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riort law for unknown parameters and object. The estimate is chosen as the posterior mean, numerically cal-
culated by means of a Monte Carlo Markov chain algorithm. The estimates are efficiently computed in the
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high frequencies and spatial details, within a global and coherent approach. © 2010 Optical Society of

America

OCIS codes: 100.1830, 100.3020, 100.3190, 150.1488.

1. INTRODUCTION

Image deconvolution has been an active research field for
several decades, and recent contributions can be found in
papers such as [1-3]. Examples of application are medical
imaging, astronomy, nondestructive testing, and, more
generally, imagery problems. In these applications, degra-
dations induced by the observation instrument limit the
data resolution, while the need of precise interpretation
can be of major importance. For example, this is particu-
larly critical for long-wavelength astronomy (see e.g., [4]).
In addition, the development of a high-quality instrumen-
tation system must be completed rationally at an equiva-
lent level of quality in the development of data processing
methods. Moreover, even for poor performance systems,
the restoration method can be used to bypass instrument
limitations.

When the deconvolution problem is ill-posed, a possible
solution relies on regularization, i.e., introduction of infor-
mation in addition to the data and the acquisition model
[5,6]. As a consequence of regularization, deconvolution
methods are specific to the class of image in accordance
with the introduced information. From this standpoint,
the present paper is dedicated to relatively smooth im-
ages encountered for numerous applications in imagery
[4,7,8]. The second-order consequence of ill-posedness and
regularization is the need to balance the compromise be-
tween different sources of information.

In the Bayesian approach [1,9], information about un-
knowns is introduced by means of probabilistic models.
Once these models are designed, the next step is to build
the a posteriori law, given the measured data. The solu-
tion is then defined as a representative point of this law;

1084-7529/10/071593-15/$15.00

the two most representative points are (1) the maximizer
and (2) the mean. From a computational standpoint, the
first leads to a numerical optimization problem and the
latter leads to a numerical integration problem. However,
the resulting estimate depends on two sets of variables in
addition to the data:

1. First, the estimate naturally depends on the re-
sponse of the instrument at work, namely, the point
spread function (PSF). The literature is devoted to decon-
volution predominantly in the case of known PSF. In con-
trast, the present paper is devoted to the case of unknown
or poorly known PSF, and there are two main strategies
to tackle its estimation from the available data set (with-
out extra measurements):

(i) In most practical cases, the instrument can be
modeled using physical operating description. It is thus
possible to find the equation for the PSF, at least in a first
approximation. This equation is usually driven by a rela-
tively small number of parameters. It is a common case in
optical imaging, where a Gaussian-shaped PSF is often
used [10]. It is also the case in other fields: interferometry
[11], magnetic resonance force microscopy [12], fluores-
cence microscopy [13], etc. Nevertheless, in real experi-
ments, the parameter values are unknown or imperfectly
known and need to be estimated or adjusted in addition to
the image of interest: the problem is called myopic decon-
volution.

(i) The second strategy forbids the use of the para-
metric PSF deduced from the physical analysis, and the
PSF then naturally appears in a non-parametric form.
Practically, the non-parametric PSF is unknown or imper-
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fectly known and needs to be estimated in addition to the
image of interest: the problem is referred to as blind de-
convolution, for example in interferometry [14-17].

From an inference point of view, the difficulty of both
myopic and blind problems lies in the possible lack of in-
formation, resulting in ambiguity between image and
PSF, even in the noiseless case. In order to resolve the
ambiguity, information must be added [3,18], and it is
crucial to make inquiries based on any available source of
information. To this end, the knowledge of the parametric
PSF represents a valuable means to structure the prob-
lem and possibly resolve the degeneracies. Moreover, due
to the instrument design process, a nominal value as well
as an uncertainty are usually available for the PSF pa-
rameters. In addition, from a practical and algorithmic
standpoint, the myopic case, i.e., the case of parametric
PSF, is often more difficult due to the non-linear depen-
dence of the observation model with respect to the PSF
parameters. In contrast, the blind case, i.e., the case of
non-parametric PSF, yields a simpler practical and algo-
rithmic problem since the observation model remains lin-
ear w.r.t. the unknown elements given the object. Despite
the superior technical difficulty, the present paper is de-
voted to the myopic format since it is expected to be more
efficient than the blind format from an information stand-
point. Moreover, the blind case has been extensively stud-
ied, and a large number of papers are available [19-21],
while the myopic case has been less investigated, though
it is of major importance.

2. Second, the solution depends on the probability law
parameters called hyperparameters (means, variances,
parameters of correlation matrix, etc.). These parameters
adjust the shape of the laws, and at the same time they
tune the compromise between the information provided
by the a priori knowledge and the information provided
by the data. In real experiments, their values are un-
known and need to be estimated: the problem is called un-
supervised deconvolution.

For both families of parameters (PSF parameters and
hyperparameters), two approaches are available. In the
first one, the parameter values are empirically tuned or
estimated in a preliminary step (with maximum likeli-
hood [7] or calibration [22] for example); then the values
are used in a second step devoted to image restoration
given the parameters. In the second step, the parameters
and the object are jointly estimated [2,19].

For the myopic problem, Jalobeanu et al. [23] address
the case of a symmetric Gaussian PSF. The width param-
eter and the noise variance are estimated in a prelimi-
nary step by maximum likelihood. A recent paper [24] ad-
dresses the estimation of a Gaussian blur parameter, as
in our experiment, with an empirical method. They found
the Gaussian blur parameter by minimizing the absolute
value of the second derivative (Laplacian) of the restored
images.

The present paper addresses the myopic and unsuper-
vised deconvolution problem. We propose a new method
that jointly estimates the PSF parameters, the hyperpa-
rameters, and the image of interest. It is built in a coher-
ent and global framework based on an extended a poste-
riori law for all the unknown variables. The posterior law
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is obtained via the Bayes rule, founded on a priori laws:
Gaussian for image and noise, uniform for PSF param-
eters, and gamma or Jeffreys for hyperparameters.

Regarding the image prior law, we have paid special at-
tention to the parameterization of the covariance matrix
in order to facilitate law manipulations such as integra-
tion, conditioning, and hyperparameter estimation. The
possible degeneracy of the a posteriori law in some limit
cases is also studied.

The estimate is chosen as the mean of the posterior law
and is computed using Monte Carlo simulations. To this
end, Monte Carlo Markov chain (MCMC) algorithms [25]
enable one to draw samples from the posterior distribu-
tion despite its complexity and especially the non-linear
dependence w.r.t. the PSF parameters.

The paper is structured in the following manner. Sec-
tion 2 presents the notation and describes the problem.
The three following sections describe our methodology:
first the Bayesian probabilistic models are detailed in
Section 3, then a proper posterior law is established in
Section 4; and an MCMC algorithm to compute the esti-
mate is described in Section 5. Numerical results are pre-
sented in Section 6. Finally, Section 7 is devoted to the
conclusion and perspectives.

2. NOTATION AND CONVOLUTION MODEL

Consider N-pixel real square images represented in lexi-
cographic order by vector x € RV, with generic elements
x,. The forward model is written

y=H,x +e¢, (1)

where y e RV is the vector of data, H,, a convolution ma-
trix, x the image of interest, and e the modelization errors
or the noise. Vector w € RY stands for the PSF param-
eters, such as width or orientation of a Gaussian PSF.

The matrix H,, is block-circulant with circulant-block
(BCCB) for computational efficiency of the convolution in
the Fourier space. The diagonalization [26] of H,, is writ-
ten Ag=FH,F', where F is the unitary Fourier matrix
and T is the transpose conjugate symbol. The convolution
in the Fourier space, is then

y=Apgx +€, (2)

where x=Fx, y=Fy and é=F e are the 2D discrete Fourier
transform (DFT-2D) of image, data, and noise, respec-
tively.

Since Ay is diagonal, the convolution is computed with
a term-wise product in the Fourier space. There is a strict
equivalence between a description in the spatial domain
[Eq. (1)] and in the Fourier domain [Eq. (2)]. Conse-
quently, for coherent description and computational effi-
ciency, all the developments are equally done in the spa-
tial space or in the Fourier space.

For notational convenience, let us introduce the compo-
nent at null frequency %, € R and the vector of component
at non-null frequencies %= € CN~1 so that the whole set of
components is written x=[x(,%:].

Let us denote 1 the vector of N components equal to
1/N, so that 1tx is the empirical mean level of the image.

The Fourier components are the Jin, and we have joz 1 and
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Jin=0 for n#0. Moreover, A,=F11'F' is a diagonal matrix
with only one non-null coefficient at null frequency.

3. BAYESIAN PROBABILISTIC MODEL

This section presents the prior law for each set of param-
eters. Regarding the image of interest, in order to account
for smoothness, the law introduces high-frequency penal-
ization through a differential operator on the pixel. A con-
jugate law is proposed for the hyperparameters, and a
uniform law is considered for the PSF parameters.

Moreover, we have paid special attention to the image
prior law parameterization. In Subsection 3.A we present
several parameterizations in order to facilitate law ma-
nipulations such as integration, conditioning, and hyper-
parameter estimation. Moreover, the correlation matrix of
the image law may become singular in some limit cases,
resulting in a degenerated prior law [when p(x)=0 for all
x € RY]. Based on this parameterization, in Section 4 we
study the degeneracy of the posterior in relation to the pa-
rameters of the prior law.

A. Image Prior Law

The probability law for the image is a Gaussian field with
a given precision matrix P parameterized by a vector 7y.
The pdf reads

1
paly) = (2m) ™" det[P]"? exP[— §xth} . (3)

For computational efficiency, the precision matrix is de-
signed (or approximated) in a toroidal manner, and it is
diagonal in the Fourier domain Ap=FPF". Thus, the law
for x also is written

p(x]y) = (2m) V2 det[Fldet[ A p]"2 det[F']

1
Xexp { - §xtFTApr} , (4)

1
=(2m) N2 det[Ap]V? exp{— EﬁAP&} , (5)

and it is sometimes referred to [27] as a Whittle approxi-
mation (see also [28], p. 133) for the Gaussian law. The
filter obtained for fixed hyperparameters is also the
Wiener—Hunt filter [29], as described in Subsection 5.A,
below.

This paper focuses on smooth images and thus on posi-
tive correlation between pixels. It is introduced by high-
frequency penalty using any circulant differential opera-
tor: pth differences between pixels, Laplacian and Sobel,
among others. The differential operator is denoted by D
and its diagonalized form by Ap=FDF'. Then, the preci-
sion matrix is written P=y,D'D, and its Fourier counter-
part is written

Ap=viApAp = diag(0, v1|d4[%, ..., vildy-1[?), (6)

where 7y, is a positive scale factor, diag builds a diagonal

matrix from elementary components, and dn is the nth
DFT-2D coefficient of D.
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Under this parameterization of P, the first eigenvalue
is equal to zero, corresponding to the absence of penalty
for the null frequency %, i.e., no information is accounted
for about the empirical mean level of the image. As a con-
sequence, the determinant vanishes, det[P]=0, resulting
in a degenerated prior. To manage this difficulty, several
approaches have been proposed.

Some authors [2,30] still use this prior despite its de-
generacy, and this approach can be analyzed in two ways:

1. On the one hand, this prior can be seen as a non-
degenerated law for %+, the set of non-null frequency com-
ponents only. In this format, the prior does not affect any
probability for the null frequency component, and the
Bayes rule does not apply to this component. Thus, this
strategy yields an incomplete posterior law, since the null
frequency is not embedded in the methodology.

2. On the other hand, this prior can be seen as a de-
generated prior for the whole set of frequencies. The ap-
plication of the Bayes rule is then somewhat confusing
due to degeneracy. In this format, the posterior law can-
not be guaranteed to remain non-degenerated.

In any case, neither of the two standpoints yields a pos-
terior law that is both non-degenerated and addresses the
whole set of frequencies.

An alternative parameterization relies on the energy of
x. An extra term y,I, tuned by y,>0, in the precision ma-
trix [31], introduces information for all the frequencies in-
cluding %,. The precision matrix is written

Ap =yl + yiApAp =diag(yo, vo + mldi% ..., v0 + mildn_11?)

(7)
with a determinant
N-1
det[Ap] = H0 (%o + nldaP).- 8)

The obtained Gaussian prior is not degenerated and un-
doubtedly leads to a proper posterior. Nevertheless, the
determinant Eq. (8) is not separable in y, and ;. Conse-
quently, the conditional posterior for these parameters is
not a classical law, and future development will be more
difficult. Moreover, the non-null frequencies x: are con-
trolled by two parameters, y, and y;:

P(&[ 9, v1) = p(&o| ¥0)0 @] 0, 71).- 9)

The proposed approach to manage the degeneracy re-
lies on the addition of a term for the null frequency only,
A,=diag(1,0,...,0):

Ap= ')’OAIAW + 'YIA;)AD- = diag(yo,yl\d1|2, ,71|dN-1|2)-

(10)
The determinant has a separable expression,
N-1
det[Ap]=y0d ' [1 Id.f*, (11)
n=1

i.e., the precision parameters have been factorized. In ad-
dition, each parameter controls a different set of frequen-
cies:
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P(&]y0, 1) =P (&0l Y0)p &:| 1),

where 7y, drives the empirical mean level of the image %,
and y; drives the smoothness x« of the image. With the
Fourier precision structure of Eq. (10), we have the non-
degenerated prior law for the image that addresses sepa-
rately all the frequencies with a factorized partition func-
tion w.r.t. (vg, v1):

N-1
P&]y0,y1) = @) V2T |d,| /2y N2
n=1
Y0 "
XeXp[_ gl = S 1A 2], (12)

where Ap: is obtained from Ap without the first line and
column. The next step is to write the a priori law for the
noise in an explicit form and the other parameters, in-
cluding the law parameters y and the instrument param-
eters w.

B. Noise and Data Laws

From a methodological standpoint, any statistic can be in-
cluded for errors (measurement and model errors). It is
possible to account for correlations in the error process or
to account for a non-Gaussian law, e.g., Laplacian law,
generalized Gaussian law, or other laws based on a robust
norm. In the present paper, the noise is modeled as zero-
mean white Gaussian vector with unknown precision pa-
rameter vy,

Ve
pleyd = @m)™N2”2 eXp[— EIGIF]- (13)

Consequently, the likelihood for the parameters given the
observed data is written

PIx, yow) = (2m) N2 exp{— glty —waIIQ] . (14)

It naturally depends on the image x, on the noise param-
eter y,, and the PSF parameters w embedded in H,,. It
clearly involves a least-squares discrepancy that can be
rewritten in the Fourier domain: |y — H,x|%=|ly - A g||>.

C. Hyperparameter Law
A classical choice for the hyperparameter law relies on
the conjugate prior [32]: the conditional posterior for the
hyperparameters is in the same family as its prior. It re-
sults in practical and algorithmic facilities: update of the
laws amounts to update of a small number of parameters.
The three parameters 7y, v;, and vy, are precision pa-
rameters of Gaussian laws Eq. (12) and (14); a conjugate
law for these parameters is the gamma law (see Appendix
B). Given parameters (¢, 3;), for i=0, 1 or ¢, the pdf reads

1
Py =——"exp(- w/B), Vv el0,+.

B?ir(ai)
(15)

In addition to computational efficiency, the law allows
for non-informative priors. With specific parameter val-
ues, one obtains two improper non-informative priori: the

Orieux et al.

Jeffreys law p(y)=1/y and the wuniform law p(vy)
=U;g 4= (y) With (¢;,8;) set to (0,+%) and (1,+%), respec-
tively. The Jeffreys law is a classical law for the precisions
and is considered non-informative [33]. This law is also
invariant to power transformations: the law of v* [33,34]
is also a Jeffreys law. For these reasons development is
done using the Jeffreys law.

D. PSF Parameter Law

Regarding the PSF parameters w, we consider that the
instrument design process or a physical study provides a
nominal value w with uncertainty &, that is, w e[w
-6,w+06]. The “Principle of Insufficient Reason” [33]
leads to a uniform prior on this interval:

p(w) =Uz sw), (16)

where Uy, 5 is a uniform pdf on [ - &,w+ &]. Neverthe-
less, within the proposed framework, the choice is not lim-
ited and other laws, such as Gaussian, are possible. In
any case, other choices do not allow easier computation
because of the non-linear dependency of the observation
model w.r.t. PSF parameters.

4. PROPER POSTERIOR LAW

At this point, the prior law of each parameter is available:
the PSF parameters, the hyperparameters, and the im-
age. Thus, the joint law for all the parameters is built by
multiplying the likelihood Eq. (14) and the a priori laws
Eq. (12), (15), and (16):

P&, %6 Y0, 71,W,¥)
=p1%, Yo )p (&| 0, P (vIP (vo)P (y1)p (W) (17)
and explicitly
P&, Ye Y0, Y1, W,¥)

N-1 o
2mN d
(2m) Hn=1| . 2 N2 a0~ 1/2 g (N-1)/2-1
BT () BT (ag) BT (ery) € ©o

% { Ye Y0 Vl]u 5( )
exp| - —-—-— - — Uy, sw
Be Bo Bi|
2 3 Yo,, P4l .
XeXp{— 5 v — A - 5 %o 2 E”ADx||2:| . (18

According to the Bayes rule, the a posteriori law reads

p(:xo:, Ye Y05 717w75’)

p(£’75’70>71’w|57)=—0’ (19)
r®)

where p(y) is a normalization constant

p) = fp(j”,v%, y,w)dxdydw. (20)

As described before, setting y,=0 leads to degenerated
prior and joint laws. However, when the observation sys-
tem preserves the null frequency, y, can be considered a
nuisance parameter. In addition, only prior information
on the smoothness is available.
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In Bayesian framework, a solution to eliminate the nui-
sance parameters is to integrate them out in the a poste-
riori law. According to our parameterization in Subsection
3.A, the integration of 7y, is the integration of a gamma
law. Application of Appendix B.1 on v, in the a posteriori
law Eq. (19) provides

p(&,, Ye 717w|5’)

P(ﬁzo)P(j’,i*, Ye Y15 w|3%0)

f P(E)p 3,8+, Ve, v1,W|%0)d v dy,dwd-dzy

(21)
with

B ﬂg —a0—1/2
p(a‘éo)=Jp(iolyo)p(Vo)dyo= (“T) . (22)

Now the parameter is integrated, and the parameters «
and B, are set to remove the null frequency penalization.
Since we have a¢p>0 and By>0 we get (1+,8055%/2)‘”‘0‘1/2
<1, and the joint law is majored:

B\ 012
(1 + T) p(j}"i‘*, Ye YI’w|3EO) Sp(&:-/xo"*, Ye ’)’1,10'3%0).

(23)

Consequently, by the dominated convergence theorem
[35], the limit of the law with a¢p—1 and By—0 can be
placed under the integral sign at the denominator. Then
the null-frequency penalization p(x() from the numerator
and denominator are removed. This is equivalent to the
integration of the y, parameter under a Dirac distribution
(see Appendix B). The equation is simplified, and the in-
tegration with respect to x; in the denominator Eq. (20)

fp@li,n,w)p(i*lh)p(vl,ye,w)dn%o°<fp(y”oﬁ?o,n,w)d&o
R R

(24)
Yoo ool
* exp —E(yo—hoxo) dxg (25)
R

converges if and only if 50#0: the null frequency is ob-
served. If this condition is met, Eq. (21) with By=0 and
ap=1is a proper posterior law for the image, the precision
parameters, and the PSF parameters. In other words, if
the average is observed, the degeneracy of the a priori law
is not transmitted to the a posteriori law.

Then, the obtained a posteriori law is written

p(.i‘, Ye ’)/1,w71)°’)

p("xo:"}/sa'yl’wjy)= o
p®)
(Vo1 Ye .
o 7:€+N/2 1711+(N 1)/2 1uw,5(w)exp|:—51y
NI |2] [ Ve 71}
— AgX||" — —||[/Ap+X= exp| ——-—-——|-.
2 Be Bl

(26)
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Finally, inference is done on this law Eq. (26). If the null
frequency is not observed, or information must be added,
the previous Eq. (19) can be used.

5. POSTERIOR MEAN ESTIMATOR AND
LAW EXPLORATION

This section presents the algorithm to explore the poste-
rior law Eq. (19) or Eq. (26) and to compute an estimate of
the parameters. For this purpose, Monte Carlo Markov
chain is used to provide samples. First, the obtained
samples are used to compute different moments of the
law. Afterward, they are also used to approximate mar-
ginal laws as histograms. These two representations are
helpful for analyzing the a posteriori law, the structure of
the available information, and the uncertainty. They are
used in Subsection 6.C.2 to illustrate the mark of the am-
biguity in the myopic problem.

Here, the samples of the a posteriori law are obtained
by a Gibbs sampler [25,36,37]: it consists in iteratively
sampling the conditional posterior law for a set of param-
eters given the other parameters (obtained at previous it-
eration). Typically, the sampled laws are the law of x, y;,
and w. After a burn-in time, the complete set of samples
are under the joint a posteriori law. The next three sub-
sections present each sampling step.

A. Sampling the Image
The conditional posterior law of the image is a Gaussian
law:

&40 ~ p(Ely, 7, %, A w ) (27)

~ M0, 350, (28)
The covariance matrix is diagonal and is written
20 = (AR P+ A AP+ A AP, (29)

and the mean

(k) o
pbr) = B3 EDAL (30)

where T is the transpose conjugate symbol. The vector
p%+D is the regularized least-square solution at the cur-
rent iteration (or the Wiener—Hunt filter). Clearly, if the

null frequency is not observed, iDLO=0 and if y,=0, the co-
variance matrix Y, is not invertible and the estimate is not
defined as described Section 4.

Finally, since the matrix is diagonal, the sample &%+
is obtained by a term-wise product of F'e (where € is white
Gaussian) with the standard deviation matrix (3 %+1)/2
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followed by the addition of the mean u**), also computed
with term-wise products Eq. (30). Consequently, the sam-
pling of the image is effective even with a high-
dimensional object.

B. Sampling Precision Parameters

The conditional posterior laws of the precisions are
gamma corresponding to their prior law with parameters
updated by the likelihood

W = p(ly &0, w) (31)

~G(ylah, g1, (32)

For v, yy, and y, the parameters law are, respectively,
1 -1
a(€k+1) =, +N/2 and ﬁgﬁ'l) = (ﬂ;l + EH_’;’ - A}f)&(k”)ﬂz) 5

(33)
1 -1
agk+1) =gt 12 and Bg)k+1) — (ﬁﬁl + 5(9%&@1))2) s (34)

d*V=a;+ (N-1)/2 and p&Y

1 -1
= (/311 + §||AD£<’””|2) . (35)

In the case of the Jeffreys prior, the parameters are

HV=N/2 and BEY=2/ly - APFHVR,  (36)
af*V=1/2 and B =202, (37)

V=(N-1)/2 and B =2/ ApE V2. (38)

Remark 1: If the a posteriori law Eq. (26) without vy, is
considered, there is no need to sample this parameter [Eqs.
(34) and (37) are not useful] and yg)k)=0 in Eq. (29).

C. Sample PSF Parameters
The conditional law for PSF parameters is written

w**V ~ p(awly, &, 7 ) (39)
(k+1)
= exp| = —— - Amud " |, (40)

where parameters w are embedded in the PSF Ag. This
law is not standard and is intricate: no algorithm exists
for direct sampling and we use the Metropolis—Hastings
method to bypass this difficulty. In the Metropolis—
Hastings algorithm, a sample w, is proposed and ac-
cepted with a certain probability. This probability de-
pends on the ratio between the likelihood of the proposed
value and the likelihood of the current value w®. In prac-
tice, in the independent form described in appendix C,
with prior law as proposition law, it is divided into several
steps.
1. PROPOSITION: Sample a proposition:

wp~p(w) =Z/{[ab](w)- (41)
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2. PROBABILITY OF ACCEPTANCE: Calculate the criterion:

(k+1)
Jw®, _c
(W', wp) B (

Ij’ - AH,w(k):‘%(k-*—l)H2 - Hj’ - AH,wp&(k+1)|‘2) .

(42)
3. UPDATE: Sample ¢~ U 17 and take
P L iflogt <dJ

= 43

w w® otherwise (43)

D. Empirical Mean

The sampling of x, 7, and w is repeated iteratively until
the law has been sufficiently explored. These samples
[, 4® w®] follow the global a posteriori law of Eq.
(19). By the large-numbers law, the estimate, defined as
the posterior mean, is approximated by

1 K-1
F=F'l[&]~F' { => 5e<k>} ) (44)
Kk:o

As described by Eq. (44), to obtain an estimate of the im-
age in the spatial space, all the computations are
achieved recursively in the Fourier space with a single
IFFT at the end. An implementation example in pseudo
code is described Appendix D.

6. DECONVOLUTION RESULTS

This section presents numerical results obtained by the
proposed method. In order to completely evaluate the
method, true value of all parameters x, w, 7y, but also
Y1, Yo 18 needed. In order to achieve this, an entirely simu-
lated case is studied: image and noise are simulated un-
der their respective prior laws Eq. (12) and (13) with
given values of vy, 1, and v.. Thanks to this protocol, all
experimental conditions are controlled and the estimation
method is entirely evaluated.

The method has also been applied in different condi-
tions (lower signal-to-noise ratio, broader PSF, different
and realistic (non-simulated) images, and so on) and
showed similar behavior. However, in the case of realistic
images, since the true value of the hyperparameters vy,
and y; is unknown, the evaluation cannot be complete.

A. Practical Experimental Conditions

Concretely, a 128 X 128 image is generated in the Fourier
space as the product of a complex white Gaussian noise
and the a priori standard deviation matrix 3 =(yAJA,
+71AI)AD)‘1/2, given by Eq. (10). The chosen matrix Ap
results from the FFT-2D of the Laplacian operator
[010; 1-41;010]/8, and the parameter values are
v=1 and y;=2.

These parameters provide the image shown in Fig. 1(a):
it is an image with smooth features similar to a cloud.
Pixels have numerical values between —100 and 150, and
the profile line 68 shows fluctuations around a value of
-40.
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0 56 160 0 50 100
(a) True image (b) Data

50 100 0 50 100
(¢) Non-myopic (d) Myopic

Fig. 1. (a) 128 X128 sample of the a priori law for the object with y,=1 and y;=2. (b) Data computed with the PSF shown in Fig. 2. (¢)
and (d) Estimates with non-myopic and the myopic estimate, respectively. Profiles correspond to the 68th line of the image.

The a priori law for the hyperparameters are set to the
non-informative Jeffreys law by fixing the («;,3;) to (0,
+), as explained in Subsection. 3.C. In addition, the PSF + y%,(wa sin? o+ w 8 cos? ¢)
is obtained in the Fourier space by discretization of a nor-
malized Gaussian shape, +2v,vgsin ¢ cos e(w, - wp))], (45)

h(v,, vp) = exp[- 27 (Va(w,, cos® ¢ + w g sin? )
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with frequencies (v,,vg) € [-0.5;0.5]%. This low-pass filter,
illustrated in Fig. 2, is controlled by three parameters:

* Two width parameters w, and wg set to 20 and 7, re-
spectively. Their a priori laws are uniform: p(w,)
=U19 211(w,) and p(wg)=Ug g(w,) corresponding to an
uncertainty of about 5% and 15% around the nominal
value (see Subsection 3.D).

e A rotation parameter ¢ set to /3. The a priori law is
also uniform: p(@)=Us -2)(¢), corresponding to 50%
uncertainty.

Then, the convolution is computed in the Fourier space,
and the data are obtained by adding a white Gaussian
noise with precision y,=0.5. Data are shown Fig. 1(b):
they are naturally smoother than the true image, and the
small fluctuations are less visible and are corrupted by
the noise. The empirical mean level of the image is cor-
rectly observed (the null frequency coefficient of H,, is

}OLO=1) so the parameter vy, is considered a nuisance pa-
rameter. Consequently it is integrated out under a Dirac
distribution (see Section 4). This is equivalent to fix its
value to 0 in the algorithm of Appendix D, line 4.

Finally, the method is evaluated on two different situ-
ations.

1. The unsupervised and non-myopic case: the param-
eters w are known. Consequently, there is no M.H. step
(Subsection 5.C): lines 9-16 are ignored in the algorithm
of Appendix D, and w is set to its true value. To obtain
sufficient law exploration, the algorithm is run until the
difference between two successive empirical means is less
than 1073, In this case, 921 samples are necessary, and
they are computed in approximately 12 s on a processor
at 2.66 GHz with Matlab,

2. The unsupervised and myopic case: all the param-
eters are estimated. To obtain sufficient law exploration,
the algorithm is run until the difference between two suc-
cessive empirical means is less than 5x 1075, In this case,
18, 715 samples are needed, and they are computed in ap-
proximately 7 min.

Remark: The algorithm has also been run for up to
1,000,000 samples, in both cases, without perceptible
qualitative changes.

0.5

035 0 0.5

Fig. 2. PSF with w,=20, wg=7 and ¢=7/3. The x axis and y
axis are reduced frequency.

Orieux et al.

B. Estimation Results

1. Images
The two results for the image are given Figs. 1(c) and 1(d)
for the non-myopic and the myopic cases, respectively.

The effect of deconvolution is notable on the image, as
well as on the shown profile. The object is correctly posi-
tioned, the orders of magnitude are respected, and the
mean level is correctly reconstructed. The image is re-
stored, more details are visible, and the profiles are closer
matches to the true image than are the data. More pre-
cisely, pixels 20-25 of the 68th line of the image in Fig. 1
show the restoration of the original dynamic, whereas it is
not visible in the data. Between pixels 70 and 110, fluc-
tuations not visible in the data are also correctly restored.

In order to visualize and study the spectral contents of
the images, the circular average of the empirical power
spectral density is considered and is called “spectrum”
hereafter. The subjacent spectral variable is a radial fre-
quency f, such as f2= vi+ V2,3- The spectra of the true object,
data, and restored object are shown Figs. 3(a) and 3(b) in
the non-myopic and myopic cases, respectively. It is clear
that the spectrum of the true image is correctly retrieved,
in both cases, up to the radial frequency /= 0.075. Above
this frequency, noise is clearly dominant and information
about the image is almost lost. In other words, the
method produces correct spectral equalization in the
properly observed frequency band. The result is expected
from the Wiener—-Hunt method, but the achievement is
the joint estimation of hyperparameter and instrument
parameters in addition to the correct spectral equaliza-
tion.

Concerning a comparison between non-myopic and
myopic cases, there is no visual difference. The spectra in

10

10
—True
------ gmvolved image|
---Data
105 — Estimate
10°
107
-10 : “,
L 0 0.05 0.1 0.15 0.2
(a) Non-Myopic
10
10 —gue
----- onvolved image|
---Data
105 . - — Estimate
100 .......................
10°
-10) :
L 0 0.05 0.1 0.15 0.2
(b) Myopic

Fig. 3. Circular average of the empirical power spectral density
of the image, the convolved image, the data (convolved image cor-
rupted by noise), and the estimates, in radial frequency with the
y axis in logarithmic scale. The x axis is the radial frequency.
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Table 1. Error e [Eq. (46)] and Averaged Standard
Deviation & of the Posterior Image Law”

Data Non-myopic Myopic Best
Error (e) 11.092 % 6.241 % 6.253 %  6.235 %
o of x law - 3.16 3.25 -

“The “Best” error has been obtained with the knowledge of the true image.

Figs. 3(a) and 3(b) in the non-myopic and myopic cases,
respectively, are visually indistinguishable. This is also
the case when comparing Figs. 1(c) and 1(d) and espe-
cially, the 68th line. From a more precise quantitative
evaluation, a slight difference is observed is and detailed
below.

In order to quantify performance, a normalized Euclid-
ean distance

e =l - xl/lx7| (46)

between an image x and the true image x* is considered.
It is computed between the true image and the estimated
images as well as between the true image and the data.
Results are reported in Table 1 and confirm that the de-
convolution is effective with an error of approximately 6%
in the myopic case compared with 11% for the data. Both
non-myopic and myopic deconvolution reduce error by a
factor of 1.7 with respect to the observed data.

Regarding a comparison between the non-myopic and
myopic cases, the errors are almost the same, with a
slightly lower value for the non-myopic case, as expected.
This difference is consistent with the intuition: more in-
formation is injected in the non-myopic case through the
true PSF parameter values.

2. Hyperparameters and Instrument Parameters
Concerning the other parameters, their estimates are
close to the true values and are reported in Table 2. The
v, estimate is very close to the true value with y.=0.49
instead of 0.5 in the two cases. The error for the PSF pa-
rameters are 0.35%, 2.7%, and 1.9% for w,, wg, and ¢, re-
spectively. The value of y; is underestimated in the two
cases, with approximately 1.7 instead of 2. All the true
values fall in the g+34 interval.

In order to deepen the numerical study, the paper
evaluates the capability of the method to accurately select
the best values for hyperparameters and instrument pa-
rameters. To this end, we compute the estimation error
Eq. (46) for a set of “exhaustive” values of the parameters
[Ye> ¥1,Wa,wg, ¢]. The protocol is the following: (1) choose
a new value for a parameter (y,, for example) and fix the
other parameters to the value provided by our algorithm,
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(2) compute the Wiener—Hunt solution (Subsection 5.A),
and (3) compute the error index.

Results are reported in Fig. 4. In each case, smooth
variation of error is observed when varying hyperparam-
eters and instrument parameters, and unique optimum is
visible. In this way, one can find the values of the param-
eters that provide the best Wiener—Hunt solution when
the true image x" is known. This is reported in Table 1
and shows almost imperceptible improvement: optimiza-
tion of the parameters (based on the true image x) allows
negligible improvement (smaller than 0.02% as reported
in Table 1).

Thus the main conclusion is that the proposed unsuper-
vised and myopic approach is a relevant tool for tuning
parameters: it works (without knowledge of the true im-
age) as well as being an optimal approach (based on the
knowledge of the true image).

C. A Posteriori Law Characteristics

This section describes the a posteriori law using histo-
grams, means and variances of the parameters. The
sample histograms, Figs. 5 and 6, provide an approxima-
tion of the marginal posterior law for each parameter.
Tables 1 and 2 report the variance for the image and law
parameters respectively and thus allow to quantify the
uncertainty.

1. Hyperparameter Characteristics

The histograms for y. and y;, Fig. 5, are concentrated
around a mean value in both non-myopic and myopic
cases. The variance for vy, is lower than the one for y;, and
it can be explained as follows.

The observed data are directly affected by noise
(present at the system output), whereas they are indi-
rectly affected by the object (present at the system input).
The convolution system damages the object and not the
noise: as a consequence, the parameter vy, (which drives
noise law) is more reliably estimated than vy; (which
drives object law).

A second observation is the smaller variance for y; in
the non-myopic case, Fig. 5(c), than in the myopic case,
Fig. 5(d). This is the consequence of the addition of infor-
mation in the non-myopic case w.r.t. the myopic one,
through the value of the PSF parameters. In the myopic
case, the estimates are based on the knowledge of an in-
terval for the values of the instrument parameters,
whereas in the non-myopic case, the estimates are based
on the true values of the instrument parameters.

Table 2. Quantitative Evaluation: True and Estimated Values of Hyperparameters and PSF Parameters

Yex 0o Vi£0 Woto Wexo [EYo
Case True Value 0.5 2 20 7 1.05 (7/3)
Non-myopic Estimate 0.49+0.0056 1.78+0.14 - -
Error 2.0 % 11 % - - -
Myopic Estimate 0.49+0.0056 1.65+0.15 20.07+0.53 7.19+0.38 1.03+0.04
Error 2.0 % 18 % 0.35 % 2.7 % 1.9 %
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(Color online) Computation of the best parameters in the sense e, Eq. (46). The symbol X is the minimum and the dot is the
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estimated value with our approach. The y axes of y, and vy, are in logarithmic scale.
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Fig. 5. Histograms and chains for the non-myopic case [(a) and
(c)] and the myopic case [(b) and (d)] for y, and y;, respectively.
The symbol X on the y axes localizes the initial value, and the
dashed line corresponds to the true value. The x axes are the it-
eration’s index for the chains (bottom of figures) and the param-
eter value for the histograms (top of figures).

2. PSF Parameter Characteristics

Figure 6 gives histograms for the three PSF parameters
and their appearance is quite different from the one for
the hyperparameters. The histograms for w, and wy,
Figs. 6(a) and 6(b), are not as concentrated as the one of
Fig. 5 for hyperparameters. Their variances are quite
large with respect to the interval of the prior law. In con-
trast, the histogram for the parameter ¢, Fig. 6(c), has the
smallest variance. It is analyzed as a consequence of a
larger sensitivity of the data w.r.t. the parameter ¢ than
w.r.t. the parameters w, and wg. In an equivalent man-
ner, the observed data are more informative about the pa-
rameter ¢ than about the parameters w, and wg.

3. Mark of the Myopic Ambiguity

Finally, a correlation between parameters (y;,w,) and
(y1,wp) is visible on their joint histograms, Fig. 7. It can
be interpreted as a consequence of the ambiguity in the
primitive myopic deconvolution problem, in the following
manner: the parameters y; and w both participate in the
interpretation of the spectral content of data, y;, as a
scale factor and w as a shape factor. An increase of w, or
wg results in a decrease of the cutoff frequency of the ob-
servation system. In order to explain the spectral content
of a given data set, the spectrum of the original image
must contain more high frequencies, i.e., a smaller v;.
This is also observed on the histogram illustrated, Fig.
7(a)

D. MCMC Algorithm Characteristics
Globally, the chains of Figs. 5 and 6, have a Markov fea-
ture (correlated) and explore the parameter space. They
have a burn-in period followed by a stationary state. This
characteristic has always been observed regardless of the
initialization. For fixed experimental conditions, the sta-
tionary state of multiple runs was always around the
same value. Considering different initializations, the only
visible change is on the length of the burn-in period.
More precisely, the chain of vy, is concentrated in a
small interval, the burn-in period is very short (fewer
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Fig. 6. Histogram and chain for the PSF parameters (a) w,,, (b) wg, and (c) ¢. The symbol X on the y axes localizes the initial value, and
the dashed line corresponds to the true value. The x axis for the histograms and the y axis of the chain are limits of the a priori law.

than 10 samples), and its evolution seems independent of
the other parameters. The chain of y; has a larger explo-
ration, the burn-in period is longer (approximately 200
samples), and the histogram is larger. This is in accor-
dance with the analysis of Subsection 6.C.1.

Regarding PSF parameters, the behavior is different
for (w,,wp) and ¢. The chain of the two width parameters
has a very good exploration of the parameter space with a
quasi-instantaneous burn-in period. Conversely, the chain
of ¢ is more concentrated, and its burn-in period is ap-
proximately 4,000 samples. This is also in accordance
with previous analysis (Subsection 6.C.2).
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Fig. 7. Joint histograms for the couple (a) (y;,w,) and (b)
(v1,wp). The x and y axes are the parameter values.

Table 3. Acceptance Rate

Parameter
w, wg @
Acceptance rate 14.50 % 9.44 % 2.14 %

Acceptance rates in the Metropolis—Hastings algorithm
are reported in Table 3: they are quite small, especially
for the rotation parameter. This is due to the structure of
the implemented algorithm: an independent Metropolis—
Hastings algorithm with the prior law as a proposition
law. The main advantage of this choice is its simplicity,
but as a counterpart, a high rejection rate is observed due
to a large a priori interval for the angle parameter. A fu-
ture study will be devoted to the design of a more accurate
proposition law.

E. Robustness of Prior Image Model

Figure 8 illustrates the proposed method on a more real-
istic image with heterogeneous spatial structures. The
original is the Lena image, and the data have been ob-
tained with the same Gaussian PSF and also with corrup-
tion by white Gaussian noise. Figure 8(b) shows that the
restored image is closer to the true one than are the data.
Smaller structures are visible and edges are sharper, for
example, around pixel 200. The estimated parameters are
7.=1.98 while the true value is y:=2. Concerning the PSF
parameters, the results are w,=19.3, Wg=7.5 and ¢
=1.15, while the true values are, respectively, w2=20,
w;=7 and ¢ =1.05 as in Subsection 6.B. Here again, the
estimated PSF parameters are close to the true values,
giving an initial assessment of the capability of the
method in a more realistic context.

7. CONCLUSION AND PERSPECTIVES

This paper presents a new global and coherent method for
myopic and unsupervised deconvolution of relatively
smooth images. It is built within a Bayesian framework
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Fig. 8. (Color online) (a) Observed image and (b) restored image. Profiles correspond to the 68th line. The solid curve is the true profile,
and the dashed curve correspond to (a) data and (b) estimated profiles.

and a proper extended a posteriori law for the PSF pa-
rameters, the hyperparameters, and the image. The esti-
mate, defined as the posterior mean, is computed by
means of an MCMC algorithm in less than a few minutes.

Numerical assessment attests that the parameters of
the PSF and the parameters of the prior laws are pre-
cisely estimated. In addition, results also demonstrate
that the myopic and unsupervised deconvolved image is
closer to the true image than are the data and shows true
restored high frequencies as well as spatial details.

The paper focuses on a linear invariant model often en-
countered in astronomy, medical imaging, and nonde-
structive testing and especially in optical problems. Non-
invariant linear models can also be considered in order to
address other applications such as spectrometry [4] or
fluorescence microscopy [13]. The loss of the invariance
property precludes entirely Fourier-based computations,
but the methodology remains valid and practicable. In
particular, it is possible to draw samples of the image by
means of an optimization algorithm [38].

Gaussian law, related to Ly penalization, is known for
possible excessive sharp edges penalization in the re-
stored object. The use of convex Ly,—L; penalization
[39—-41] or non-convex Lgy—-L, penalization [42] can over-
come this limitation. In these cases a difficulty occurs in
the development of myopic and unsupervised deconvolu-
tion: the partition function of the prior law for the image
is in intricate or even unknown dependency w.r.t. the pa-
rameters [1,7,43]. However a recent paper [41] overcomes

the difficulty, resulting in an efficient unsupervised de-
convolution, and we plan to extend this work for the myo-
pic case.

Regarding noise, Gaussian likelihood limits robustness
to outliers or aberrant data, and it is possible to appeal to
a robust law such as Huber penalization in order to by-
pass the limitation. Nevertheless, the partition function
for the noise law is again difficult or impossible to man-
age, and it is possible to resort to the idea proposed in [41]
to overcome the difficulty.

Finally, estimation of the parameters of the correlation
matrix (cutoff frequency, attenuation coefficients, etc.) is
possible within the same methodological framework. This
could be achieved for the correlation matrix of the object
or the noise. As for the PSF parameters, the approach
could rely on an extended a posteriori law, including the
new parameters and a Metropolis—Hastings sampler.

APPENDIX A: LAW IN FOURIER
SPACE

For a Gaussian vector x ~N(u,Y), the law for x=Fx (the
FFT of x) is also Gaussian, whose first two moments are
the following:

e The mean is

o= E[%] = Fi[&] = Fu. (A1)
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e The covariance matrix is
2 =E[(@ - @& - )] = FEF". (A2)

Moreover, if the covariance matrix ¥ is circulant, it is
written

S =F3F'=Ay, (A3)

i.e., the covariance matrix 3 is diagonal.

APPENDIX B: GAMMA PROBABILITY
DENSITY

1. Definition
The gamma pdf for y>0, with given parameter «>0 and
B>0, is written

G(¥|a,B) = "L exp(- ¥/B). (B1)

BT (a)

Table 4 gives three limit cases for («,B). The following
properties hold:

e The mean is Eg[y]=ap.
* The variance is Vg[y]=af?
e The maximizer is B(a-1) if and only if o> 1.

2. Marginalization

First consider an N-dimensional zero-mean Gaussian vec-
tor with a given precision matrix yI' with y>0. The pdf
reads

p(xly) = (2m)N2N2 det[I']V2 exp[— ' Tx/2]. (B2)

So consider the conjugate pdf for y as a gamma law with
parameters («,B) (see Appendix B.1). The joint law for
(x, ) is the product of the pdf given by Eqgs. (B1) and (B2):
p(x,y)=p(x|y)p(y). The marginalization of the joint law is
known [44]:

plx)= f p|y)p(ydy
R

B2 det[T']°T'(a + N/2) BxtTa | V72

= 1+ )
2mNT (@) 2

(B3)

Table 4. Specific Laws Obtained As Limit of the

Gamma PDF
Law a B
Jeffreys 0 +oo
Uniform 1 +o0
Dirac — 0
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which is an N-dimensional ¢-Student law of 2« degrees of
freedom with a BI' precision matrix. Finally, the condi-
tional law reads

(2 77) -N/2 det[r]1/2

T Y21 oxpl - vt Tx/2 + 1/8].
a

p(Yx) =

(B4)

Thanks to conjugacy, it is also a gamma pdf with param-
eters @, B8 given by @=a+N/2 and B 1=B1+2/(x'Tx).

APPENDIX C: METROPOLIS-HASTINGS
ALGORITHM

The Metropolis—Hastings algorithm provides samples of a
target law f(w) that cannot be directly sampled but can be
evaluated, at least up to a multiplicative constant. Using
the so called “instrument law” q(wp|w(t)), samples of the
target law are obtained by the following iterations:

1. Sample the proposition w,~q(w,|w?).
2. Compute the probability:

) fe) gy o
P fw?) q(w,[w®)’ " |

3. Take

with p probability

w
(t+1) — P 2
W {w(‘) with 1 - p probability €2

At convergence, the samples follow the target law f(w)
[25,36]. When q(wp|w(t))=q(wp) the algorithm is named
independent Metropolis—Hastings. In addition, if the in-
strument law is uniform, the acceptance probability be-
comes simpler:

) flwy)
p=1min fm,l . (03)

APPENDIX D

Pseudo-code algorithm. gamrnd, rand and randn draw
samples of the gamma-variable, uniform-variable, and
zero-mean unit-variance white complex Gaussian vector,
respectively.
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o
1: Initialization of [x©, y9 w©® £=0]

3:

10:

2: repeat

[
% Sample of x
S v A+ A AP AP

o
4 p— y(fk)z_lA;y

[
5. a®— pu+3712 #randn
% Sample of y
y(ek) - gamrnd(asy :85)

7(1k) —gamrnd(a,, By)

N o

8: yg” —gamrnd(«y, By)
% Sample of w
9: wy—rand*(a-b)+a

J = ylly - gl = lly - Ao %) /2
if log(rand) <min{J/,0} then

12: w(k)pr
13: AH<—AH,Wp
14: else
15: wh —g*-1
16: end if

% Empirical mean
17: k—k+1

o o :
18: 2B 30/

19: until |x* -x*-V|/|x®| < criterion
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