is devoted to the interpretation of this method
in terms of quadratic regularization, outside the Bayesian
framework.

The regularized criterion of (14) is composite. On the
one hand, its first term is the data-based criterion Qp(a) =
(z — Xa)!(z — Xa), on the other hand, its second term
Qo(a) = a'Aja is a prior criterion. Combining these two
criteria, the proposed criterion incorporates both the prior and
data-based criteria

Q(a) = Qo(a) + AQoo(a)

=(z — Xa)'(z — Xa) + \a'Aa. Qa7

As in the usual least squares case, an expression is available

for the minimizer of this criterion

(18)
19

arrs = argmin Q(a)
=(X'X + M) 1 X'z,

For A small enough (A = 0 at the limit), the criterion reduces
to the usual least squares case, Q(a) = Qo(a), and the usual
least squares solution is found: @ = a¢ = (X*X)~ ! X*z. For
A large enough (A = oo at the limit), the criterion becomes
the prior one Q(a) = Q. (a), and the prior solution is found:
@ = a., = 0 so the PSD estimate is constant over the whole
frequency domain.

Between the two extreme “prior-based” and ‘“data-based”
solutions, an acceptable solution must still be found. Therefore,

the crucial parameter A which gives a convenient solution has
to be estimated from the data. The following section is devoted
to this fundamental problem.

IV. HYPERPARAMETER ESTIMATION

The method described above in (16) requires values for three
hyperparameters o2, A, and k. The parameter o2 is a scaling
factor while the two other parameters design the spectral shape.
The parameter ) is of major importance for the spectral shape,
so our study is focused on its estimation. On the contrary, the
smoothness order is of lower influence and is usually fixed
to k = 1 [its influence is nevertheless evaluated in Section
VI-C1)].

The problem of hyperparameters estimation is the most
delicate problem in regularization approaches, and has been
extensively studied [8]-[12]. Numerous techniques have been
proposed and compared in these papers and two approaches
seem to be of great interest. The first strategy is founded on
ML and allows estimation of both ¢2 and A. The second
strategy, called generalized cross validation (GCV), provides
an alternative to A estimation. The aim of this section is to
give a brief overview of the different possible methods, and
especially ML and GCV which are both implemented in the
simulation study in Section VI.

A. Maximum Likelihood

We first investigate methods directly derived from the
Bayesian framework. One of the interests of this framework
is to provide coherent techniques to estimate the hyperparam-
eters.

The parameters of interest are the noise variance and AR
parameters, but the hyperparameter A may be considered as
a nuisance parameter. In a strict Bayesian framework, \’s
integration out of the estimation problem may be desirable.
Such a calculus may be driven with a Jeffreys prior [13],
fa(A) = 1/X for instance, but the calculus is out of the
scope of this article. However, it may be mentioned that this
approach leads to a nonlinear criterion on a, and consequently
to an untractable method as far as real-time applications are
concerned.

A second approach consists of estimating both the hy-
perparameters and AR parameters in the same pattern: the
maximization of the joint probability density function, called
the generalized likelihood

G'L(aa )‘7 UZ) = fX,A(I7a|)‘7 0121)’

simultaneously over all the AR parameters a, A, and o2. It can
be shown that for this kind of problem (linear and Gaussian),
the solution is degenerated and leads to A = 0 or o2 = 0.

The most commonly employed technique consists of maxi-
mizing the marginal likelihood obtained by integrating the AR
parameters out of the problem

(o) = [ fxa(@a)da
= /fxm(zla)fA(a)da-

(20)

@
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In [4], Kitagawa and Gersch showed that the hyperparameter
likelihood 1is

L(\,0%) = fx (2|, 0f)
= (2102) "N/ (det Ay )/ 2NN/
- (det (M1))/? exp —g%zt(f - My)z, (22)

with M; and M, given by

My =X'X 4+ AA
My = X'(X'X +AA,) 7 X = X MTIX.

(23)
(24)

The hyperparameters A and o2 are finally chosen as the

maximizers A and 62 of the likelihood with respect to A and
2
UU

(,8%) = argmax fx (2|, 07,

or equivalently, the minimizer of the opposite of the logarithm
of the likelihood, namely the antilog-likelihood (ALL)

(A,62) = arg min — log fx (x|, 02).

Such a maximization is a 2-D optimization problem, but can
be explicitly optimized with respect to 62 as shown below.

1) 02 Estimation: The ML estimate for ¢ is derived from
(22) by nullifying its derivative with respect to o2, and gives
the usual empirical estimate for the noise variance

62 = %zt(I — My)z. (25)
It should be stressed that this expression is an explicit A
function through the M, dependence with A.

2) A Estimation: Replacing (21) into the likelihood ob-
tained in (22), one can easily obtain the following for the

ALL:
ALL (X) = —log (det (M) + N log (A) +log (z* (I — Ms)z).

The hyperparameter A is then chosen as the ALL minimizer

A = Ay = argmin ALL ()).

B. Generalized Cross Validation (GCV)

The previous methods are nondeterministic by nature since
they are derived from the Bayesian framework. This section is
devoted to a deterministic method, namely the GCV, derived
from the quadratic regularization interpretation presented in
Section III-D. In the class of deterministic solutions for
hyperparameters estimation, the very first idea, called Ay or
Argsip (see [11]) is based on the probability density function
of the residual sum of the squares Qo(a). Since the signal
is Gaussian and the model is linear, the residual sum of the
squares follows a x?% distribution

Qo(a) ~ xxos-
This motivates the choice of A, as the solution of
Qo (a) = NO'?L

since No2 is the expected value of the residual distribution.
This method has been popular throughout the history of

regularization techniques, but in practical cases when a is
replaced by @, the residual sum of the squares does not exactly
follow a x3% distribution.

In order to overcome this obstacle, Thompson ef al. [11]
proposed a better approximation of the distribution of the
residual sum of the squares. They introduced an equivalent
degree of freedom (EDF) for the residual N/ = N —Tr {M>},
and proposed a A estimation called Agpr as the solution of

Qo(a) = Tr {I — Ma}o?.

The properties of these estimators have been examined
and their performances compared in [8], [10], and [11]. It
has been reported that these two techniques, especially the
first one, substantially overregularize the solution. Moreover,
they absolutely require the knowledge of the noise variance,
and have been reported as interesting only if the exact noise
variance (or a very good estimate of it) is available.

The cross validation (CV) criterion [9] is an estimate of the
MSE, calculated from the data only. The basic principle is very
simple and consists of removing one observation x; from the
data, and predicting it on the basis of the regularized solution
obtained from the remaining data. The difference between
the true and predicted data yields an error, and averaging
the prediction errors over all the removed data leads to an
approximate MSE. This error is a function of A, called the
cross-validation criterion

CV(A) = [[M(I = M)z,

where M is a diagonal matrix with the 4th diagonal element
1/(1 — a4;), as; being the éith entry of Ms. The minimum of
this criterion should give a good value of the hyperparameters.
In fact, we shall not minimize CV, but a modified version of
it called GCV. This criterion does not differ greatly from the
CV, presents more pleasant properties [9], and takes the form

_ (T = Ma)al|
Tr {I~ M2} ’

A is chosen as Agcv, the minimizer of this criterion with
respect to A

GCV (\)

A= Agov = argmin GCV (A).

Since the GCV criterion is a function of A only, this strategy
represents an alternative to A estimation, but does not allow
simultaneous estimation of oZ. The noise power estimate
remains the usual estimate given (25) for ML strategy.

V. METHODOLOGY OF THE SIMULATION STUDY

A theoretical comparative study between the performances
of the proposed and usual least squares methods is strongly
desirable, but is a very difficult task because of the lack of
an explicit expression for . Theoretical results are available
only for small X values and in the GCV case [9], [11], but
such small values are out of the domain of interest in our
practical case. Therefore, a comparative simulated study is
required. By Monte Carlo experiments [14], statistical results
have been obtained in the following way: a large amount
of signals have been simulated, and for each of them the
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PSD has been estimated from the different methods and in
different conditions. Then, assuming that the large number law
is applicable, by averaging these estimates, several estimation
characteristics were obtained.

A. Measures of Error and Assessment of Performance

1) PSD Estimation Performance Measurement: We now
present different classes of comparison measures investigated
to compare estimation methods.

a) Bias, variance, and mean square error: The first sta-
tistical characteristic is the bias B(f) which characterizes
the mean difference between the estimation expectation E( f)
and the true value S,(f). The second characteristic is the
standard deviation SD(f), i.e., the square root of the esti-
mation variance V (f). It quantifies the mean variability of the
estimate around its expected value E(f). Finally, the MSE,
MSE (f) = B(f)?+ V(f), integrating both bias and variance
was also used.

b) Integrated performance index: As these quantities are
functions of frequency, a qualitative and visual criterion is
the only possibility for comparing the different estimation
methods over the whole frequency domain. In order to avoid
this difficulty, as proposed in [15], three indexes integrating the
frequency dependence have been used: the integrated bias (IB),
the integrated variance (IV), and the integrated mean square
error (IMSE). They are calculated by integrating respectively
the bias, variance, and MSE over the whole frequency domain.

¢) Logarithmic distance: The second class of index con-
sists of a measure of the mean dissimilarity between the true
and estimated log-spectrum. We first define the log-distance
(LD) between the true and estimated PSD

LD (f) = [log Sz(f) — log S.(/)]*.

Since it is also a function of frequency, it is helpful to build
an integrated index

1/2

ILD:/ LD (f) df,
—1/2

which is a distance between the true and estimated log-PSD. A

global statistical index considers the mean ILD (MILD) under

the true probability distribution and takes the following form:

MILD = E{ILD}.

d) Kullback distance: The third comparison criterion is
entropic. The Kullback dissimilarity measure is the entropy of
the true probability distribution with respect to the estimated,
and is defined by

Je(z)
KD =F:;d ——=
(ftafe> ft{ft(x) 3
where f; and f. are, respectively, the true and estimated
probability distribution of the process. In our study, since the
processes are Gaussian, the Kullback distance is

KD(fi,fe) = —% (N +logdet R;'Ry — Tr {R. ' R:}).
Then, the error measure is the mean Kullback distance (MKD)

MKD = Ef {K(ft, fe)}-

2) X Estimation Performances Measurement: In order to
assess and compare the different methods of estimation for
the hyperparameters, the first step is to determine a reference,
and this is done in the following way. As the true PSD is
known in our simulation study, the “true” A can be evaluated
as Anvse, the minimizer of the IMSE defined in the previous
section. Such a Apysg is not an actual estimate since it requires
the knowledge the true PSD and a large amount of simulated
signal. Nevertheless, it is an interesting reference in order to
assess the two actually practicable methods i.e., ML and GCV
(which estimate the hyperparameters from a single signal
realization and, of course, without knowing the true PSD).
This Anvise Will be considered as the true A value in order to
evaluate bias B), variance V), and MSE MSE.

B. Theoretical Spectrum and Simulated Signals

1) Choice of a Field of Application: On the one hand, the
studied method concerns several fields of application, such
as nondestructive testing, attenuation measurements, Doppler
imaging, etc., and on the other hand, a simulation study
requires the choice of a spectral shape and simulation model
related to the considered application. Among the applications,
we have made the choice of ultrasonic Doppler velocimetry,
because it is one of the most difficult problems for several
reasons:

1) Ultrasonic Doppler signals are known to be very com-

plex and difficult to analyze since they are the results of
a highly complex nonlinear backscattering phenomenon
[16].

2) In ultrasound Doppler velocimetry, important variations
of the signal-to-noise ratio (SNR) during the cardiac
cycle are observed (the SNR falls down during diastole
due to the clutter rejection filter).

3) The reduction of window data length is crucial in order
to perform a more time-resolvant analysis of rapidly
varying nonstationary flows, as pointed out by several
authors, e.g., [17]-[19].

In Doppler spectral analysis, a seminal paper by Vaitkus
et al. [20] compares numerous spectral estimation methods,
parametric or not parametric. Comparison of several indexes,
including IMSE for these methods, has indicated a slight
superiority for the least squares AR method, especially for
low SNR, while keeping an efficient computational cost. Our
study follows that of Vaitkus ef al., and its objective is to show
that the RLLS AR methods achieve a new improvement with
respect to the least squares AR methods. Particular attention
will be paid to improvement in time resolution of fine details
of the rapidly varying flow by processing very short windows.

2) Choice of Simulation Model and Spectral Shape: In order
to perform a simulation study, two other choices are required:
the first deals with spectral shape and the second concerns
simulations of signals with the chosen PSD.

a) Spectral shape: A currently used spectral shape (see
Fig. 1) is proposed in [21] and closely approximates the PSD
seen around the peak systole under normal flow conditions
in a carotid artery. This shape is used by several authors and
seems to be recognized as a typical spectral shape [15], [22].
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Fig. 1. Theoretical power spectral density approximating that typically seen

around peak systole, used for simulated signals.

b) Simulation model: In a detailed study of the backscat-
tered ultrasound from blood insonated by a continuous
monochromatic wave, Mo and Cobbold in [21] showed that,
under acceptable assumptions, the Doppler signal z(t) is a
zero-mean stationary Gaussian process.

Mo and Cobbold proposed the following simulation model
[23] derived from their previously mentioned [21] physical
study, and which can be assumed to faithfully reproduce the
complex physical nature of the real signals. The chosen PSD
function S, (f) shown in Fig. 1 is sampled on a fine frequency
grid and each sample is multiplied by a x? random variable.
The square root of each obtained variable is multiplied by
a uniformly distributed complex phase term, and finally an
inverse Fourier transform yields to the simulated signal z(n).
It can be shown that z(n) is a zero-mean stationary Gaussian
process having the given PSD S, (f).

¢) Simulated signals: The simulation model and the DSP
described above have been used to generate 500 signals of
256 samples from the theoretical PSD shown in Fig. 1 in
the same manner as [15] and [22]. The following study was
made from 16-256 of these samples in order to compare the
methods for different window data lengths. The effect of an
additive Gaussian white noise on the estimation has also been
investigated for an SNR from —30 to 30 dB.

VI. RESULTS AND DISCUSSION

In this simulation study, particular attention is paid to the
case in which 16 samples are observed with an SNR of 20 dB.
In this situation, both A (Section VI-A) and PSD estimation
properties (Section VI-B) are investigated. Complementary
results are given in Section VI-C1), VI-C2), and VI-C3) which
investigate the influence of smoothness order, window data
length, and SNR.

A. X Estimation Properties

In this section, a study of A estimation properties is pre-
sented in the case of 16 samples with an SNR of 20 dB and
first smoothness order. We first find out the best A value in
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Fig. 2. Integrated bias (solid line), integrated variance (dashed line), and
IMSE (dotted line) as a function of .
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Fig. 3. The two A estimation criteria obtained from Sigl: GCV (solid line)

and ALL (dashed line).

Section VI-A1l), then we compare the two estimation methods
within each other and with the best A value in Section VI-A2).
1) Determination of A\rysps Simulations were made on a
logarithmic grid of 100 values from A = 1075 to A = 105,
and the indexes IB, IV, and IMSE are presented in Fig. 2.

For A small enough (\ < 1073), the solution is not regular-
ized, i.e., no prior knowledge is introduced. It is equivalent to
say that the least squares solution is found, i.e., the solution is
entirely based on data. Therefore, as expected, the statistical
properties are still those pointed out in Section II: even if the
estimation is low biased, the strong variance leads to unreliable
results.

At the other extreme, for A high enough (A>10%), the
solution is infinitely regularized, i.e., almost no data are taken
into account in the estimation. It is equivalent to say that the
solution is entirely prior based, i.e., the estimated spectrum
is completely smooth and constant over the whole frequency
domain. Therefore, as expected, the statistical properties of
the estimation are opposite: the estimation has a very low
variance, but the very strong bias leads to unusable results.
Between these two extreme situations, IMSE shows a mini-
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Fig. 4. The two A estimation criteria obtained from Sig2: GCV (solid line)
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Fig. 5. The two X estimation criteria obtained from Sig3: GCV (solid line)
and ALL (dashed line).

mum IMSE = 0.64 for /\IMSE = 2.02. This value /\IMSE =
2.02 is assumed to be the true value of A in the following
comparisons.

2) Comparison of the A Estimates: As mentioned above, in
practical cases, A must be estimated from each signal, and of
course without knowing the actual PSD. Such a value is now
sought by computing the two criteria (ALL and GCV) on a
logarithmic grid of 100 values between 10~2 and 102. In order
to understand the characteristics of the A estimation methods
presented in Section IV, we first describe results obtained
from three particular signals, and in a second step, we provide
statistical characteristics.

a) Estimation from typical signal realizations: First, as
an example, Figs. 3, 4, and 5 show typical forms of the two
estimation criteria: ALL [ALL ()] and GCV [GCV (\)] for
three particular signals, referred to as Sigl, Sig2, and Sig3.
For Sigl and Sig3, one can observe a minimum for each
criterion (see Table I). On the contrary, for Sig2, one can see
that the ALL has no minimum or, equivalently, the minimum
is rejected to A = oo (A = 100 in our simulation).

TABLE 1
A ESTIMATION FROM THE GIVEN SIGNAL SIG1, SIG2, AND SIG3,
UsING THE Two ESTIMATION METHODS: ML AND GCV

3\ML 5‘GCV
Sigl | 3.51 | 1.39
Sig2 | 100 | 4.23
Sigd | 1.52 | 2.21
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Fig. 6. Comparison of the two practicable regularized methods [A = Agcoy
(solid line) and A= AmL (dashed line)] and the usual least squares method
(dotted line) from Sigl. The theoretical power spectral density is also plotted
(dash-dot line).

The corresponding estimated spectra are given in Figs. 6,
7, and 8. As expected, for high X values, the PSD estimate
is smooth, at the limit for infinite A values (A = 100 is large
enough in our simulations) the PSD is entirely smooth and
constant over the whole frequency domain. On the contrary,
for smaller A values, the PSD estimate is not smooth.

For some signal realizations (Sig2, for instance), the esti-
mated regularization parameter is A = 0o, so the regularized
PSD estimate is constant over the whole frequency domain. It
is important to note that at the same time, for these particular
signal realizations, the least squares solution is also unreliable.
When information is almost absent from the measured signal
(for Sig2, for instance), the least squares solution yields a PSD
estimate, which is completely different from the true PSD and
presents almost any shape. In such cases, as there is so little
information in the measured signal, the regularized solution
leads to the prior solution, i.e., a flat spectrum. It is a noticeable
advantage of the regularized method: when there is not enough
information in the signal, instead of giving anything as a PSD
estimate, which is the usual approach, a fixed ultrasmooth
solution (regularized) is given. In this sense, it is an argument
in favor of the regularized method that it can discriminate
between informative and uninformative data.

b) Statistical characteristics: Averaged results for the
500 simulated signals are now presented. For each simulated
signal, the criteria have been computed and the two A
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Fig. 7. Comparison of the two practicable regularized methods [:\ = Agov
(solid line) and A= Amr (dashed line)] and the usual least squares method
(dotted line) from Sig2. The theoretical power spectral density is also plotted
(dash-dot line).
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Fig. 8. Comparison of the two practicable regularized methods [5\ = Agcv
(solid line) and A= Ami (dashed line)] and the usual least squares method
(dotted line) from Sig3. The theoretical power spectral density is also plotted
(dash-dot line).

estimates (S\ML,XGCV) have been calculated. Fig. 9 shows
the \ repartition for the two estimation methods.

As mentioned above for some signal realizations, the criteria
may have no minimum (or equivalently, the minimum is
rejected to A = o0). One can see that from the 500 simulated
signals, the proportion of criteria without minimum is 30%
when using the ML estimation criterion and 25% when using
the GCV criterion. The GCV estimation procedure seems to
be more robust, and in this sense is the best one.

In order to give a more accurate analysis, we eliminate the
case of criterion without minimum from the results given here.
The indexes of interest given in Table II can then be calculated.
Table II gives the A expected value, bias, standard deviation,
and mean square error assuming that Apysg is the true value.

These results first show that both the ML and GCV methods
overestimate the parameter A several times and, as a direct con-
sequence, oversmooth the estimated spectra. This point needs

30

30
~ -
IS S
?) 20 6 20+
& g
=) 5 I
& 10F o 10
E : J-m—mhh
o
. =
0 0
2 2 -1 0 1 2
LOG LAMBDA
20— =& 20 -D-
8 sh 1
5 g
g 10f 1 &
3 3
(5] 5t 4
B ¥
0 Gloesiad i
2 -1 0 1 2 2 -1 0 1 2
LOG LAMBDA LOG LAMBDA

Fig. 9. Histogram of . (a) GCV criterion, (b) ML, as obtained from the
computations, (c) GCV criterion, and (d) ML, after elimination of the infinite
values.

 ESTiMaTioN STATISTICAL PROFERIES O T Tiwo MTHonS: ML 430 GV
Avr | Acev
Expectation 3.93 | 8.12
Bias 1.91 | 6.10
Standard Deviation | 2.12 | 3.66
Mean Square Error | 2.85 | 7.11

to be made precise. Although the regularization parameter is
overestimated, it remains in the correct range, i.e., around the
minimum of the IMSE presented in Fig. 2.

Moreover, since the IMSE is slowly varying around its
minimum, the error is rather indifferent to the variations of
A as long as it remains in the correct decade (here between 1
and 10). The slowly varying character of the error with respect
to A is a strong argument for the robustness of the estimation
method. Finally, one of the interests of the estimation method
is to automatically find the range of the IMSE minimum
without knowing the true spectrum, using one signal only.

Now comparing ML and GCV, the results of Table II also
show that the ML method overestimates A slightly less than
the GCV method, hence there is less oversmoothing of the
estimated spectra. From this point of view, one can say that
the ML estimation procedure seems to be the best one.

A definitive comparison of the two A estimation methods is
given in terms of recovering the spectrum, by comparing the
PSD estimation performances (see Section VI-B).

B. PSD Estimation Performances

In order to give an assessment of an improvement with
respect to the usual least squares solution, we will first find
out the AR order giving the least error in Section VI-B1), and
then we will show that the regularized method yields better
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Fig. 10. Kullback distance (solid line), logarithmic distance (dashed line),
and IMSE (dotted line) as a function of AR order.
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Fig. 11. Best selected usual least squares solution. Actual DSP (solid line),
estimator expectation E(f) (dashed line), E(f) + SD(f) (dotted line), and
E(f) — SD(f) (dash-dotted line).

results in Section VI-B2). The main point of the study is to
make a comparison between the usual least squares solution
(knowing the best order) and the regularized solution (without
knowing the best regularization parameter).

1) Best Least Squares Model Order Selection: Since the
problem of automatic choice for the model order is a difficult
one, especially for a short data set, an exhaustive study has
been performed and the best order has selected in the following
manner.

For each possible order (p = 1 to 16), the three indexes
IMSE, MKD, and MILD have been calculated and results
are given in Fig. 10. Among all the possible orders p, the
order pp = 2 minimizes the three indexes. Hence, the usual
least squares solution with any model order selection criterion
cannot give better results than p = 2. In this sense, the
second-order AR model is the best for least squares estimation
methods.

2) Assessment of an Improvement of Performance with Re-
spect to the Best Least Squares Solution: We now present a
comparison between the best usual least squares PSD esti-

POWER
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Fig. 12. Regularized least squares solution with Aygy,. Actual DSP (solid
line), estimator expectation E( f) (dashed line), E(f)+ SD(f) (dotted line),
and E(f) — SD(f) (dash-dotted line).
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Fig. 13. Regularized least squares solution with Agcv. Actual DSP (solid
line), estimator expectation E(f) (dashed line), E(f)+ SD(f) (dotted line),
and E(f) — SD(f) (dash-dotted line).

TABLE III
IMSE, MILD, MKD roR THE THREE METHODS: LEAST SQUARES (LS), RLS
WITH MAXIMUM LIKELIHOOD (ML), AND GCV FOR A ESTIMATION

LS | RLS (ML) | RLS (GCV)
IMSE | 0.75 | 0.69 0.68
MILD | 1.01|  0.86 0.87
MKD |3.12| 225 2.23

mation method (p = 2) and the regularized method. In the
same way as previously, S‘m( f) has been calculated using
the regularized method with the two practicable A estimation
criteria (ML and GCV), and for the first smoothness order.
As an example with particular signals, Sigl, Sig2, and Sig3,
Figs. 6, 7, and 8 show the estimated PSD.

Mean estimate E(f) and variability E(f) £ SD(f) are

shown in Figs. 11, 12, and 13, respectively, for the best usual
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TABLE IV
1B, IV, aND IMSE USING THE REGULARIZED SOLUTION FOR THREE SMOOTHNESS
ORDERS (ZERO, ONE, AND TWO) AND WITH THE TWO A ESTIMATION METHODS

k=0 k=1 k=2

ML GCV | ML GCV | ML GCV

1B 0.68 0.59 [|0.61 0.56 |} 0.31 0.55

v 0.24 038 (| 0.30 0.38 || 0.66 0.43

IMSE || 0.71 0.70 || 0.69 0.68 || 0.72 0.70
af ' K Ay
11k """ mem T J
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Fig. 14. IMSE for different model orders as a function of window data
length. Least squares solution with P = N/2 (circle line), P = N/4 (star
line), P = N/8 (dotted line), P = N/16 (dash-dotted line), and P = N/32
(dashed line). RLS solution with A = Ay and A = Agcv (solid lines
almost coincident; see Table V for details).

least squares criterion and the regularized criterion with the
two practicable A estimation methods. The integrated indexes
are reported in Table III for better readability.

The same indexes obtained from the regularized methods
with the two A estimation methods are shown to be smaller
than those obtained for the best least squares solution defined
in Section VI-B1). Since advantage has been given to the least
squares method in the preliminary study giving p = 2 as the
best model order, it appears that the proposed regularized
method gives better statistical results than the usual least
squares method.

Comparing GCV and ML estimation methods, one can see
from Table III and from Figs. 12 and 13 that the two methods
for hyperparameter estimation behave almost identically with
a slight advantage to the GCV method. More accurate conclu-
sions about the comparison between ML and GCV methods
are difficult to draw on the basis of this result.

C. Influence of the Analysis Parameters

In the previous study, the smoothness order was fixed at
one, the window data length at 16 samples, and the SNR at
20 dB. From this situation, we are now successively varying

INTEGRATED MEAN SQUARE ERROR

50

100 150 200 250
WINDOW DATA LENGTH

Fig. 15. MILD for different model order as a function of window data length.
Least squares solution with P = N/2 (circle line), P = N/4 (star line),
P = N/8 (dotted line), P = N/16 (dash-dotted line), and P = N/32
(dashed line). RLS solution with A= S\ML and X = 5\GCV (solid lines
almost coincident; see Table VI for details).
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Fig. 16. MKD for different model order as a function of window data length.
Least squares solution with P = N/2 (circle line), P = N/4 (star line),
P = N/8 (dotted line), P = N/16 (dash-dotted Iinc),A and P = N/32
(dashed line). RLS solution with X = ;\ML and A = Aoy (solid lines
almost coincident; see Table VII for details).

one of the three parameters (smoothness order, window data
length, and SNR) while keeping the two others constant.

1) Smoothness Order: Influence of the smoothness order
has been investigated and Table IV gives results for zero, one,
and two smoothness orders. This table shows that the first
smoothness prior gives very slightly better performances in
terms of IMSE. On the other hand, results show low sensitivity
to this parameter and the error index remains smaller than the
best least squares index.

2) Data Window Length: In a first step, for several window
data lengths (N = 16,32, --,256), the estimations S,(f)
have been calculated using the usual least squares solution
with several AR orders p (p = N/2,N/4,---,N/16), and the
three indexes IMSE, MILD, and MKD have been computed.
Figs. 14, 15, and 16 show the curves corresponding to the
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IMSE 45 A FONCTION OF 5 Winpow DA Lenoms, Noveicat Resuirs or Fi, 14
RLS LS
N || deov | dr | p=nN/2|p=nN/a|p=nN/3|p=N/t6|p=nN/32
16 0.68 | 0.69 0.98 0.82 0.75 0.86 0.86
32 0.51 | 0.52 1.03 0.82 0.62 0.66 0.81
64 0.42 | 0.42 1.10 0.82 0.63 0.49 0.61
128 0.34 | 0.34 1.14 0.86 0.62 0.50 0.39
256 0.31 | 0.30 1.21 0.91 0.65 0.49 0.42
MILD A5 A FUNCTION OF 15 Wispow DATs LENGTH, NOMERICAL RES0rzs or Fic. 15
RLS LS
N | Acov |z | p=N/2|p=N/a|p=N/8|p=N/16|p=N/32
16 0.86 | 0.87 1.15 1.04 1.01 1.04 1.04
32 0.78 | 0.79 1.09 0.90 0.86 0.93 1.01
64 0.70 | 0.72 1.04 0.86 0.75 0.77 0.90
128 0.64 | 0.65 1.01 0.82 0.69 0.66 0.74
256 0.60 | 0.60 0.99 0.80 0.65 0.62 0.65
MKD AS & FONCTION OF e Wikoow Dts Lo, NoweRicL Resuuts or Fio, 16
RLS LS
N Aeov | AML p=N/2|p=N/4|p=N/8|p=N/16 | p= N/32
16 2.25 | 2.23 7.90 4.87 3.12 4.00 4.00
32 1.63 | 1.71 5.31 3.21 2.32 2.32 3.41
64 1.15 | 1.23 3.98 2.84 1.80 1.51 2.13
128 0.80 | 0.70 2.28 2.06 1.61 1.11 1.17
256 0.70 | 0.60 1.27 1.26 1.23 0.95 0.76
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different AR orders as a function of the window data length,
while Tables V, VI, and VII show the corresponding numerical
results.

In a second step, the same indexes have been computed from
the same simulated signals and window data lengths, but using
the regularized solution with A = Aqcv and A = Ayp. Results
are also presented in Figs. 14, 15, and 16, and in numerical
form in Tables V, VI, and VIL

From the results presented in the figures and tables, one can
observe that in any case, the RLS solution gives the least error
with a slight advantage over the GCV method.

From another standpoint, for given performances, e.g.,
IMSE = 0.4 (respectively, 0.5), the usual method requires
N = 128 (respectively, 64) data, while the regularized
method can achieve the same performance from only N = 64
(respectively, 32) data. Hence the proposed method can
achieve more resolution along the time axis of rapidly varying
nonstationary flow.

3) Signal-to-Noise Ratio: For several SNR’s from —30 to
30 dB from 16 samples of the 500 simulated signals, estima-
tions of S, (f) have been calculated using the best usual least
squares solution and using the two RLS solutions (with AmL
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Fig. 17. IMSE as a function of SNR. Usual least squares solution (dotted

line), regularized solution and Agcy (solid line), and regularized solution
and Appr, (dashed line).

and 5\ch). The IMSE indexes are shown in Fig. 17. From
the simulations results, it can be seen that for each SNR, the
regularized solution yields better estimation qualities in terms
of IMSE. Moreover, slightly better performance for the ML
method for a negative SNR, and better performances for the
GCV method for a positive SNR can be seen.

From another point of view, Fig. 17 shows that the per-
formance of the regularized method for any positive SNR is
better than or equivalent to the best performance of the least
squares method (obtained with SNR = 30 dB), indicating an
important gain in terms of SNR.

For given performances (e.g., IMSE = 0.76), the regular-
ized method enables the exploitation of signals corrupted down
to —5 dB, while the usual method cannot accept an SNR lower
than +3 dB. Hence a gain on noise power (here, 8 dB) is
achieved and allows a deeper flow analysis.

VII. CONCLUSIONS

We have addressed the problem of spectral estimation of a
zero-mean stationary Gaussian process when only a short span
of data is available for analysis (down to 16 observations).
In such a situation, usual AR estimation strategies, such as
ML or least squares, enforce the estimation of a parsimonious
model which precludes the description of a large class of PSD.
The Bayesian approach presented here and initially proposed
by Kitagawa and Gersch [4] alleviates this limitation since
it admits the robust estimation of long AR parameter vectors
(typically 16 parameters from 16 observations).

We have performed a large simulation study in order to
compare performances with respect to those of the usunal
method. We have compared two estimation methods of the
fundamental regularization parameter: ML and GCV methods
in terms of recovering a known PSD. The conclusion of this
study is that the GCV method performs slightly better than
the ML method. Nevertheless, this result should be taken with
caution since the difference observed is very slender.

A statistical comparison of the presented Bayesian method
versus the usual method has been achieved in different sit-

uations, varying the data span length and the SNR. The
performances have been measured using various indexes:
quadratic, logarithmic, and Kullback distances. The simula-
tions confirm and extend the results of Kitagawa and Gersch
in different situations and using new performance measures.
The result is that the Bayesian method with automatic tuning of
the hyperparameters yields better indexes than the usual least
squares method, whatever the model order. The conclusion is
then in favor of the Bayesian approach, at least for the class of
signals within the scope of this paper. Nevertheless, we believe
that as long as a spectral smoothness information is available
for estimation, the presented method is able to provide better
results than the nonregularized method.
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