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This paper tackles the problem of image deconvolution with joint estimation of point spread function (PSF)
parameters and hyperparameters. Within a Bayesian framework, the solution is inferred via a global a poste-
riori law for unknown parameters and object. The estimate is chosen as the posterior mean, numerically cal-
culated by means of a Monte Carlo Markov chain algorithm. The estimates are efficiently computed in the
Fourier domain, and the effectiveness of the method is shown on simulated examples. Results show precise
estimates for PSF parameters and hyperparameters as well as precise image estimates including restoration of
high frequencies and spatial details, within a global and coherent approach. © 2010 Optical Society of
America
OCIS codes: 100.1830, 100.3020, 100.3190, 150.1488.
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. INTRODUCTION
mage deconvolution has been an active research field for
everal decades, and recent contributions can be found in
apers such as [1–3]. Examples of application are medical
maging, astronomy, nondestructive testing, and, more
enerally, imagery problems. In these applications, degra-
ations induced by the observation instrument limit the
ata resolution, while the need of precise interpretation
an be of major importance. For example, this is particu-
arly critical for long-wavelength astronomy (see e.g., [4]).
n addition, the development of a high-quality instrumen-
ation system must be completed rationally at an equiva-
ent level of quality in the development of data processing

ethods. Moreover, even for poor performance systems,
he restoration method can be used to bypass instrument
imitations.

When the deconvolution problem is ill-posed, a possible
olution relies on regularization, i.e., introduction of infor-
ation in addition to the data and the acquisition model

5,6]. As a consequence of regularization, deconvolution
ethods are specific to the class of image in accordance
ith the introduced information. From this standpoint,

he present paper is dedicated to relatively smooth im-
ges encountered for numerous applications in imagery
4,7,8]. The second-order consequence of ill-posedness and
egularization is the need to balance the compromise be-
ween different sources of information.

In the Bayesian approach [1,9], information about un-
nowns is introduced by means of probabilistic models.
nce these models are designed, the next step is to build

he a posteriori law, given the measured data. The solu-
ion is then defined as a representative point of this law;
1084-7529/10/071593-15/$15.00 © 2
he two most representative points are (1) the maximizer
nd (2) the mean. From a computational standpoint, the
rst leads to a numerical optimization problem and the

atter leads to a numerical integration problem. However,
he resulting estimate depends on two sets of variables in
ddition to the data:

1. First, the estimate naturally depends on the re-
ponse of the instrument at work, namely, the point
pread function (PSF). The literature is devoted to decon-
olution predominantly in the case of known PSF. In con-
rast, the present paper is devoted to the case of unknown
r poorly known PSF, and there are two main strategies
o tackle its estimation from the available data set (with-
ut extra measurements):

(i) In most practical cases, the instrument can be
odeled using physical operating description. It is thus

ossible to find the equation for the PSF, at least in a first
pproximation. This equation is usually driven by a rela-
ively small number of parameters. It is a common case in
ptical imaging, where a Gaussian-shaped PSF is often
sed [10]. It is also the case in other fields: interferometry
11], magnetic resonance force microscopy [12], fluores-
ence microscopy [13], etc. Nevertheless, in real experi-
ents, the parameter values are unknown or imperfectly

nown and need to be estimated or adjusted in addition to
he image of interest: the problem is called myopic decon-
olution.

(ii) The second strategy forbids the use of the para-
etric PSF deduced from the physical analysis, and the
SF then naturally appears in a non-parametric form.
ractically, the non-parametric PSF is unknown or imper-
010 Optical Society of America



f
i
c

F
m
f
P
a
c
i
P
l
t
a
r
s
P
d
p
n
r
e
t
v
e
p
i
w
i

p
p
a
t
b
b
k
s

h
fi
e
h
a
g
a

t
e
n
d
i
t
v
i

v
t
r
e
r

i
G
e

t
i
t
p
c

a
e
e
t
d

t
T
fi
S
S
m
s
c

2
C
c
x

w
t
o
e

(
t
t
a
i

w
t
t

a
e
[
q
c
t

n
a
c

1
T

1594 J. Opt. Soc. Am. A/Vol. 27, No. 7 /July 2010 Orieux et al.
ectly known and needs to be estimated in addition to the
mage of interest: the problem is referred to as blind de-
onvolution, for example in interferometry [14–17].

rom an inference point of view, the difficulty of both
yopic and blind problems lies in the possible lack of in-

ormation, resulting in ambiguity between image and
SF, even in the noiseless case. In order to resolve the
mbiguity, information must be added [3,18], and it is
rucial to make inquiries based on any available source of
nformation. To this end, the knowledge of the parametric
SF represents a valuable means to structure the prob-

em and possibly resolve the degeneracies. Moreover, due
o the instrument design process, a nominal value as well
s an uncertainty are usually available for the PSF pa-
ameters. In addition, from a practical and algorithmic
tandpoint, the myopic case, i.e., the case of parametric
SF, is often more difficult due to the non-linear depen-
ence of the observation model with respect to the PSF
arameters. In contrast, the blind case, i.e., the case of
on-parametric PSF, yields a simpler practical and algo-
ithmic problem since the observation model remains lin-
ar w.r.t. the unknown elements given the object. Despite
he superior technical difficulty, the present paper is de-
oted to the myopic format since it is expected to be more
fficient than the blind format from an information stand-
oint. Moreover, the blind case has been extensively stud-
ed, and a large number of papers are available [19–21],
hile the myopic case has been less investigated, though

t is of major importance.
2. Second, the solution depends on the probability law

arameters called hyperparameters (means, variances,
arameters of correlation matrix, etc.). These parameters
djust the shape of the laws, and at the same time they
une the compromise between the information provided
y the a priori knowledge and the information provided
y the data. In real experiments, their values are un-
nown and need to be estimated: the problem is called un-
upervised deconvolution.

For both families of parameters (PSF parameters and
yperparameters), two approaches are available. In the
rst one, the parameter values are empirically tuned or
stimated in a preliminary step (with maximum likeli-
ood [7] or calibration [22] for example); then the values
re used in a second step devoted to image restoration
iven the parameters. In the second step, the parameters
nd the object are jointly estimated [2,19].
For the myopic problem, Jalobeanu et al. [23] address

he case of a symmetric Gaussian PSF. The width param-
ter and the noise variance are estimated in a prelimi-
ary step by maximum likelihood. A recent paper [24] ad-
resses the estimation of a Gaussian blur parameter, as
n our experiment, with an empirical method. They found
he Gaussian blur parameter by minimizing the absolute
alue of the second derivative (Laplacian) of the restored
mages.

The present paper addresses the myopic and unsuper-
ised deconvolution problem. We propose a new method
hat jointly estimates the PSF parameters, the hyperpa-
ameters, and the image of interest. It is built in a coher-
nt and global framework based on an extended a poste-
iori law for all the unknown variables. The posterior law
s obtained via the Bayes rule, founded on a priori laws:
aussian for image and noise, uniform for PSF param-
ters, and gamma or Jeffreys for hyperparameters.

Regarding the image prior law, we have paid special at-
ention to the parameterization of the covariance matrix
n order to facilitate law manipulations such as integra-
ion, conditioning, and hyperparameter estimation. The
ossible degeneracy of the a posteriori law in some limit
ases is also studied.

The estimate is chosen as the mean of the posterior law
nd is computed using Monte Carlo simulations. To this
nd, Monte Carlo Markov chain (MCMC) algorithms [25]
nable one to draw samples from the posterior distribu-
ion despite its complexity and especially the non-linear
ependence w.r.t. the PSF parameters.
The paper is structured in the following manner. Sec-

ion 2 presents the notation and describes the problem.
he three following sections describe our methodology:
rst the Bayesian probabilistic models are detailed in
ection 3, then a proper posterior law is established in
ection 4; and an MCMC algorithm to compute the esti-
ate is described in Section 5. Numerical results are pre-

ented in Section 6. Finally, Section 7 is devoted to the
onclusion and perspectives.

. NOTATION AND CONVOLUTION MODEL
onsider N-pixel real square images represented in lexi-
ographic order by vector x�RN, with generic elements
n. The forward model is written

y = Hwx + �, �1�

here y�RN is the vector of data, Hw a convolution ma-
rix, x the image of interest, and � the modelization errors
r the noise. Vector w�RP stands for the PSF param-
ters, such as width or orientation of a Gaussian PSF.

The matrix Hw is block-circulant with circulant-block
BCCB) for computational efficiency of the convolution in
he Fourier space. The diagonalization [26] of Hw is writ-
en �H=FHwF†, where F is the unitary Fourier matrix
nd † is the transpose conjugate symbol. The convolution
n the Fourier space, is then

ẙ = �Hx̊ + �̊, �2�

here x̊=Fx, ẙ=Fy and �̊=F� are the 2D discrete Fourier
ransform (DFT-2D) of image, data, and noise, respec-
ively.

Since �H is diagonal, the convolution is computed with
term-wise product in the Fourier space. There is a strict

quivalence between a description in the spatial domain
Eq. (1)] and in the Fourier domain [Eq. (2)]. Conse-
uently, for coherent description and computational effi-
iency, all the developments are equally done in the spa-
ial space or in the Fourier space.

For notational convenience, let us introduce the compo-
ent at null frequency x̊0�R and the vector of component
t non-null frequencies x̊*�CN−1 so that the whole set of
omponents is written x̊= �x̊0 , x̊*�.

Let us denote 1 the vector of N components equal to
/N, so that 1tx is the empirical mean level of the image.
he Fourier components are the 1̊ , and we have 1̊ =1 and
n 0
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n=0 for n�0. Moreover, �1=F11tF† is a diagonal matrix
ith only one non-null coefficient at null frequency.

. BAYESIAN PROBABILISTIC MODEL
his section presents the prior law for each set of param-
ters. Regarding the image of interest, in order to account
or smoothness, the law introduces high-frequency penal-
zation through a differential operator on the pixel. A con-
ugate law is proposed for the hyperparameters, and a
niform law is considered for the PSF parameters.
Moreover, we have paid special attention to the image

rior law parameterization. In Subsection 3.A we present
everal parameterizations in order to facilitate law ma-
ipulations such as integration, conditioning, and hyper-
arameter estimation. Moreover, the correlation matrix of
he image law may become singular in some limit cases,
esulting in a degenerated prior law [when p�x�=0 for all
�RN]. Based on this parameterization, in Section 4 we
tudy the degeneracy of the posterior in relation to the pa-
ameters of the prior law.

. Image Prior Law
he probability law for the image is a Gaussian field with
given precision matrix P parameterized by a vector �.

he pdf reads

p�x��� = �2��−N/2 det�P�1/2 exp�−
1

2
xtPx� . �3�

or computational efficiency, the precision matrix is de-
igned (or approximated) in a toroidal manner, and it is
iagonal in the Fourier domain �P=FPF†. Thus, the law
or x also is written

p�x��� = �2��−N/2 det�F�det��P�1/2 det�F†�

�exp�−
1

2
xtF†�PFx� , �4�

=�2��−N/2 det��P�1/2 exp�−
1

2
x̊†�Px̊� , �5�

nd it is sometimes referred to [27] as a Whittle approxi-
ation (see also [28], p. 133) for the Gaussian law. The

lter obtained for fixed hyperparameters is also the
iener–Hunt filter [29], as described in Subsection 5.A,

elow.
This paper focuses on smooth images and thus on posi-

ive correlation between pixels. It is introduced by high-
requency penalty using any circulant differential opera-
or: pth differences between pixels, Laplacian and Sobel,
mong others. The differential operator is denoted by D
nd its diagonalized form by �D=FDF†. Then, the preci-
ion matrix is written P=�1DtD, and its Fourier counter-
art is written

�P = �1�D
† �D = diag�0,�1�d̊1�2, . . . ,�1�d̊N−1�2�, �6�

here �1 is a positive scale factor, diag builds a diagonal
atrix from elementary components, and d̊n is the nth
FT-2D coefficient of D.
Under this parameterization of P, the first eigenvalue
s equal to zero, corresponding to the absence of penalty
or the null frequency x̊0, i.e., no information is accounted
or about the empirical mean level of the image. As a con-
equence, the determinant vanishes, det�P�=0, resulting
n a degenerated prior. To manage this difficulty, several
pproaches have been proposed.
Some authors [2,30] still use this prior despite its de-

eneracy, and this approach can be analyzed in two ways:

1. On the one hand, this prior can be seen as a non-
egenerated law for x̊*, the set of non-null frequency com-
onents only. In this format, the prior does not affect any
robability for the null frequency component, and the
ayes rule does not apply to this component. Thus, this
trategy yields an incomplete posterior law, since the null
requency is not embedded in the methodology.

2. On the other hand, this prior can be seen as a de-
enerated prior for the whole set of frequencies. The ap-
lication of the Bayes rule is then somewhat confusing
ue to degeneracy. In this format, the posterior law can-
ot be guaranteed to remain non-degenerated.

In any case, neither of the two standpoints yields a pos-
erior law that is both non-degenerated and addresses the
hole set of frequencies.
An alternative parameterization relies on the energy of

. An extra term �0I, tuned by �0�0, in the precision ma-
rix [31], introduces information for all the frequencies in-
luding x̊0. The precision matrix is written

�P = �0I + �1�D
† �D = diag��0,�0 + �1�d̊1�2, . . . ,�0 + �1�d̊N−1�2�

�7�

ith a determinant

det��P� = �
n=0

N−1

��0 + �1�d̊n�2�. �8�

he obtained Gaussian prior is not degenerated and un-
oubtedly leads to a proper posterior. Nevertheless, the
eterminant Eq. (8) is not separable in �0 and �1. Conse-
uently, the conditional posterior for these parameters is
ot a classical law, and future development will be more
ifficult. Moreover, the non-null frequencies x̊* are con-
rolled by two parameters, �0 and �1:

p�x̊��0,�1� = p�x̊0��0�p�x̊*��0,�1�. �9�

The proposed approach to manage the degeneracy re-
ies on the addition of a term for the null frequency only,
1=diag�1,0, . . . ,0�:

�P = �0�1
†�1 + �1�D

† �D . = diag��0,�1�d̊1�2, . . . ,�1�d̊N−1�2�.

�10�

he determinant has a separable expression,

det��P� = �0�1
N−1�

n=1

N−1

�d̊n�2, �11�

.e., the precision parameters have been factorized. In ad-
ition, each parameter controls a different set of frequen-
ies:
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p�x̊��0,�1� = p�x̊0��0�p�x̊*��1�,

here �0 drives the empirical mean level of the image x̊0
nd �1 drives the smoothness x̊* of the image. With the
ourier precision structure of Eq. (10), we have the non-
egenerated prior law for the image that addresses sepa-
ately all the frequencies with a factorized partition func-
ion w.r.t. ��0 ,�1�:

p�x��0,�1� = �2��−N/2�
n=1

N−1

�d̊n��0
1/2�1

�N−1�/2

�exp�−
�0

2
	x̊0	2 −

�1

2
	�D*x̊*	2� , �12�

here �D* is obtained from �D without the first line and
olumn. The next step is to write the a priori law for the
oise in an explicit form and the other parameters, in-
luding the law parameters � and the instrument param-
ters w.

. Noise and Data Laws
rom a methodological standpoint, any statistic can be in-
luded for errors (measurement and model errors). It is
ossible to account for correlations in the error process or
o account for a non-Gaussian law, e.g., Laplacian law,
eneralized Gaussian law, or other laws based on a robust
orm. In the present paper, the noise is modeled as zero-
ean white Gaussian vector with unknown precision pa-

ameter ��:

p������ = �2��−N/2��
N/2 exp�−

��

2
	�	2� . �13�

onsequently, the likelihood for the parameters given the
bserved data is written

p�y�x,��,w� = �2��−N/2��
N/2 exp�−

��

2
	y − Hwx	2� . �14�

t naturally depends on the image x, on the noise param-
ter ��, and the PSF parameters w embedded in Hw. It
learly involves a least-squares discrepancy that can be
ewritten in the Fourier domain: 	y−Hwx	2= 	ẙ−�Hx̊	2.

. Hyperparameter Law
classical choice for the hyperparameter law relies on

he conjugate prior [32]: the conditional posterior for the
yperparameters is in the same family as its prior. It re-
ults in practical and algorithmic facilities: update of the
aws amounts to update of a small number of parameters.

The three parameters �0, �1, and �� are precision pa-
ameters of Gaussian laws Eq. (12) and (14); a conjugate
aw for these parameters is the gamma law (see Appendix
). Given parameters ��i ,�i�, for i=0, 1 or �, the pdf reads

p��i� =
1

�i
�i	��i�

�i
�i−1 exp�− �i/�i�, ∀ �i � �0,+ 
�.

�15�

In addition to computational efficiency, the law allows
or non-informative priors. With specific parameter val-
es, one obtains two improper non-informative priori: the
effreys law p���=1/� and the uniform law p���
U�0,+
���� with ��i ,�i� set to �0,+
� and �1,+
�, respec-

ively. The Jeffreys law is a classical law for the precisions
nd is considered non-informative [33]. This law is also
nvariant to power transformations: the law of �n [33,34]
s also a Jeffreys law. For these reasons development is
one using the Jeffreys law.

. PSF Parameter Law
egarding the PSF parameters w, we consider that the

nstrument design process or a physical study provides a
ominal value w̄ with uncertainty �, that is, w� �w̄
� ,w̄+��. The “Principle of Insufficient Reason” [33]

eads to a uniform prior on this interval:

p�w� = Uw̄,��w�, �16�

here Uw̄,� is a uniform pdf on �w̄−� ,w̄+��. Neverthe-
ess, within the proposed framework, the choice is not lim-
ted and other laws, such as Gaussian, are possible. In
ny case, other choices do not allow easier computation
ecause of the non-linear dependency of the observation
odel w.r.t. PSF parameters.

. PROPER POSTERIOR LAW
t this point, the prior law of each parameter is available:

he PSF parameters, the hyperparameters, and the im-
ge. Thus, the joint law for all the parameters is built by
ultiplying the likelihood Eq. (14) and the a priori laws
q. (12), (15), and (16):

p�x̊,��,�0,�1,w, ẙ�

= p�ẙ�x̊,��,w�p�x̊��0,�1�p����p��0�p��1�p�w� �17�

nd explicitly

�x̊,��,�0,�1,w, ẙ�

=
�2��−N�n=1

N−1
�d̊n�

��

��	�����0
�0	��0��1

�1	��1�
��

��+N/2−1
�0

�0−1/2
�1

�1+�N−1�/2−1

�exp�−
��

��

−
�0

�0
−

�1

�1
�Uw̄,��w�

�exp�−
��

2
	ẙ − �Hx̊	2 −

�0

2
�x̊0�2 −

�1

2
	�Dx̊	2� . �18�

ccording to the Bayes rule, the a posteriori law reads

p�x̊,��,�0,�1,w�ẙ� =
p�x̊,��,�0,�1,w, ẙ�

p�ẙ�
, �19�

here p�ẙ� is a normalization constant

p�ẙ� =
 p�ẙ,x̊,�,w�dx̊d�dw. �20�

As described before, setting �0=0 leads to degenerated
rior and joint laws. However, when the observation sys-
em preserves the null frequency, �0 can be considered a
uisance parameter. In addition, only prior information
n the smoothness is available.
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In Bayesian framework, a solution to eliminate the nui-
ance parameters is to integrate them out in the a poste-
iori law. According to our parameterization in Subsection
.A, the integration of �0 is the integration of a gamma
aw. Application of Appendix B.1 on �0 in the a posteriori
aw Eq. (19) provides

p�x̊,��,�1,w�ẙ�

=
p�x̊0�p�ẙ,x̊*,��,�1,w�x̊0�


 p�x̊0�p�ẙ,x̊*,��,�1,w�x̊0�d��d�1dwdx̊*dx̊0

�21�

ith

p�x̊0� =
 p�x̊0��0�p��0�d�0 = �1 +
�0x̊0

2

2 �−�0−1/2

. �22�

ow the parameter is integrated, and the parameters �0
nd �0 are set to remove the null frequency penalization.
ince we have �0�0 and �0�0 we get �1+�0x̊0

2 /2�−�0−1/2

1, and the joint law is majored:

�1 +
�0x̊0

2

2 �−�0−1/2

p�ẙ,x̊*,��,�1,w�x̊0� � p�ẙ,x̊*,��,�1,w�x̊0�.

�23�

onsequently, by the dominated convergence theorem
35], the limit of the law with �0→1 and �0→0 can be
laced under the integral sign at the denominator. Then
he null-frequency penalization p�x̊0� from the numerator
nd denominator are removed. This is equivalent to the
ntegration of the �0 parameter under a Dirac distribution
see Appendix B). The equation is simplified, and the in-
egration with respect to x̊0 in the denominator Eq. (20)



R

p�ẙ�x̊,��,w�p�x̊*��1�p��1,��,w�dx̊0 �

R

p�ẙ0�x̊0,��,w�dx̊0

�24�

�

R

exp�−
��

2
�ẙ0 − h̊0x̊0�2�dx̊0 �25�

onverges if and only if h̊0�0: the null frequency is ob-
erved. If this condition is met, Eq. (21) with �0=0 and
0=1 is a proper posterior law for the image, the precision
arameters, and the PSF parameters. In other words, if
he average is observed, the degeneracy of the a priori law
s not transmitted to the a posteriori law.

Then, the obtained a posteriori law is written

p�x̊,��,�1,w�ẙ� =
p�x̊,��,�1,w, ẙ�

p�ẙ�

� ��

��+N/2−1
�1

�1+�N−1�/2−1Uw̄,��w�exp�−
��

2
	ẙ

− �Hx̊	2 −
�1

2
	�D*x̊*	2�exp�−

��

��

−
�1

�1
� .

�26�
inally, inference is done on this law Eq. (26). If the null
requency is not observed, or information must be added,
he previous Eq. (19) can be used.

. POSTERIOR MEAN ESTIMATOR AND
AW EXPLORATION
his section presents the algorithm to explore the poste-
ior law Eq. (19) or Eq. (26) and to compute an estimate of
he parameters. For this purpose, Monte Carlo Markov
hain is used to provide samples. First, the obtained
amples are used to compute different moments of the
aw. Afterward, they are also used to approximate mar-
inal laws as histograms. These two representations are
elpful for analyzing the a posteriori law, the structure of
he available information, and the uncertainty. They are
sed in Subsection 6.C.2 to illustrate the mark of the am-
iguity in the myopic problem.
Here, the samples of the a posteriori law are obtained

y a Gibbs sampler [25,36,37]: it consists in iteratively
ampling the conditional posterior law for a set of param-
ters given the other parameters (obtained at previous it-
ration). Typically, the sampled laws are the law of x̊, �i,
nd w. After a burn-in time, the complete set of samples
re under the joint a posteriori law. The next three sub-
ections present each sampling step.

. Sampling the Image
he conditional posterior law of the image is a Gaussian

aw:

x̊�k+1� 
 p�x̊�ẙ,��
�k�,�0

�k�,�1
�k�,w�k�� �27�


N���k+1�,��k+1��. �28�

he covariance matrix is diagonal and is written

��k+1� = ���
�k���H

�k��2 + �0
�k���1�2 + �1

�k���D�2�−1, �29�

nd the mean

��k+1� = ��
�k���k+1��H

†�k�
ẙ, �30�

here † is the transpose conjugate symbol. The vector
�k+1� is the regularized least-square solution at the cur-

ent iteration (or the Wiener–Hunt filter). Clearly, if the
ull frequency is not observed, h̊0=0 and if �0=0, the co-
ariance matrix � is not invertible and the estimate is not
efined as described Section 4.
Finally, since the matrix is diagonal, the sample x̊�k+1�

s obtained by a term-wise product of F� (where � is white
aussian) with the standard deviation matrix ���k+1��1/2
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ollowed by the addition of the mean ��k+1�, also computed
ith term-wise products Eq. (30). Consequently, the sam-
ling of the image is effective even with a high-
imensional object.

. Sampling Precision Parameters
he conditional posterior laws of the precisions are
amma corresponding to their prior law with parameters
pdated by the likelihood

�i
�k+1� 
 p��i�ẙ,x̊�k+1�,w�k�� �31�


G��i��i
�k+1�,�i

�k+1��. �32�

or ��, �0, and �1 the parameters law are, respectively,

�
�k+1� = �� + N/2 and ��

�k+1� = ���
−1 +

1

2
	ẙ − �H

�k�x̊�k+1�	2�−1

,

�33�

0
�k+1� = �0 + 1/2 and �0

�k+1� = ��0
−1 +

1

2
�x̊0

�k+1��2�−1

, �34�

1
�k+1� = �1 + �N − 1�/2 and �1

�k+1�

= ��1
−1 +

1

2
	�Dx̊�k+1�	2�−1

. �35�

n the case of the Jeffreys prior, the parameters are

��
�k+1� = N/2 and ��

�k+1� = 2/	ẙ − �H
�k�x̊�k+1�	2, �36�

�0
�k+1� = 1/2 and �0

�k+1� = 2/�x̊0
�k+1��2, �37�

�1
�k+1� = �N − 1�/2 and �1

�k+1� = 2/	�Dx̊�k+1�	2. �38�

Remark 1: If the a posteriori law Eq. (26) without �0 is
onsidered, there is no need to sample this parameter [Eqs.
34) and (37) are not useful] and �0

�k�=0 in Eq. (29).

. Sample PSF Parameters
he conditional law for PSF parameters is written

w�k+1� 
 p�w�ẙ,x̊�k+1�,��
�k+1�� �39�

� exp�−
��

�k+1�

2
	ẙ − �H,wx̊�k+1�	2� , �40�

here parameters w are embedded in the PSF �H. This
aw is not standard and is intricate: no algorithm exists
or direct sampling and we use the Metropolis–Hastings
ethod to bypass this difficulty. In the Metropolis–
astings algorithm, a sample wp is proposed and ac-

epted with a certain probability. This probability de-
ends on the ratio between the likelihood of the proposed
alue and the likelihood of the current value w�k�. In prac-
ice, in the independent form described in appendix C,
ith prior law as proposition law, it is divided into several

teps.
1. PROPOSITION: Sample a proposition:

w 
 p�w� = U �w�. �41�
p �a b�
2. PROBABILITY OF ACCEPTANCE: Calculate the criterion:

J�w�k�,wp� =
��

�k+1�

2
�	ẙ − �H,w�k�x̊�k+1�	2 − 	ẙ − �H,wp

x̊�k+1�	2�.

�42�

3. UPDATE: Sample t
U�0 1� and take

w�k+1� = �wp if log t 
 J

w�k� otherwise � . �43�

. Empirical Mean
he sampling of x̊, �, and w is repeated iteratively until

he law has been sufficiently explored. These samples
x̊�k� ,��k� ,w�k�� follow the global a posteriori law of Eq.
19). By the large-numbers law, the estimate, defined as
he posterior mean, is approximated by

x̂ = F†E�x̊� � F†� 1

K �
k=0

K−1

x̊�k�� . �44�

s described by Eq. (44), to obtain an estimate of the im-
ge in the spatial space, all the computations are
chieved recursively in the Fourier space with a single

FFT at the end. An implementation example in pseudo
ode is described Appendix D.

. DECONVOLUTION RESULTS
his section presents numerical results obtained by the
roposed method. In order to completely evaluate the
ethod, true value of all parameters x, w, �� but also

1,�0 is needed. In order to achieve this, an entirely simu-
ated case is studied: image and noise are simulated un-
er their respective prior laws Eq. (12) and (13) with
iven values of �0, �1, and ��. Thanks to this protocol, all
xperimental conditions are controlled and the estimation
ethod is entirely evaluated.
The method has also been applied in different condi-

ions (lower signal-to-noise ratio, broader PSF, different
nd realistic (non-simulated) images, and so on) and
howed similar behavior. However, in the case of realistic
mages, since the true value of the hyperparameters �0
nd �1 is unknown, the evaluation cannot be complete.

. Practical Experimental Conditions
oncretely, a 128�128 image is generated in the Fourier
pace as the product of a complex white Gaussian noise
nd the a priori standard deviation matrix �= ��0�1

†�1
�1�D

† �D�−1/2, given by Eq. (10). The chosen matrix �D
esults from the FFT-2D of the Laplacian operator
0 1 0; 1−4 1; 0 1 0� /8, and the parameter values are
0=1 and �1=2.
These parameters provide the image shown in Fig. 1(a):

t is an image with smooth features similar to a cloud.
ixels have numerical values between −100 and 150, and

he profile line 68 shows fluctuations around a value of
40.
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The a priori law for the hyperparameters are set to the
on-informative Jeffreys law by fixing the ��i ,�i� to �0,

�, as explained in Subsection. 3.C. In addition, the PSF

s obtained in the Fourier space by discretization of a nor-

ig. 1. (a) 128�128 sample of the a priori law for the object wit
nd (d) Estimates with non-myopic and the myopic estimate, res
alized Gaussian shape,
h̊���,��� = exp�− 2�2���
2�w� cos2 � + w� sin2 ��

+ ��
2�w� sin2 � + w� cos2 ��

+ 2���� sin � cos ��w� − w����, �45�

and �1=2. (b) Data computed with the PSF shown in Fig. 2. (c)
ely. Profiles correspond to the 68th line of the image.
h �0=1
pectiv
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ith frequencies ��� ,���� �−0.5;0.5�2. This low-pass filter,
llustrated in Fig. 2, is controlled by three parameters:

• Two width parameters w� and w� set to 20 and 7, re-
pectively. Their a priori laws are uniform: p�w��
U�19 21��w�� and p�w��=U�6 8��w�� corresponding to an
ncertainty of about 5% and 15% around the nominal
alue (see Subsection 3.D).

• A rotation parameter � set to � /3. The a priori law is
lso uniform: p���=U��/4 �/2����, corresponding to 50%
ncertainty.

Then, the convolution is computed in the Fourier space,
nd the data are obtained by adding a white Gaussian
oise with precision ��=0.5. Data are shown Fig. 1(b):
hey are naturally smoother than the true image, and the
mall fluctuations are less visible and are corrupted by
he noise. The empirical mean level of the image is cor-
ectly observed (the null frequency coefficient of Hw is

˚
0=1) so the parameter �0 is considered a nuisance pa-
ameter. Consequently it is integrated out under a Dirac
istribution (see Section 4). This is equivalent to fix its
alue to 0 in the algorithm of Appendix D, line 4.

Finally, the method is evaluated on two different situ-
tions.

1. The unsupervised and non-myopic case: the param-
ters w are known. Consequently, there is no M.H. step
Subsection 5.C): lines 9–16 are ignored in the algorithm
f Appendix D, and w is set to its true value. To obtain
ufficient law exploration, the algorithm is run until the
ifference between two successive empirical means is less
han 10−3. In this case, 921 samples are necessary, and
hey are computed in approximately 12 s on a processor
t 2.66 GHz with Matlab,
2. The unsupervised and myopic case: all the param-

ters are estimated. To obtain sufficient law exploration,
he algorithm is run until the difference between two suc-
essive empirical means is less than 5�10−5. In this case,
8, 715 samples are needed, and they are computed in ap-
roximately 7 min.

Remark: The algorithm has also been run for up to
,000,000 samples, in both cases, without perceptible
ualitative changes.
F
o
r
y

. Estimation Results

. Images
he two results for the image are given Figs. 1(c) and 1(d)

or the non-myopic and the myopic cases, respectively.
The effect of deconvolution is notable on the image, as

ell as on the shown profile. The object is correctly posi-
ioned, the orders of magnitude are respected, and the
ean level is correctly reconstructed. The image is re-

tored, more details are visible, and the profiles are closer
atches to the true image than are the data. More pre-

isely, pixels 20–25 of the 68th line of the image in Fig. 1
how the restoration of the original dynamic, whereas it is
ot visible in the data. Between pixels 70 and 110, fluc-
uations not visible in the data are also correctly restored.

In order to visualize and study the spectral contents of
he images, the circular average of the empirical power
pectral density is considered and is called “spectrum”
ereafter. The subjacent spectral variable is a radial fre-
uency f, such as f2=��

2 +��
2. The spectra of the true object,

ata, and restored object are shown Figs. 3(a) and 3(b) in
he non-myopic and myopic cases, respectively. It is clear
hat the spectrum of the true image is correctly retrieved,
n both cases, up to the radial frequency f�0.075. Above
his frequency, noise is clearly dominant and information
bout the image is almost lost. In other words, the
ethod produces correct spectral equalization in the

roperly observed frequency band. The result is expected
rom the Wiener–Hunt method, but the achievement is
he joint estimation of hyperparameter and instrument
arameters in addition to the correct spectral equaliza-
ion.

Concerning a comparison between non-myopic and
yopic cases, there is no visual difference. The spectra in
ig. 2. PSF with w�=20, w�=7 and �=� /3. The x axis and y
xis are reduced frequency.
ig. 3. Circular average of the empirical power spectral density
f the image, the convolved image, the data (convolved image cor-
upted by noise), and the estimates, in radial frequency with the
axis in logarithmic scale. The x axis is the radial frequency.
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igs. 3(a) and 3(b) in the non-myopic and myopic cases,
espectively, are visually indistinguishable. This is also
he case when comparing Figs. 1(c) and 1(d) and espe-
ially, the 68th line. From a more precise quantitative
valuation, a slight difference is observed is and detailed
elow.
In order to quantify performance, a normalized Euclid-

an distance

e = 	x − x*	/	x*	 �46�

etween an image x and the true image x* is considered.
t is computed between the true image and the estimated
mages as well as between the true image and the data.
esults are reported in Table 1 and confirm that the de-
onvolution is effective with an error of approximately 6%
n the myopic case compared with 11% for the data. Both
on-myopic and myopic deconvolution reduce error by a
actor of 1.7 with respect to the observed data.

Regarding a comparison between the non-myopic and
yopic cases, the errors are almost the same, with a

lightly lower value for the non-myopic case, as expected.
his difference is consistent with the intuition: more in-

ormation is injected in the non-myopic case through the
rue PSF parameter values.

. Hyperparameters and Instrument Parameters
oncerning the other parameters, their estimates are
lose to the true values and are reported in Table 2. The
� estimate is very close to the true value with ��ˆ =0.49
nstead of 0.5 in the two cases. The error for the PSF pa-
ameters are 0.35%, 2.7%, and 1.9% for w�, w�, and �, re-
pectively. The value of �1 is underestimated in the two
ases, with approximately 1.7 instead of 2. All the true
alues fall in the �̂±3�̂ interval.

In order to deepen the numerical study, the paper
valuates the capability of the method to accurately select
he best values for hyperparameters and instrument pa-
ameters. To this end, we compute the estimation error
q. (46) for a set of “exhaustive” values of the parameters

�� ,�1 ,w� ,w� ,��. The protocol is the following: (1) choose
new value for a parameter (��, for example) and fix the

ther parameters to the value provided by our algorithm,

Table 1. Error e [Eq. (46)] and Averaged Standard
Deviation �̂ of the Posterior Image Lawa

Data Non-myopic Myopic Best

Error �e� 11.092 % 6.241 % 6.253 % 6.235 %
�̂ of x law – 3.16 3.25 –

aThe “Best” error has been obtained with the knowledge of the true image.

Table 2. Quantitative Evaluation: True and Estim

Case

�̂�± �̂

True Value 0.5

Non-myopic Estimate 0.49±0.0056
Error 2.0 %

Myopic Estimate 0.49±0.0056
Error 2.0 %
2) compute the Wiener–Hunt solution (Subsection 5.A),
nd (3) compute the error index.
Results are reported in Fig. 4. In each case, smooth

ariation of error is observed when varying hyperparam-
ters and instrument parameters, and unique optimum is
isible. In this way, one can find the values of the param-
ters that provide the best Wiener–Hunt solution when
he true image x* is known. This is reported in Table 1
nd shows almost imperceptible improvement: optimiza-
ion of the parameters (based on the true image x*) allows
egligible improvement (smaller than 0.02% as reported

n Table 1).
Thus the main conclusion is that the proposed unsuper-

ised and myopic approach is a relevant tool for tuning
arameters: it works (without knowledge of the true im-
ge) as well as being an optimal approach (based on the
nowledge of the true image).

. A Posteriori Law Characteristics
his section describes the a posteriori law using histo-
rams, means and variances of the parameters. The
ample histograms, Figs. 5 and 6, provide an approxima-
ion of the marginal posterior law for each parameter.
ables 1 and 2 report the variance for the image and law
arameters respectively and thus allow to quantify the
ncertainty.

. Hyperparameter Characteristics
he histograms for �� and �1, Fig. 5, are concentrated
round a mean value in both non-myopic and myopic
ases. The variance for �� is lower than the one for �1, and
t can be explained as follows.

The observed data are directly affected by noise
present at the system output), whereas they are indi-
ectly affected by the object (present at the system input).
he convolution system damages the object and not the
oise: as a consequence, the parameter �� (which drives
oise law) is more reliably estimated than �1 (which
rives object law).
A second observation is the smaller variance for �1 in

he non-myopic case, Fig. 5(c), than in the myopic case,
ig. 5(d). This is the consequence of the addition of infor-
ation in the non-myopic case w.r.t. the myopic one,

hrough the value of the PSF parameters. In the myopic
ase, the estimates are based on the knowledge of an in-
erval for the values of the instrument parameters,
hereas in the non-myopic case, the estimates are based
n the true values of the instrument parameters.

Values of Hyperparameters and PSF Parameters

ˆ ŵ�± �̂ ŵ�± �̂ �̂± �̂

20 7 1.05 �� /3�

.14 – – –
– – –

.15 20.07±0.53 7.19±0.38 1.03±0.04
0.35 % 2.7 % 1.9 %
ated

�̂1±�

2

1.78±0
11 %

1.65±0
18 %
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. PSF Parameter Characteristics
igure 6 gives histograms for the three PSF parameters
nd their appearance is quite different from the one for
he hyperparameters. The histograms for w� and w�,
igs. 6(a) and 6(b), are not as concentrated as the one of
ig. 5 for hyperparameters. Their variances are quite

arge with respect to the interval of the prior law. In con-
rast, the histogram for the parameter �, Fig. 6(c), has the
mallest variance. It is analyzed as a consequence of a
arger sensitivity of the data w.r.t. the parameter � than
.r.t. the parameters w� and w�. In an equivalent man-
er, the observed data are more informative about the pa-
ameter � than about the parameters w� and w�.

. Mark of the Myopic Ambiguity
inally, a correlation between parameters ��1 ,w�� and

�1 ,w�� is visible on their joint histograms, Fig. 7. It can
e interpreted as a consequence of the ambiguity in the
rimitive myopic deconvolution problem, in the following
anner: the parameters �1 and w both participate in the

nterpretation of the spectral content of data, �1, as a
cale factor and w as a shape factor. An increase of w� or
� results in a decrease of the cutoff frequency of the ob-

ervation system. In order to explain the spectral content
f a given data set, the spectrum of the original image
ust contain more high frequencies, i.e., a smaller �1.
his is also observed on the histogram illustrated, Fig.
(a)

. MCMC Algorithm Characteristics
lobally, the chains of Figs. 5 and 6, have a Markov fea-

ure (correlated) and explore the parameter space. They
ave a burn-in period followed by a stationary state. This
haracteristic has always been observed regardless of the
nitialization. For fixed experimental conditions, the sta-
ionary state of multiple runs was always around the
ame value. Considering different initializations, the only
isible change is on the length of the burn-in period.

More precisely, the chain of �� is concentrated in a
mall interval, the burn-in period is very short (fewer

e e, Eq. (46). The symbol � is the minimum and the dot is the
rithmic scale.
ig. 4. (Color online) Computation of the best parameters in the sens
ig. 5. Histograms and chains for the non-myopic case [(a) and
c)] and the myopic case [(b) and (d)] for �� and �1, respectively.
he symbol � on the y axes localizes the initial value, and the
ashed line corresponds to the true value. The x axes are the it-
ration’s index for the chains (bottom of figures) and the param-
ter value for the histograms (top of figures).
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han 10 samples), and its evolution seems independent of
he other parameters. The chain of �1 has a larger explo-
ation, the burn-in period is longer (approximately 200
amples), and the histogram is larger. This is in accor-
ance with the analysis of Subsection 6.C.1.
Regarding PSF parameters, the behavior is different

or �w� ,w�� and �. The chain of the two width parameters
as a very good exploration of the parameter space with a
uasi-instantaneous burn-in period. Conversely, the chain
f � is more concentrated, and its burn-in period is ap-
roximately 4,000 samples. This is also in accordance
ith previous analysis (Subsection 6.C.2).

ig. 6. Histogram and chain for the PSF parameters (a) w�, (b) w
he dashed line corresponds to the true value. The x axis for the

ig. 7. Joint histograms for the couple (a) ��1 ,w�� and (b)
� ,w �. The x and y axes are the parameter values.
1 �
Acceptance rates in the Metropolis–Hastings algorithm
re reported in Table 3: they are quite small, especially
or the rotation parameter. This is due to the structure of
he implemented algorithm: an independent Metropolis–
astings algorithm with the prior law as a proposition

aw. The main advantage of this choice is its simplicity,
ut as a counterpart, a high rejection rate is observed due
o a large a priori interval for the angle parameter. A fu-
ure study will be devoted to the design of a more accurate
roposition law.

. Robustness of Prior Image Model
igure 8 illustrates the proposed method on a more real-

stic image with heterogeneous spatial structures. The
riginal is the Lena image, and the data have been ob-
ained with the same Gaussian PSF and also with corrup-
ion by white Gaussian noise. Figure 8(b) shows that the
estored image is closer to the true one than are the data.
maller structures are visible and edges are sharper, for
xample, around pixel 200. The estimated parameters are
�ˆ =1.98 while the true value is ��

*=2. Concerning the PSF
arameters, the results are w�ˆ =19.3, w�ˆ =7.5 and �̂
1.15, while the true values are, respectively, w�

* =20,

�
* =7 and �*=1.05 as in Subsection 6.B. Here again, the

stimated PSF parameters are close to the true values,
iving an initial assessment of the capability of the
ethod in a more realistic context.

. CONCLUSION AND PERSPECTIVES
his paper presents a new global and coherent method for
yopic and unsupervised deconvolution of relatively

mooth images. It is built within a Bayesian framework

Table 3. Acceptance Rate

Parameter

w� w� �

cceptance rate 14.50 % 9.44 % 2.14 %

(c) �. The symbol � on the y axes localizes the initial value, and
rams and the y axis of the chain are limits of the a priori law.
�, and
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nd a proper extended a posteriori law for the PSF pa-
ameters, the hyperparameters, and the image. The esti-
ate, defined as the posterior mean, is computed by
eans of an MCMC algorithm in less than a few minutes.
Numerical assessment attests that the parameters of

he PSF and the parameters of the prior laws are pre-
isely estimated. In addition, results also demonstrate
hat the myopic and unsupervised deconvolved image is
loser to the true image than are the data and shows true
estored high frequencies as well as spatial details.

The paper focuses on a linear invariant model often en-
ountered in astronomy, medical imaging, and nonde-
tructive testing and especially in optical problems. Non-
nvariant linear models can also be considered in order to
ddress other applications such as spectrometry [4] or
uorescence microscopy [13]. The loss of the invariance
roperty precludes entirely Fourier-based computations,
ut the methodology remains valid and practicable. In
articular, it is possible to draw samples of the image by
eans of an optimization algorithm [38].
Gaussian law, related to L2 penalization, is known for

ossible excessive sharp edges penalization in the re-
tored object. The use of convex L2−L1 penalization
39–41] or non-convex L2−L0 penalization [42] can over-
ome this limitation. In these cases a difficulty occurs in
he development of myopic and unsupervised deconvolu-
ion: the partition function of the prior law for the image
s in intricate or even unknown dependency w.r.t. the pa-
ameters [1,7,43]. However a recent paper [41] overcomes

ig. 8. (Color online) (a) Observed image and (b) restored image
nd the dashed curve correspond to (a) data and (b) estimated p
he difficulty, resulting in an efficient unsupervised de-
onvolution, and we plan to extend this work for the myo-
ic case.
Regarding noise, Gaussian likelihood limits robustness

o outliers or aberrant data, and it is possible to appeal to
robust law such as Huber penalization in order to by-

ass the limitation. Nevertheless, the partition function
or the noise law is again difficult or impossible to man-
ge, and it is possible to resort to the idea proposed in [41]
o overcome the difficulty.

Finally, estimation of the parameters of the correlation
atrix (cutoff frequency, attenuation coefficients, etc.) is

ossible within the same methodological framework. This
ould be achieved for the correlation matrix of the object
r the noise. As for the PSF parameters, the approach
ould rely on an extended a posteriori law, including the
ew parameters and a Metropolis–Hastings sampler.

PPENDIX A: LAW IN FOURIER
PACE
or a Gaussian vector x
N�� ,��, the law for x̊=Fx (the
FT of x) is also Gaussian, whose first two moments are

he following:

• The mean is

�̊ = E�x̊� = FE�x̊� = F�. �A1�

es correspond to the 68th line. The solid curve is the true profile,
. Profil
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• The covariance matrix is

�̊ = E��x̊ − �̊��x̊ − �̊�†� = F�F†. �A2�

oreover, if the covariance matrix � is circulant, it is
ritten

�̊ = F�F† = ��, �A3�

.e., the covariance matrix �̊ is diagonal.

PPENDIX B: GAMMA PROBABILITY
ENSITY

. Definition
he gamma pdf for ��0, with given parameter ��0 and
�0, is written

G����,�� =
1

��	���
��−1 exp�− �/��. �B1�

able 4 gives three limit cases for �� ,��. The following
roperties hold:

• The mean is EG���=��.
• The variance is VG���=��2.
• The maximizer is ���−1� if and only if ��1.

. Marginalization
irst consider an N-dimensional zero-mean Gaussian vec-

or with a given precision matrix �� with ��0. The pdf
eads

p�x��� = �2��−N/2�N/2 det���1/2 exp�− �xt�x/2�. �B2�

o consider the conjugate pdf for � as a gamma law with
arameters �� ,�� (see Appendix B.1). The joint law for
x ,�� is the product of the pdf given by Eqs. (B1) and (B2):
�x ,��=p�x ���p���. The marginalization of the joint law is
nown [44]:

p�x� =

R+

p�x���p���d�

=
�N/2 det���1/2	�� + N/2�

�2��N/2	��� �1 +
�xt�x

2 �−�−N/2

,

�B3�

Table 4. Specific Laws Obtained As Limit of the
Gamma PDF

Law � �

Jeffreys 0 �


Uniform 1 �


Dirac – 0
hich is an N-dimensional t-Student law of 2� degrees of
reedom with a �	 precision matrix. Finally, the condi-
ional law reads

p���x� =
�2��−N/2 det���1/2

��	���
��+N/2−1 exp�− �xt�x/2 + 1/��.

�B4�

hanks to conjugacy, it is also a gamma pdf with param-
ters �̄ , �̄ given by �̄=�+N /2 and �̄−1=�−1+2/ �xt�x�.

PPENDIX C: METROPOLIS–HASTINGS
LGORITHM

he Metropolis–Hastings algorithm provides samples of a
arget law f�w� that cannot be directly sampled but can be
valuated, at least up to a multiplicative constant. Using
he so called “instrument law” q�wp �w�t��, samples of the
arget law are obtained by the following iterations:

1. Sample the proposition wp
q�wp �w�t��.
2. Compute the probability:

� = min� f�wp�

f�w�t��

q�w�t��wp�

q�wp�w�t��
,1� . �C1�

3. Take

w�t+1� = �wp with � probability

w�t� with 1 − � probability� . �C2�

t convergence, the samples follow the target law f�w�
25,36]. When q�wp �w�t��=q�wp� the algorithm is named
ndependent Metropolis–Hastings. In addition, if the in-
trument law is uniform, the acceptance probability be-
omes simpler:

� = min� f�wp�

f�w�t��
,1� . �C3�

PPENDIX D
seudo-code algorithm. gamrnd, rand and randn draw
amples of the gamma-variable, uniform-variable, and
ero-mean unit-variance white complex Gaussian vector,
espectively.



o

1

A
T
o
v
c
C
S
p

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

1606 J. Opt. Soc. Am. A/Vol. 27, No. 7 /July 2010 Orieux et al.
1: Initialization of �x�0� ,��0� ,w�0� ,k=0�

2: repeat

% Sample of x
o

3: �←��
�k���H�2+�0

�k���1�2+�1
�k���D�2

4: �←��
�k��−1�H

* y
o

5: x
o

�k�←�+�−1/2 . *randn
% Sample of �

6: ��
�k�←gamrnd��� ,���

7: �1
�k�←gamrnd��1 ,�1�

8: �0
�k�←gamrnd��0 ,�0�

% Sample of w
9: wp←rand* �a−b�+a

0: J←���	y
o

−�Hx
o

	2− 	y
o

−�H,wp
x
o

	2� /2
11: if log�rand�
min�J ,0� then

12: w�k�←wp

13: �H←�H,wp
14: else

15: w�k�←w�k−1�

16: end if
% Empirical mean

17: k←k+1

18: x
o

�k�←�ix
o

�i� /k
19: until �x̄�k�− x̄�k−1�� / �x̄�k���criterion
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