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Data Inversion for Over-Resolved
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Abstract—We present an original method for reconstructing a
3-D object having two spatial dimensions and one spectral dimen-
sion from data provided by the infrared slit spectrograph on board
the Spitzer Space Telescope. During acquisition, the light flux is de-
formed by a complex process comprising four main elements (the
telescope aperture, the slit, the diffraction grating, and optical dis-
tortion) before it reaches the 2-D sensor.

The originality of this work lies in the physical modeling, in in-
tegral form, of this process of data formation in continuous vari-
ables. The inversion is also approached with continuous variables
in a semi-parametric format decomposing the object into a family
of Gaussian functions. The estimate is built in a deterministic reg-
ularization framework as the minimizer of a quadratic criterion.
These specificities give our method the power to over-resolve. Its
performance is illustrated using real and simulated data. We also
present a study of the resolution showing a 1.5-fold improvement
relative to conventional methods.

Index Terms—Bayesian estimation, interpolation, inverse prob-
lems, irregular sampling, IRS Spitzer, over-resolved imaging, spec-
tral imaging.

I. INTRODUCTION

S INCE the end of the 1970s, infrared to millimetric observa-
tions of the sky from space have brought about a revolution

in practically all fields of astrophysics. It has become possible
to observe distant galaxies and perform detailed physicochem-
ical studies of interstellar matter. Observations in the far infrared
are now possible thanks to new types of sensors (Ge : Ga Si : As
semiconductors and bolometer arrays). The properties of these
new sensors encouraged the astrophysicists of the Institut d’As-
trophysique Spatiale (IAS) to work with researchers at the Lab-
oratoire des Signaux et Systèmes (L2S) in order to develop suit-
able processing methods. The spectral imaging work presented
here was carried out in the framework of this cooperative effort.
The aim is to reconstruct an over-resolved object having two
spatial dimensions 1 and one spectral dimension . Data
provided by the Infrared Spectrograph (IRS) [1] on board the

Manuscript received nulldate; revised August 08, 2008. Current version pub-
lished nulldate. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Julian Christou.

T. Rodet, F. Orieux, and J.-F. Giovannelli are with the Laboratoire des
Signaux et Systèmes (CNRS), 91192 Gif-sur-Yvette Cedex, France (e-mail:
rodet@lss.supelec.fr; orieux@lss.supelec.fr; giova@lss.supelec.fr).

A. Abergel is with the Institut d’Astrophysique Spatiale, Université Paris Sud
11, 91405 Orsay Cedex (e-mail: abergel@ias.u-psud.fr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2008.2006392

1In this paper, the spatial dimensions are angles in radian

American Spitzer Space Telescope launched in 2003 are used
to illustrate our work. Several sets of 2-D data are delivered by
the Spitzer Science Center (SSC), each set being the result of an
acquisition for a given satellite pointing direction. The data were
acquired using a slit spectrograph, the operation of which is de-
scribed in detail in Section II. This instrument is located in the
focal plane of the telescope. When the telescope is pointed to-
ward a region of the sky, the spectrograph slit selects a direction
of space . The photon flux is then dispersed perpendicular to
the slit direction with a diffraction grating. The measurement is
made using a 2-D sensor. A signal containing one spatial dimen-
sion and the spectral dimension is thus obtained. The second
spatial dimension is obtained by scanning the sky (modifying
telescope pointing). This scanning has two notable characteris-
tics:

• it is irregular, because the telescope control is not perfect;
• it is, however, measured with subpixel accuracy

(one-eighth of a pixel).
In addition, for a given pointing direction, the telescope op-

tics, the slit width, and the sensor integration limit the spatial
resolution while the grating, the slit, and the sensor integration
limit the spectral resolution. The specificity of systems of this
type is that the width of impulse response depends on the wave-
length. A phenomenon of aliasing also appears for the shortest
wavelengths. Finally, the scanning results in irregular sampling
along the spatial direction . The problem to be solved is thus
one of inverting the spectral aliasing (i.e., the over-resolution)
using a finite number of discrete data provided by a complex
system. The solution proposed here is based on precise mod-
eling of the instrument and, in particular, the integral equations
containing the continuous variables ( , and ) of the optics
and sensing system. The model input is naturally a function of
these continuous variables and the output is a finite
set of discrete data items. The approach used for solving the
inverse problem, i.e., reconstructing an object having three con-
tinuous variables from the discrete data

• comes within the framework of regularization by penaliza-
tion;

• uses a semi-parametric format where the object is decom-
posed into a family of functions.

There is a multitude of families of functions available (pos-
sibly forming a basis of the chosen functional space). The most
noteworthy are Shannon, Fourier, wavelet, and pixel-indicator
families or those of spline, Gaussian Kaiser-Bessel, etc. Work
on 3-D tomographic reconstruction has used a family of Kaiser-
Bessel functions having spherical symmetry in order to calcu-
late the projections more efficiently [2]–[5]. In a different do-
main, the signal processing community has been working on
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the reconstruction of over-resolved images from a series of low
resolution images [6]. A generic direct model can be described
[6] starting with a continuous scene, to which are applied shift
or deformation operators including at least one translation. This
step gives deformed, high-resolution images. A convolution
operator modeling the optics and sensor cells is then applied
to each of the images. After subsampling, the low-resolution
images that constitute the data are obtained. Recent work on the
direct model has mainly concerned modeling the shift by intro-
ducing a rotation of the image [7], [8] and a magnifying factor
[9]. Other works have modeled the shift during sensor integra-
tion by modifying the convolution operator [10]. To the best of
our knowledge, in most works, the initial discretization step is
performed on pixel indicators [6]–[8], [10]–[12]. On this point,
a noteworthy contribution has been made by Vandewalle et al.
who discretize the scene on a truncated discrete Fourier basis
[13]. However, their decomposition tends to make the images
periodic leading to create artefacts on the image side. Thus, we
have decided not to use this approach. Recently, the problem
of X-ray imaging spectroscopy has been solved in the Fourier
space [14], but each spectral component has been estimated in-
dependently.

The two major contributions of our paper are 1) the modeling
of the measurement system as a whole with continuous vari-
ables and 2) the continuous variable decomposition of the 3-D
object over a family of Gaussian functions. Modeling with con-
tinuous variables enables a faithful description to be made of
the physical phenomena involved in the acquisition and avoids
to carry out any prior data interpolation. In our case, computing
the model output requires six integrals (two for the response of
the optics, two for the grating response, and two for the sensor
integration) and the choice of a Gaussian family allows five of
these six integrals to be explicitly stated. Our paper is organized
as follows. Section II describes the continuous model of the in-
strument comprising: the diffraction at the aperture, the trunca-
tion by the slit, the response of the grating, the distortion of the
light flux, the sensor integration, and the scanning of the sky. In
Section III, the object with continuous variables is decomposed
over a family of Gaussian functions. The aperture and grating
responses are approximated by Gaussian functions. This part
concludes with the attention of a precise, efficient model of the
measuring system. The inverse problem is solved in a regular-
ized framework in Section IV. Finally, Section V gives an eval-
uation of the resolving power of the method and a comparison
with a standard data co-addition method using both simulated
and real data.

II. CONTINUOUS DIRECT MODEL

The aim of the instrument model is to reproduce the data,
, acquired by the spectral imager from a flux of

incoherent light. Fig. 1 illustrates the instrument model for
one acquisition (the telescope remains stationary). To simplify,
we present the scanning procedure in Section II-D. First, we
have the response of the primary mirror (aperture), which
corresponds to a convolution. Second, there is a truncation due
to a rectangular slit. Third, a grating disperses the light. Finally,

Fig. 1. Block diagram of the direct model for one acquisition: from a contin-
uously defined sky � to a discrete output ��� describing the data. The flux � is
a convolution of the flux � and the PSF of the primary mirror. � is truncated
by a rectangular slit and is dispersed by the grating. Finally, the sensor provide
a discrete output ���.

Fig. 2. Profile of an Airy disk (PSF for a circular aperture) for two wavelengths.

the sensor integration provides the discrete data . Distortion
of the luminous flux is modeled in the sensor integration.

A. Aperture Diffraction

Under some hypotheses, the propagation of a light wave
which passes through an aperture is determined by Fresnel
diffraction [15] and the result in the focal plane is a convolution
of the input flux with the Point Spread Function (PSF)
illustrated in Fig. 2 for a circular aperture. This PSF, which is
a low pass filter, has a width proportional to the wavelength of
the incident flux. For a circular aperture, it can be written

(1)

where is the first order Bessel function of the first kind, is
an amplitude factor, and is the diameter of the mirror.

The flux in the focal plane, , is written in integral form

(2)
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Fig. 3. Optical scheme of IRS instrument: the slit is on the focal plan of the
telescope Spitzer. The grating disperses the light and the detector collects the
dispersed flux.

Fig. 4. Diffraction grating response. The grey curve corresponds to the first
mode. In reality, the response width is smaller.

B. Slit and Diffraction Grating

1) Slit: Ideally, the slit and grating enable the dispersion of
the wavelengths in spatial dimension previously “suppressed”
by the slit (see Fig. 3). In practice, the slit cannot be infinitely
narrow because the flux would be zero. The slit thus has a width

of about two pixels.
2) Diffraction Grating: Ideally, the grating gives a diffracted

wave with an output angle linearly dependent on the wave-
length (see Fig. 3). In a more accurate model, the dependen-
cies become more complex. Let us introduce a variable in
order to define an invariant response of the system [16]

(3)

where is the angle of incidence of the wave on the grating, and
where is the angular slit width (5.6 arcseconds).

The response of the grating centred on mode
can, with some approximations, be written as the square of a
cardinal sine centered on [16]

(4)

where is the width of the grating and the grid step (distance
between two grooves). This response centred on the first mode

is plotted in Fig. 4.

Fig. 5. Modeling the distortion: sensor integration limits are shifted according
to the dimensions � .

As the flux is an incoherent light source, the expression for
the signal at the output of the grating is written in the form of
an integral over and

(5)

where is the slit width.

C. Sensor Integration

Once the flux has passed through the grating and the wave-
lengths have been dispersed according to , the light flux is fo-
cused on the sensor composed of square detectors. The sensor
is simply modeled by integrating the flux on square areas of
side . The flux is integrated along the direction , which is not
modified by the diffraction grating, and the dimension , a com-
bination of and , to obtain the discrete values

(6)

The integration limits are modified by the terms in order
to take into account the data distortion as illustrated in Fig. 5.

D. Scanning Procedure of the Sky

In a direction parallel to the slit width, a scanning proce-
dure (illustrated in Fig. 6) is applied. This scanning procedure
is composed of acquisitions. Between the first and the th ac-
quisitions, the instrument is moved by (resp. ) in
the direction (resp. ). To taking into account the motion of
the instrument, we substitute for

in the previous equations. In practice, we fix the
axis in the direction of the slit and the axis perpendicular to
the slit (see Fig. 6). In consequence, is equal to zero.

E. Complete Model

By combining expressions (1), (2), (5), (4), and (6), we obtain
a continuous direct model in the form

(7)
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where is a scale factor.
Equation (7) can rewritten

(8)

with

(9)

We have been developed a model relying the continuous sky
and discrete data . Our model is linear not-shift-in-

variant, because the aperture response and the grating response
depend on the wavelength.

III. DECOMPOSITION OVER A FAMILY AND

GAUSSIAN APPROXIMATION

In the previous section, we have seen that obtaining the output
from the model requires the six integrals of (7) to be calcu-
lated. The estimation of in by inversion of this model is
quite tricky, so we prefer to decompose the object over a family
of functions. As we can see in the introduction, a lot of such
decomposition functions can be used. The most traditional are
Fourier bases, wavelets, cardinal sines, splines, and pixel indi-
cators. The choice does not have any great influence on the final
result if the continuous object is decomposed over a sufficiently
large number of functions. We therefore chose our decomposi-
tion functions in such a way as to reduce the computing time for
the instrument model. First, we chose the axis in the direction
of the slit and the axis perpendicular to the slit (see Fig. 6).
Second, we have two spatial variables and one spectral
variable , so to simplify the calculus, we chose decomposition
functions that are separable into and . Third, the object
is convolved by the response of the optics, which has circular
symmetry. So, we choose functions possessing the same circular
symmetry in order to make this calculation explicit. Finally, the
slit and the grating have an impact in the direction only (5),
which motivates us to choose functions that are separable into

and . These considerations led us to choose Gaussian func-
tions along the spatial directions. Finally, the complexity of the

dependence encouraged us to choose Dirac impulses for the
spectral direction.

A. Decomposition Over a Family of Gaussian Functions

The flux is a continuous function decomposed over a family
of separable functions

(10)

Fig. 6. Acquisition. The left-hand image represents the data acquired for one
pointing position: the vertical axis shows the spectral dimension � and the hori-
zontal axis is the spatial dimension � . The slit is represented schematically by
a rectangle in the middle. The right-hand image illustrates the scanning strategy
in the � direction.

where are the decomposition coefficients, and
are the sampling steps, and with

(11)

(12)

With such decomposition, the inverse problem becomes one
of estimating a finite number of coefficients from dis-
crete data . By combining (8) and (10), we obtain

(13)

If the and are gathered in vectors and ,2 re-
spectively, the (13) can be formalized as a vector matrix product

(14)

with each component of the matrix is calculated using the
integral part of the (13). The th column of matrix
constitutes the output when the model is used with the th de-
composition function . The model output for is
calculated in the next two sections.

B. Impulse Responses Approximated by Gaussian Functions

1) Approximation of the PSF: Equation (2) comes down to
convolutions of a squared Bessel function and Gaussians. This
integral is not explicit and, in order to carry out the calculations,
the PSF is approximated by a Gaussian

with a standard deviation depending on the wave-
length. Indeed, the Bessel functions cross zero at the
first time in . is determined numerically by
minimizing the quadratic error between the Gaussian
kernel and the squared Bessel function, which gives for
our instrument . The relative quadratic error

is equal to 0.15%
for our instrument. If we calculate the relative absolute error

2In this paper, we use the following convention: bold, lower-case variables
represent vectors and bold, upper-case variables represent matrices.
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Fig. 7. Set of 30 images of our reconstruction from simulated data. Each image corresponds to one wavelength for 7.4 to 9.2 �m with a step of 0.062 �m.

, we obtain 5%.
We can conclude that most of the energy of the squared Bessel
function is localized in the primary lobe. Another advantage

of using the Gaussian approximation is that the convolution
kernel is separable into and . Finally, the result of the
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Fig. 8. Image at � � ���� �m: (a) simulated sky, (b) image estimated by our method, and (c) image estimated by a conventional method.

Fig. 9. Spectrum of a pixel. The curves abscissa is the wavelength in meters:
solid line: simulated sky, dashed line: our method, dotted line: conventional
method.

convolution of two Gaussian functions is a standard one and is
also a Gaussian

(15)

2) Approximation of the Grating Response: The presence
of the slit means that integral (5) is bounded over and is
not easily calculable. Since the preceding expressions use
Gaussian functions, we approximate the squared cardinal sine
by a Gaussian to make the calculations easier

(16)

is determined numerically by minimizing the quadratic
error between the Gaussian kernel and the squared car-
dinal sine, which gives for our instrument m .
The relative errors made are larger than the Bessel case
( % % , but this Gaussian approxi-
mation of the grating response allows the flux coming out
of the grating to be known explicitly.

The error introduced here is larger than for the Gaussian ap-
proximation of the PSF described in the previous section. How-
ever, our goal is to have a good model of the spatial dimension
of the array. Furthermore, with respect to the current method,
the fact of taking the response of the grating into consideration,
even as an approximation, is already a strong improvement.
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(17)

with

In (17), it can be seen that is separable into and . Let us
introduce the functions and such that

(18)

C. Sensor Integration

First, we calculate the sensor integration in the direction

(19)

with .
The integral of is calculated numerically as the presence of

ERF functions in (17) does not allow analytical calculations.
We obtain the expression for the th column of matrix ,

which now contains only a single integral

(20)

Using expression (20), the elements of matrix are pre-com-
puted relatively rapidly, thanks to the sparsity of the matrix
to calculate the model output of (14).

IV. INVERSION

The previous sections build the relationship (14) between the
object coefficients and the data: it describes a complex instru-
mental model but remains linear. The problem of input (sky)

reconstruction is a typical inverse problem and the literature on
the subject is abundant.

The proposed inversion method resorts to linear processing.
It is based on conventional approaches described in books such
as [17] and [18] or, more recently, [19]. In this framework, the
reader may also consider [20] and [21] for inversion based on
specific decomposition. These methods rely on a quadratic cri-
terion

(21)

It involves a least-squares term and two penalty terms con-
cerning the differences between neighboring coefficients: one
for the two spatial dimensions and one for the spectral dimen-
sion. They are weighted by and , respectively. The
estimate is chosen as the minimizer of this criterion. It is thus
explicit and linear with respect to the data

(22)

and depends on the two regularization parameters and .
Remark 1: This estimator can be interpreted in a Bayesian

framework [22] based on Gaussian models for the errors and
the object. As far as the errors are concerned, the model is a
white noise. As far as the object is concerned, the model is cor-
related and the inverse of the correlation matrix is proportional
to , i.e., it is a Gauss Markov field. In
this framework, the estimate maximizes the a posteriori law.

Remark 2: Many works in the field of over-resolved re-
construction concern edge preserving priors [7], [11], [12],
[23]–[25]. In our application here, smooth interstellar dust
clouds are under study, so preservation of edges is not appro-
priate. For the sake of simplicity of implementation, we chose
a Gaussian object prior.

The minimizer given by relation (22) is explicit but, in prac-
tice, it cannot be calculated on standard computers, because the
matrix to be inverted is too large. The solution is therefore
computed by a numerical optimization algorithm. Practically,
the optimization relies on a standard gradient descent algorithm
[26], [27]. More precisely, the direction descent is a approximate
conjugate gradient direction [28] and the optimal step of descent
is used. Finally, we initialize the method with zero .

V. RESULTS

As we have presented in Section III, the and axis are fixed
(see Fig. 6, right). The real data is composed of 23 acquisitions
having a spatial dimension and a spectral dimension of
wavelength between 7.4 and 15.3 m (each acquisition is an
image composed of 38 128 detector cells; see Fig. 6, left).
Between two acquisitions, the instrument is moved by half a
slit width in the direction. Fig. 6, right, shows the scanning
procedure applied to the Horsehead nebula [29].

Our results [Fig. 8(b), solid line on Figs. 9 and 10(b)] can be
compared with those obtained with the conventional processing
[Fig. 8(c), dotted line on Figs. 9 and 10(a)]. For the conventional
processing (described in Compiègne et al. [29]) an image of the
slit is simply extracted for each wavelength from the data taken
after each acquisition (e.g., left panel of Fig. 6) and projected
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Fig. 10. Reconstruction of a sky � representing the Horsehead nebula: (a) image estimated at 11.37 �m by the conventional method (b) image estimated at 11.37
�m by our method, and (c) image obtained with the Infrared Array Camera IRAC on board the Spitzer Space Telescope having better resolution at 4.5 �m.

Fig. 11. Spectrum of the center point of the Fig. 10(b): (a) spectrum estimated with the conventional method and (b) spectrum estimated with our method.

and co-added on the output sky image, without any description
of the instrument properties.

A. Simulated Data

In our first experiment, we reconstruct data simulated using
our direct model. We choose an object with the same spatial
morphology and the same spectral content as the Horsehead
nebula [see Fig. 8(a)]. However, in order to tune the regulariza-
tion coefficient, we perform a large number of reconstructions.
Thus, we need to simulate a problem smaller than in our real
case. The data are composed of 14 acquisitions, and the virtual
detector contained 18 40 pixels. We choose to reconstruct a
volume with 15 870 Gaussians distributed on a Cartesian grid

23 23 30. Finally, we add to the output of the model a white
Gaussian noise with the same variance as the real data.

The results contain a set of 30 images (see Fig. 7). Fig. 8(b)
and solid line on Fig. 9 illustrate our result for one wavelength
(8.27 m) and one pixel, respectively. The image computed with
our method [Fig. 8(b)] appears comparable to the true image
[Fig. 8(a)], while the image computed with the conventional
processing [Fig. 8(c)] is smoother. A comparison of solid line
and dotted line in Fig. 9 clearly also shows that our method pro-
vides a spectrum comparable to the true spectrum, while the
peaks obtained with the conventional processing are too broad.

Our sky estimation depends on the regularization coefficients
and . We tune this parameters by minimizing numeri-

cally the quadratic error between the estimated object and the
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Fig. 12. Resolution of our method: the curve represents the ratio of the intensity
at one peak to the intensity between the two peaks as a function of the distance
between the peaks in arcseconds. The resolution is read at crossing of this curve
and the dotted line (the ratio is 0.9). (a) Results obtained with our method. (b)
Results obtained with the conventional method.

real object were selected. In this experiment we obtain the fol-
lowing parameters: .

B. Real Data

Real data contain 23 acquisitions composed of 38 128
values. To obtain a over-resolved reconstruction, we describe
our volume with 587 264 Gaussians distributes on a Carte-
sian grid 74 62 128. The spatial sampling step is
equal to a quarter slit width, and the spectral dimension is
uniformly sampled between the wavelength 7.4 and 15.3 m.
The reconstruction is computed after setting the regularization
coefficients and empirically. Too low a value for these
coefficients produces an unstable method and a quasi explosive
reconstruction. Too high a value produces images that are
visibly too smooth. A compromise found by trial and error led
us to and . The ratio between and
is also based on our simulation. However, we cannot compare
the regularization coefficients between the simulated and the
real case, since the size of the problem modifies the weight of
the norm in the (21). Practically, we take large value for the
regularization coefficients, and we gradually reduce the value
up that we are seeing noise.

Our results [Figs. 10(b) and 11(b)] can be compared with
those obtained with [Figs. 10(a) and 11(a), from [29]]. A com-
parison of Fig. 10(a) and 10(b) clearly shows that our approach
provides more resolved images that bring out more structures
than the conventional approach. Note, in particular, the separa-
tion of the two filaments on the left part of the Fig. 10(b) ob-
tained with our method, which remains invisible after conven-
tional processing. For comparison, Fig. 10(c) shows the same
object observed with the Infrared Array Camera (IRAC) of the
Spitzer Space Telescope which has a better native resolution
since it observes at a shorter wavelength (4.5 m). Here, the
same structures are observed, providing a strong argument in
favor of the reality of the results provided by our method.

A more precise analysis is done in Section V-C. It provides a
quantitative evaluation of the resolution.

Finally, the spectra reconstructed by our method [Fig. 11(b)]
have a resolution slightly better than the one reconstructed by
the conventional method [Fig. 11(a)]. The peaks characterizing
the observed matter (gas and dust) are well positioned, narrower,
and with a greater amplitude. However, ringing effects appear
at the bases of the strongest peaks [Fig. 11(b)]. They could be
explained by an over-evaluation of the width of the response
of the grating, or by the Gaussian approximation.

C. Study of Resolving Power of Our Approach

This section is devoted to numerical quantification of the
gain in angular resolution provided with our method, using the
Rayleigh criterion, which is frequently used by astrophysicists:
for the smaller resolvable detail, the first minimum of the image
of one point source coincides with the maximum of another.
In practice, two point sources with the same intensity and a
flat spectrum are considered to be separated if the minimal flux
between the two peaks is lower than 0.9 times the flux at the
peak positions. The resolution is studied in the direction only
as this is the direction in which the subslit scan is performed.

Two point sources are injected, at positions and , re-
spectively (see Fig. 13, top). The corresponding data are simu-
lated, and the reconstruction is performed. As explained
above, the two point sources are considered to be separated if

. The resolution is defined as the
difference at which the two point sources start to
be separated.

Point sources are simulated for a set of differences between
2.4 and 5.4 arcseconds and simulations are performed in the
configuration of the real data (signal to noise ratio, energy of the
data). Moreover, we use the regularization parameters and

determined in Section V-A. A number of reconstructions has
been obtained. The ratio between the values of the reconstructed
function at and is calculated as a function of
the difference between the two peaks. Results are shown in
Fig. 12.

The computed resolution is 3.4 arcseconds [see Fig. 12(a)]
and 5 arcseconds [see Fig. 12(b)] for our method and the con-
ventional method, respectively. Fig. 13 illustrates this gain in
angular resolution. In the left column on Fig. 13 cor-
responds to the limit of resolution of our method. In this case, the
peak is not separated with the conventional method [Fig. 13(d)].
In the middle column on Fig. 13, our algorithm clearly sep-
arates the peak [Fig. 13(h)] and not the conventional method
[Fig. 13(e)]. In the right column, we observe a stain with our
method is smaller than the conventional method. Our method
increases the resolution by a factor 1.5.

VI. CONCLUSION

We have developed an original method for reconstructing the
over-resolved 3D sky from data provided by the IRS instrument.
This method is based on

1) continuous variable model of the instrument based on a
precise integral physical description;

2) decomposition of the continuous variable object over a
family of Gaussian functions, which results in a linear,
semi-parametric relationship;
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Fig. 13. Two peaks reconstruction for different �: (a)–(c) Visualization of the peaks position for � � ���� � and 5.4 arcsecond resp., (d)–(f) reconstruction with the
conventional method for � � ����� and 5.4 arcsecond resp., (g)–(i) reconstruction with our over-resolution method for � � ����� and ��� arcsecond, respectively.

3) inversion in the framework of deterministic regularization
based on a quadratic criterion minimized by a gradient al-
gorithm.

The first results on real data show that we are able to evidence
spatial structures not detectable using conventional methods.
The spatial resolution is improved by a factor 1.5. This factor
should increase using data with a motion between two acquisi-
tions smaller than the half a slit width.

In the future, we plan to design highly efficient processing
tools using our approach in particular for the systematic pro-
cessing of the data which will be taken with the next generation
of infrared to millimeter space observatory (Herschel, Planck,

).
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