
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020 1059

SPRITE: 3-D SParse Radar Imaging TEchnique
Thomas Benoudiba-Campanini , Jean-François Giovannelli, and Pierre Minvielle

Abstract—An original 3-D high resolution radar imaging ap-
proach, called SPRITE for “SParse Radar Imaging TEchnique,”
is presented. It incorporates in an original way the available prior
knowledge about the electromagnetic backscattering, extending the
commonly used sparse point-wise scatterers to sparse facet-wise
scatterers. It is based on a regularization scheme that accounts for
information of sparsity and support. The radar map formation
is performed efficiently based on a penalized and constrained
criterion, and an Alternating Direction Method of Multipliers
algorithm, largely used in image restoration and machine learning.
It is customized in a such way that, at each iteration, the map
update is fast in the frequency domain by 3-D FFT and IFFT while
the updates of the auxiliary variables are direct and separable.
SPRITE is both evaluated on synthetic and real measurement
data from a spherical measurement setup. In comparison to the
conventional method, called Polar Format Algorithm, the reso-
lution is drastically enhanced. The main scatterers are recovered
with increased accuracy, leading to a deeper understanding of the
scattering behavior. Furthermore, compared to recent �1 based
methods that are limited to point-wise scatterers, SPRITE and its
facet-wise scatterers provide an impressive and improved spatial
backscattering representation.

Index Terms—3-D radar imaging, high resolution, inverse
problem, sparse regularization, penalty, constraint, ADMM.

I. INTRODUCTION

RADAR imaging, i.e. the map or image formation of the spa-
tial distribution of reflectivity or backscattering, is often

used for analysis purpose [1]. It helps to identify and characterize
the radar reflective components of complex objects, with the aim
to reduce the radar target signature (e.g. stealthy targets) or con-
versely to enhance it (e.g. corner reflectors on lifeboats). If one-
dimensional (1D) backscattering profiles and two-dimensional
(2D) backscattering maps have been widespread tools since the
late 1970’s, 3-D backscattering maps are far more complex to
process. Indeed, 3-D radar imaging requires a time-consuming
collection of the backscatter field data, i.e. an entire 2-D aper-
ture, from which 3-D maps are formed. Conventional imaging
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methods, such as Polar Format Algorithm (PFA) or Filtered
Backprojection (FBP) [1], are known to provide only moderate
or even poor quality and resolution maps [1], [2].

To get high resolution (HR), it is essential to account for in-
formation and the paper introduces an idea of sparsity, meaning
that the backscatter data can be explained with a low number of
elements. Various methods had been proposed in the past. Let us
mention the greedy algorithm CLEAN [3], [4] and the spectral
methods, ESPRIT [5], [6] and MUSIC [7]–[9]. Notice that they
do not deal with an image but rather with a set of point-wise
elements. More recently, radar imaging has been considered as
an inverse problem and solved by taking into account sparsity
promoting priors [10]–[12]. In [13]–[17], radar imaging lies on
the construction and optimization of a �1 penalized criterion.
Similarly, a Bayesian strategy with a Laplacian prior law is
applied in [18] to 2D Doppler radar imaging. Other works [13],
[19] consist in sparse approaches that reconstruct simultane-
ously homogeneous areas and point-wise scatterers. It must be
stressed that all the above mentioned methods lie on a model
of point-wise scatterers. That turns out not to be completely
coherent with the large range of wave-target interactions and
specular reflections.

In this article, we propose an innovative sparsity promoting
method for 3-D radar imaging. It is named SPRITE for “SParse
Radar Imaging TEchnique”. The SPRITE is based on a reg-
ularization approach resting on a �1-based penalized criterion
that can include a support constraint. It tends to exhibit a limited
number of plane facet-wise scatterers, possibly reduced to point-
wise scatterers. It is consistent with a broader class of targets and
wave-target interactions. The proposed constrained and convex
non-differentiable criterion can be efficiently minimized by the
primal-dual approach ADMM [20]. Based on an augmented
Lagrangian procedure, it is specifically designed to take into
account the specific problem structure. In the context of Radar
Cross Section (RCS) analysis, i.e. radar signature analysis,
applications to both simulated and real backscatter data show
that the 3-D radar image resolution is drastically enhanced. Note
that additional information can be found in [21] that presents the
method for 1D backscattering profiles and in [22] that focuses
on the radar data acquisition schema.

The article is organized as follows. In Section II the RCS
data acquisition process is presented and the forward model
is introduced. Section III is dedicated to the SPRITE where
the estimated map is defined as the minimizer of a criterion
including penalties and constraints. In Sections IV and V, re-
sults are respectively discussed for synthetic and real scattering
measurements data. Finally, the conclusions are summarized in
Section VI, including a few perspectives.
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II. PROBLEM FORMULATION

A. RCS Data Acquisition

In standard RCS analysis, a monostatic radar illuminates
an object with a quasi-planar monochromatic continuous wave
(CW) of given frequency f and given wave vector k of mag-
nitude k and unit direction k̂ (see [23] for details). The inci-
dent field is a vector Ei of complex amplitude Ei. The object
backscatters a CW with the same frequency. The scattered field is
a vector Es of complex amplitude Es. The complex scattering
coefficient σ quantifies the object-wave interaction, including
both amplitude and phase of the fields; it is linked with the RCS.
Indeed, they can be defined in far field condition by:

σ = 2
√
πR

Es(R)

Ei(R)
; RCS = |σ|2 (1)

where R is the radar-object distance, large compared to the
wavelength.

B. Forward Model

Let us introduce a(r), also denoted a(x, y, z), the spatial
scattering distribution at the spatial position vector r = [x y z]t

in the spatial coordinate space (O x̂ ŷ ẑ). It does not depend
on k in a “small angle small bandwidth” context [24] where
the variations of k are small enough around kc, a central
wave vector of interest. The classical forward model derives
from optical physics and stationary-phase approximation in high
frequency [25]. It is given by:

σ(k) =

∫∫∫
D
a(r) exp [−2jπk · r] d r, (2)

where D is the field-of-view. Note that it also derives from
the Born approximation which is more suitable for problems
involving semi-transparent targets and long wavelengths [26].
Nevertheless, such a model leaves out various physical phe-
nomena: multiple scattering, creeping waves, shadowing, etc.
Yet, it is extensively used because it makes the observation
model linear, at the cost of possible artifacts in the reconstructed
scattering map [27].

The complex scattering coefficient σ can be measured with an
appropriate instrumentation system (antenna, network analyzer,
etc.) and a calibration process. Let us collect M measured
scattering coefficients, for M wave vectors k1,k2, . . . ,kM .
Otherwise, let us discretize the spatial scattering distribution
into N voxels (N = NxNyNz where Nx, Ny and Nz are re-
spectively along the x̂, ŷ and ẑ axis). Then, model (2) leads to
the discretized linear observation model:

σ = Ha+ n (3)

whereσ ∈ CM is the observation vector,a∈ CN the vectorized
scattering map, n∈ CM the noise vector accounting for model
and measurement errors, and H ∈ CM×N the model matrix.
Note that this linear model is classical and appears in many
other domains (see for example [28], [29]).

If the acquisition wave vectors k1,k2, . . . ,kM lie on a k-
space Cartesian grid it can be shown that H can be expressed

as (see proof in appendix A):

H = α
√
N ΔΨSFΔΦ (4)

where α∈ C is a complex coefficient accounting for the ori-
gin phase difference of the spatial and the k-space grids,
S ∈ RM×N is a 0/1-binary selection (or sampling) matrix (S
discards unobserved spatial frequencies), F ∈ CN×N is an uni-
tary 3-D discrete Fourier transform matrix, ΔΨ ∈ CM×M and
ΔΦ ∈ CN×N are diagonal phase shifting matrices, respectively
in the k-space and in the spatial domain. As it is, eq. (4) involves
a discrete Fourier transform on a Cartesian grid, so it can be
computed in a very efficient way by FFT.

In order to take advantage of this crucial efficiency, a standard
step is to include a regridding process. Note that we use an
incomplete nearest neighbor regridding process (see description
in appendix B). This method consists in examining the acquisi-
tion grid, rather than the Cartesian grid with other interpolation
methods, and assigning each measure from the acquisition grid
to the closest point of the Cartesian grid. Let us stress that this
method does not require the problematic addition of synthetic
data: it does not affect value where there is no measurement and
it does not force the unobserved coefficients to zero nor another
value. At some point, a part of the resolution improvement also
results from this particular reggriding.

C. Inverse Problem

Considering the linear observation model (4), the goal is to
determine the scattering mapa from the observed vectorσ from
(3). In this way, it is clearly an inverse problem [29]. Then, it must
be stressed that H is and not invertible since N � M , i.e. the
number of unknowns is far larger than the data dimension. It is
then mandatory to regularize the problem. In one way or another,
that involves incorporating prior information on the unknown
scattering map a [28], [30].

That is how conventional methods work more or less explic-
itly. Thus, standard Polar Format Algorithm (PFA) [1], [24] turns
out to be equivalent to the minimum-norm least-squares solution
when the observations are arranged on a Cartesian grid [23].
On one hand, the image resolution is limited by the frequency
bandwidth for the range resolution and on the other hand by
the angular diversity of observations and the wavelength for the
cross-range resolution [1]. Moreover, according to the Fourier
theory, the finite bandwidth of the radar leads to a particu-
lar point spread function: a cardinal sine defocusing function
around the scattering centers. This is particularly problematic in
RCS analysis because low scatterers may be hidden by a high
sidelobe. Many methods, mainly based on a spectral weighting
called apodization, had been studied in the past to enhance the
Peak to SideLobe Ratio (PSLR). However, even if the PSLR is
significantly improved, the main lobe beamwidth is increased at
the same time, leading to a degraded resolution.

More recently, [13]–[17] have proposed sparse regularization
methods for RCS imaging. They rest on the minimization of a
criterion with a least square term and a sparse promoting penalty
such as the �1 norm of the scattering map. The results are similar
to those that can by obtained with greedy algorithms such as
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Fig. 1. Various electromagnetic interactions (k̂: wave vector direction). From
facet specular scattering (1), segment scattering (2) and point-wise scattering
(3) to more complex phenomena (above).

CLEAN [3], [4] and Orthogonal Matching Pursuit methods [17],
as well as spectral estimation methods such as ESPRIT [5], [6]
and MUSIC [7], [9]. In all cases, the estimated map is made
up of scattering points. And yet, it is well known that in a high
frequency context, specular reflections are the main scattering
mechanisms [31]. Thus, the 3-D map should not only be com-
posed of scattering points but also of scattering segments and flat
surfaces also called specular (plane) facets [32]. See Fig. 1 for
a quick recap on electromagnetic scattering phenomena. They
account for diffractions and specular reflections with local plane
surface orthogonal to the wave vector. The proposed SPRITE,
by reformulating sparsity, provides an efficient way to take into
account these various wave-object interactions, leading to high
quality and resolution images.

III. THE SPRITE

A. Backscattering Prior Knowledge

Let us make the radar imaging context more precise. A
monostatic radar illuminates an object whose surface is smooth
relatively to the radar wavelength. Again, we consider a high
frequency situation where physical optics and the forward model
(2) apply. Moreover, let us mention that the ẑ axis is chosen to
be collinear to the central wave vector kc.

In this context, even before getting the measurements, it is
possible to formulate a comprehensive knowledge about the
backscattering that returns to the radar. It can be expressed
through the five following priors on the 3-D map a.

1) Sparsity: as illustrated in Fig. 2, there is a small number
of planes P tangent to the target surface and orthogonal
to kc. By definition, only these planes contain scattering
points, scattering segments and specular facets. Thereby,
as shown in Fig. 3, for nz = 0, . . . Nz − 1 the projection
P (nz) of a onto ẑ is sparse:

P (nz) =

Nx−1∑
nx=0

Ny−1∑
ny=0

anx,ny,nz

Fig. 2. Planes tangent to the target surface and orthogonal to k̂c

Fig. 3. Specular plane facets and projection of a onto ẑ.

Fig. 4. a is made up of a small number of connected facets (A) rather than
many unconnected facets (B).

2) Compactness: as the target surface is smooth relative to
the wavelength, the map a is made up of a small number
of specular facets which are connected in a topological
sense (see Fig. 4).

3) Piecewise constant: the scattering coefficient is constant
all over each facet [31]. Thus, the map a is piecewise
constant. Indeed, the backscattering is supposed to come
from a homogeneous part of the locally smooth object
or from a local material interface where the material
properties are invariant, and so the proper amplitude and
phase do not vary on the specular facet.

4) Low energy: the map energy

E =

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

|anx,ny,nz
|2
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is low. This assumption is particularly true for stealth tar-
gets [23]. Moreover, this prior promotes “non-explosive”
maps because it enforces smoothness by improving the
conditioning of the problem.

5) Limited support: the electromagnetic extent of the target
lies in a finite spatial support outside the reflectivity is
assumed to be 0, as explained in [33]. Notice that this
prior can be loosen : if no prior information on the support
is available, the chosen support should be the whole space.

B. Criterion, Penalties and Constraint

From now on, the approach consists in constructing a criterion
for which the estimated scattering map â is the minimizer.
Firstly, it requires to take into account the coherence with the
observed data σ. Secondly, for regularization purpose, it is
appropriate to incorporate the previously detailed priors. With
this aim, we propose an approach based on a penalized and
constrained criterion.

Let us start by expressing each prior with an associated penalty
term that will favour coherent solutions.
� Prior 1) results in a ‖Pa‖1 penalty whereP is a projection

matrix onto ẑ.
� Priors 2) and 3) lead to ‖Dxa‖1 and ‖Dya‖1 penalties,

where Dx and Dy are the pixel-wise difference matrices
along the x̂ and ŷ axis. Note that they correspond to an
anisotropic total variation [34] along the x̂ and ŷ axis.
Furthermore, a circulant approximation is made to these
3-level Tœplitz matrices in order to reduce the computa-
tional cost [35]. Note that this approximation is valid when
the object is centered within a large enough field-of-view
(see [36] for details about the matrices structure).

� Prior 4) result in a ‖a‖22 penalty. It also ensure the strict
convexity of the further criterion and then the uniqueness
of the solution.

� Prior 5) is not expressed by a penalty but by a constraint
set C.

Consequently, let us introduce the following criterion:

J (a) =
1

2
‖σ −Ha‖22 + μ ‖Pa‖1

+ λ ‖Dxa‖1 + λ ‖Dya‖1 +
ν

2
‖a‖22

(5)

where ‖σ −Ha‖22 is the data fitting term and μ, λ and ν are
positive regularization parameters. They control the trade-off
between the data fitting term and the penalties and so they affect
J (a) and finally the estimated map. Finally, the estimated map
â is defined as :

â = argmin
a∈CN

{
J (a)

s.t. a ∈ C (6)

where C is a closed convex constraint set [20]. Admittedly the
criterion (5) is convex, but �1 norms make it non-differentiable.
Moreover, when ν > 0, the criterion is strictly convex. This
ensures the existence and uniqueness of the solution (6) (see [37]
for the proof).

C. Convex Non-Differentiable Optimization

First of all, let us emphasize that this high-dimensional op-
timization problem (6) is tricky. This notwithstanding, there is
a vast literature devoted to non-differentiable convex minimiza-
tion. For instance, we can cite:
� �1 smoothing methods [38] (e.g. the �1 norm is replaced

by a differentiable Huber function),
� subgradient methods [39],
� proximal gradient methods such as the Forward Backward

Splitting [40], [41] with its accelerated version the Fast
Iterative Thresholding Algorithm [42],

� primal-dual methods such as the dual ascent method, the
method of Lagrange multipliers and the Alternating Direc-
tion Method of Multipliers (ADMM) [20] (see also [43]
and [44]).

The ADMM method belongs to the convex optimization algo-
rithms class. It is based on an augmented Lagrangian approach
and is very suitable to find the constrained solution (6). More-
over, in our case, the convergence is known to be guaranteed
because J (a) is strictly convex for ν > 0 [45]. In an ADMM
form, the optimization problem (6) can be reformulated by:

â = argmin
a,v

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K(a,v)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

vP = Pa
vx = Dxa
vy = Dya
vC = a

(7)

where

K(a,v) =
1

2
‖σ −Ha‖22 + μ ‖vP ‖1 + λ ‖vx‖1

+ λ ‖vy‖1 +
ν

2
‖a‖22 + IC(vC)

and with v = [vP ,vx,vy,vC ] the vector of auxiliary variables
and IC the characteristic function of C:

IC(v) =
{
0, if v ∈ C
+∞ otherwise

.

Note that the solutions (6) and (7) are strictly equal: indeed,
for any couple (ā, v̄) that meets the constraints of (7), we have
K(ā, v̄) = J (ā) and ā ∈ C so, minimisation of J (a) w.r.t. a
s.t. a ∈ C amounts to minimisation of K(a,v) w.r.t. (a,v).

Let us now introduce the Lagrangian function of the prob-
lem (7). For numerical efficiency we consider the augmented La-
grangian function and for notational convenience the so-called
version is preferred [45], [46]:

L(a,v,u) = K(a,v) +
ρC
2

(
‖a− vC + uC‖22 − ‖uC‖22

)

+
ρP
2

(
‖Pa− vP + uP ‖22 − ‖uP ‖22

)

+
ρD
2

(
‖Dxa− vx + ux‖22 − ‖ux‖22

+ ‖Dya− vy + uy‖22 − ‖uy‖22
)

(8)

whereu = [uP ,ux,uy,uC ] is the vector of the scaled Lagrange
multipliers and ρ = [ρP , ρD, ρC ] is the vector of the strictly
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positive constant penalty parameters. Note that, contrary to the
regularization parameters, the penalty parameters do not affect
the solution: indeed, when the constraints are met L(a,v,u) =
K(a,v). As a consequence, they only drive the convergence
rate [45]. Let us stress that the Lagrangian formulation is proved
to be suitable to solve such a problem problem because (8) is
quadratic, strictly convex and differentiable with respect to a
(see proof in appendix C) and separable with respect to the other
variables.

The pseudo-code of the SPRITE algorithm is detailed below.
It is an iterative algorithm that alternates updates of the mapa

and of the auxiliary variables v and u. Let us examine in detail
these updates.
� The a-update is obtained by nullifying the gradient of (8)

(see proof in appendix C). That leads to:

a(k+1) = G−1d(k) (9)

where d(k) = H†σ + t(k) with

t(k) = ρPP
†(v(k)

P − u
(k)
P ) + ρC(v

(k)
C − u

(k)
C )

+ ρD
[
D†

x(v
(k)
x − u(k)

x ) +D†
y(v

(k)
y − u(k)

y )
]
,

where † denotes the Hermitian transpose and
G = H†H + ρPP

†P + ρD(D†
xDx +D†

yDy) + (ν +

ρC)IN . It must be noted that H†H , P †P , D†
xDx, D†

yDy

and IN are in relation with linear shift-invariant filters,
more specifically circular shift invariant1 so these matrices
are 3-level circulant matrices (proofs are given in [36],
pp. 173–182). Thus, G is also a 3-level circulant matrix
which can be diagonalized in the Fourier domain (see [47],
[48]): G = F †ΛGF . It follows that the a-update can be
computed quickly by using 3-D FFT and IFFT:

a(k+1) = αNF †Λ−1
G F (Δ†

ΦF
†StΔ†

Ψσ + t(k)) (10)

1Rigorously, Dx and Dy are basically shift-invariant and not circular shift
invariant but they are approximated as circular shift invariant. The approximation
is valid since the object is in the center of the field of view.

TABLE I
SYNTHETIC MAP FACETS

Note that Δ†
ΦF

†StΔ†
Ψσ is basically the PFA map; it can

be precomputed efficiently with 3-D FFT and IFFT.
� The v-update can be written (see proof in appendix D):

v
(k+1)
P = Sμ/ρP

(
Pa(k+1) + u

(k)
P

)

v(k+1)
x = Sλ/ρD

(
Dxa

(k+1) + u(k)
x

)

v(k+1)
y = Sλ/ρD

(
Dya

(k+1) + u(k)
y

)

v
(k+1)
C = PC(a(k+1) + u

(k)
C ) (11)

where PC is the Euclidean projection onto C and S the soft
thresholding operator for complex variables [46]:

Sλ(v) =
max{|v| − λ, 0}

max{|v| − λ, 0}+ λ
v (12)

and it also known as the proximity operator of the �1 norm.
Let us emphasize that the v and u updates are direct and
separable.

On the whole, let us stress that the non-quadratic, non-
differentiable and constraint problem (7) is solved very effi-
ciently by the ADMM. More specifically, the latter alternates
updates that requires a large system solver but computable by
FFT and IFFT (see (11)) and updates that are separable, so
computed in parallel (see (10). Moreover, let us emphasize that
due to the strict convexity of the criterion (5), the ADMM is
known to converge towards Green a the unique solution â.

IV. VALIDATION ON SYNTHETIC DATA

The SPRITE is first validated on synthetic data. Let us con-
sider a map with three specular facets forming the letters “C,”
“E” and “A”; the normals are collinear to the central wave vector
kc. The longitudinal position, the amplitude and the phase shift
of each facet are detailed in Table I. Fig. 5(a) provides a 3-D
representation of this synthetic map as well as a longitudinal cut
along (x̂ẑ).

Data are simulated with the observation model (3) for wave
frequencies varying from 8 to 12 GHz with increments of 5 MHz
and angle variation θ = [−15◦ : 1◦ : 15◦] and ϕ = [−15◦ : 1◦ :
15◦]. A white Gaussian noise is added to the data and the SNR
is −7, 7 dB.

The RCS map is computed on a grid with N = 106 voxels
(Nx ×Ny ×Nz = 100× 100× 100). In Fig. 5, the SPRITE
is compared to the conventional PFA and to �1 norm penaliza-
tion method [13], [15]–[17]. The regularization parameters are
manually tuned: μ = 10, λ = 100, ν = 150.

In comparison to the PFA map, the resolution is drastically
increased with the proposed SPRITE. The facets are perfectly
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Fig. 5. 3-D RCS maps. First two columns: spatial representation. Third column: spectral representation. From top to bottom: Synthetic map, PFA, �1 norm
regularization [16] (μ = 0, 01), SPRITE.
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Fig. 6. Criterion and Lagrangian functions versus iterations.

Fig. 7. Comparison of the PFA and the SPRITE RMSE for different SNR.

located and their amplitude and phase well estimated. Moreover,
as the SPRITE takes into account the possible presence of
specular facets, the resolution of the reconstructed map is better
than the one estimated with the �1 penalization method which
only promotes scattering points.

In the right column of Fig. 5, the k-space contents of the maps
are compared. The x-axis is the distance from the origin of the k-
space and the y-axis is the RCS. The observed part of the k-space
is represented between the dashed vertical lines. It can be noticed
that contrary to the PFA, the SPRITE correctly completes the
k-space outside of the observed part. Moreover, the �1 method
overestimates the low and high spatial-frequencies. This can be
explained because the �1 map is made of scattering points, that
is a sum of Dirac functions, whose spectral content is constant.

The augmented Lagrangian and the criterion evolutions are
represented in Fig. 6. It can be seen that the algorithm converges
in a hundred of iterations. The convergence time is 3 min 49 sec.2

It must be noticed that ADMM is not a decreasing algorithm con-
cerning the Lagrangian and the criterion. Indeed, the criterion
is not monotonically decreasing but it asymptotically converges
towards its minimum. The Lagrangian converges towards its
saddle point value.

A robustness analysis on noise-corrupted data is made for
both the PFA and the SPRITE. Again, as it is a commonly
assumed in radar measurement [1], [49], an additive white Gaus-
sian noise is considered. The root-mean-square error: RMSE =
‖âM − as‖2/

√
N is used to quantify the estimation error of

each method, where âM is the estimated map according to the
method M and as is the synthetic map. In Fig. 7, the evolution
of the RMSE of âPFA and âSPRITE for different SNR values are
compared. It can be seen that the SPRITE is much more robust
to a white Gaussian noise than the PFA and it supports low SNR.

2MATLAB 2013b, Intel Xeon E5-2620 v3 2.4 GHz, 32 GB RAM

Fig. 8. Spherical measurement setup.

V. APPLICATIONS TO REAL DATA

A. Spherical Measurement Setup

The method is evaluated on real measurements from the spher-
ical setup of Fig. 8. The microwave instrumentation is made up of
two bipolarization monostatic radio frequency (RF) transmitting
and receiving antennas, a wideband standard gain horn equipped
with a lens, that are driven by a fast network analyzer. Aθ rotation
is achieved using a direct drive positioner including a brushless
motor. The ϕ rotation uses another positioner. The polystyrene
mast supporting the target under test is located on this rotation
positioning system. See [23] for further details. Consequently,
for a given frequency f , roll angle ϕ and elevation angle θ
(obtained by rotating both antenna and target), the wave vector
k is expressed by:

k = −2πf

c

⎡
⎣ sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

⎤
⎦

where c is the light speed.
The measurement procedure consists of successive steps.

Firstly, a calibration by substitution [31] is performed with a
standard target (300 mm diameter PEC metallic sphere) whose
RCS is computed by Mie series. Secondly, a background subtrac-
tion [31] is operated in order to eliminate the background echoes.
It is commonly used when the clutter is higher than the target
under test. Finally, an adaptive range filter is applied to remove
the residual stray echoes that could affect the useful signal (e.g.
interactions with walls and floor). Scattering measurements are
made for wave frequencies varying from 8 to 12 GHz with
increments of 3.9 MHz and angle variation θ = [−20◦ : 1◦ : 20◦]
and ϕ = [−20◦ : 4◦ : 20◦].

B. RCS Analysis

The target is a metallic Perfectly Electrically Conducting
(PEC) right circular cone [21] (height: 598.47 mm, base
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Fig. 9. PEC cone (left) and backscattered echoes (right).

Fig. 10. Spatial support constraint.

diameter: 149.33 mm, aperture: 14.22◦) of Fig. 9, where 3
metallic rounded patches have been glued to points 2© z = 115
mm (270◦ roll), 3© z = 250 mm (−45◦ roll) and 4© z = 400
mm (135◦ roll). As schematized in Fig. 9, it is located on a
PMMA supporting mast (dielectric constant εr = 2.65, height:
992 mm, diameter: 40 mm). RCS measurements are made in
HH polarization.

The RCS map is computed on a grid with N ≈ 1.7 · 107
voxels (Nx ×Ny ×Nz = 256× 256× 256). A spatial support
constraint is defined around and behind the object as illus-
trated in Fig. 10. In Fig. 11, the SPRITE is compared to the
conventional PFA and to �1 norm regularization method [13],
[15]–[17]. The regularization parameters are manually tuned:
μ = 5, λ = 10, ν = 100. The convergence time is 6 min 16 sec.

The resolution is drastically increased with the SPRITE of
Fig. 11(c), in comparison to the PFA map Fig. 11(a). The main
scatterers are perfectly located. As illustrated in Fig. 9, they come
from the diffraction with the tip 1©, each metallic patch 2©, 3©
and 4© and the rear edge 5©. Behind the object, the SPRITE
exhibits a scatterer 6© located at a distance of 87.6 mm from
the cone base and that does not appear with the conventional
method. After investigations, including RCS computations with

Fig. 11. 3-D RCS estimated maps with: a) PFA – b) �1 norm regulariza-
tion [13], [15]–[17] – c) SPRITE. For a better RCS analysis purpose the target
shape is displayed.

a harmonic Maxwell solver [50], this scatterer turns out to
originate from the interaction between the creeping wave and the
supporting mast. Its location can be explained by the propagation
delay inside the PMMA. Moreover, it can be noticed that with
the �1 penalization method of Fig. 11(b), the map is only made
up of scattering points. Conversely, the map obtained with the
SPRITE is not only composed of scattering points but also of
specular facets. It represents in a better way the physical reality
of scattering mechanisms.

VI. CONCLUSION

A new high resolution approach has been proposed for 3-D
radar imaging. The so-called SPRITE (SParse Radar Imaging
TEchnique) takes into account in an original way the available
prior knowledge on the wave-object interactions, extending the
common point-wise scatterers to sparse facet-wise scatterers;
it transcribes it into a �1-penalized high dimensional convex
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non-differentiable criterion with possible support constraint.
The radar map formation is achieved very efficiently by a suited
Alternating Direction Method of Multipliers (ADMM) opti-
mization algorithm, where the updates of the auxililary variables
are direct and separable while the map update is computed very
efficiently in the frequency domain by 3-D FFT and IFFT.

The SPRITE is evaluated on synthetic and real data. In com-
parison to the conventional method, the resolution is drastically
enhanced. The main scatterers are recovered with increased ac-
curacy, leading to a deeper understanding of the target scattering
behavior and finally to a better RCS analysis and control. Unlike
other recent �1 based methods, the SPRITE allows to reconstruct
specular facets leading to a better wave-object interactions rep-
resentation.

To go further, it would be interesting to move towards an
unsupervised reconstruction that would automatically tuned the
regularization parameters. Our conviction is that it could be
worthwhile to adopt a Bayesian framework [28, chap. 8], [51].
Another perspective could be to take advantage of the infor-
mative sparse prior for compressed sensing [52], [53], i.e. to
strongly reduce the required number of measurements while
preserving the image quality. Finally, it could be interesting
to conjointly estimate both the support and the map by using
inversion/segmentation methods for instance [54], [55].

APPENDIX

A. Proof of Direct Matrix Model

Let us start again from the data collection. After a regridding
phase, the acquisitions are placed on a k-space Cartesian grid
in the k-space, with Mx points (resp. My and Mz) along the
k̂x-axis (resp. k̂y-axis and k̂z-axis). Note that, thanks to this
regridding phase in the k-space and to the discretization of the
spatial scattering distribution into a Cartesian grid, it is possible
to perform computations efficiently with FFT and IFFT. Let us
note the wave vectorkmxmymz

(m� = 0 · · ·M� − 1with� = x,
� = y and � = z) in the k-space:

kmxmymz
= k[mx]

x x̂+ k
[my]
y ŷ + k[mz ]

z ẑ (13)

It is straightforward to show that the discretization of (2) leads
to the corresponding complex scattering coefficient:

σ(kmxmymz
) = αΨmxmymz

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

[
anx,ny,nz

Φnxnynz

e−2jπ(δkxδxmxnx+δkyδymyny+δkzδzmznz)

]

(14)

where the k-space sampling are δkx = Δkx/Mx − 1, δky =
Δky/My − 1 and δkz = Δkz/Mz − 1 and with α, Ψmxmymz

and Φnxnynz
given by:

α = e−2jπ(k
[0]
x x[0]+k

[0]
y y[0]+k

[0]
z z[0]) (15)

Ψmxmymz
= e−2jπ(x[0]δkxmx+y[0]δkymy+z[0]δkzmz) (16)

Φnxnynz
= e−2jπ(k

[0]
x δxnx+πk

[0]
y δyny+k

[0]
z δznz) (17)

By definition, the Inverse Discrete Fourier Transform of the
object of interest a is periodic in the spatial domain, among the
three spatial directions. Besides, the k-space sampling condi-
tions the field-of-view dimension in the spatial domain. Thus, if
it does not totally include the object of interest, there is spatial
aliasing [56], [57]. The Nyquist-Shannon theorem results in
the limit conditions for avoiding aliasing: δkxδx � 1/(Nx − 1),
δkyδy � 1/(Ny − 1) and δkzδz � 1/(Nz − 1).

For given k-space sampling steps, in order to benefit from the
largest spatial extensions and to reveal a 3-D Discrete Fourier
Transform, we choose:

δkxδx = 1/Nx, δkyδy = 1/Ny, δkzδz = 1/Nz . (18)

Consequently, (14) becomes:

σ(kmxmymz
) = αΨmxmymz

Nx−1∑
nx=0

Ny−1∑
ny=0

Nz−1∑
nz=0

[
anx,ny,nz

Φnxnynz

e
−2jπ

(
mxnx
Nx

+
myny
Ny

+mznz
Nz

)]
(19)

that includes a 3-D Discrete Fourier Transform of the scattering
object a.

Finally, the linear relation can be expressed by the direct
model σ = Ha, where the matrix H is given by:

H = α
√
N ΔΨSF 3DΔΦ (20)

with the following terms.
� α is the complex coefficient given by (15) and accounting

for the origin phase difference of the spatial and the k-space
grids.

� N = NxNyNz is the number of elements of vector a, i.e.
the number of voxels.

� S is the binary selection matrix that only selects the scat-
tering coefficients associated to the k-space grid points
previously assigned during the regridding phase.

� F 3D = FNx
⊗ FNy

⊗ FNz
is a 3-D DFT matrix and ⊗

symbolizes the Kronecker product.
� ΔΨ is a diagonal matrix of phase difference in the k-space.

The (mxmymz)-th element of the diagonal is Ψmxmymz

given by (16).
� ΔΦ = ΔΦy

⊗ ΔΦx
⊗ ΔΦz

is a diagonal matrix of
phase difference in the spatial domain where:

ΔΦx
= diag{e−2jπk

[0]
x δxnx , nx = 0 · · ·Nx − 1}

ΔΦy
= diag{e−2jπk

[0]
y δyny , ny = 0 · · ·Ny − 1}

ΔΦz
= diag{e−2jπk

[0]
z δznz , nz = 0 · · ·Nz − 1}.

B. Incomplete Nearest Neighbor Regridding Process

There is a vast literature devoted to 3-D regridding methods.
Among them we can cite the trilinear interpolation and the
nearest-neighbor interpolation (see [24] for details). In general,
these methods consider each point of the Cartesian grid and
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assigns to it an interpolation of neighboring acquisitions. The
main disadvantage is that they basically complete the entire
Cartesian grid, including unobserved spatial frequencies distant
from the measured area. Conversely, the so-called incomplete
nearest neighbor regridding process used in [58] and in this
article, considers each acquisition and assign it to the closest
point of the Cartesian grid. This approach has several features.
� It leaves “gaps” in the Cartesian grid, in particular for the

locations distant from the acquisition grid.
� Several measurements can be assigned to the same point

of the Cartesian grid and in this case they are averaged.
This is a strict consequence of a rearrangement of the
data fidelity term and this operation is accompanied by
a modification of the variances of the errors. However,
rigorous consideration of this modification would prohibit
the implementation by FFT, so it is neglected.

� After the regridding process, the number of assigned points
in the Cartesian grid is at most equal to the number of
acquisitions. It limits the addition of untrue data.

Note that a part of the resolution improvement of the produced
images also comes from the fact that our regridding method does
not affect value where there is no measurement and does not
force the unobserved coefficients to zero.

C. Proof of a− Update

From (8), it is clear that L is a quadratic function of a.
Moreover, it is a real function of the complex variable a and
by using the complex gradient definition given in [59, eq. (8.8)],
we have:

∇aL(a,v,u) = Ga− d , (21)

where the matrix G is given by:

G=H†H+ρPP
†P+ρD(D†

xDx+D†
yDy)+(ν + ρC)IN

and the vector d reads:

d = H†σ + ρPP
†(vP − uP ) + ρD

[
D†

x(vx − ux)

+D†
y(vy − uy)

]
+ ρC(vC − uC) .

As the gradient (21) is an affine function of a, the Hessian of
(8) is constant and given by:

∇2
aL(a,v,u) = G . (22)

Moreover, it can be noticed that G is a Hermitian positive
semi-definite matrix as a sum of Hermitian positive semi-definite
matrices. Moreover, since ν � 0 and ρC > 0 the Hessian (22) is
a (strict) positive definite matrix. It follows that (8) is a strictly
convex quadratic function of a.

From the SPRITE algorithm, the a-update writes :

a(k+1) = argmin
a

L(a,v(k),u(k))

Hence, the unique minimizer a(k+1) of L(a,v(k),u(k)) is ob-
tained by nullifying its gradient and yields:

a(k+1) = G−1d(k)

that can be computed by FFT, as given by (10).

D. Proof of v-Updates

1) For the Updates of vP , vx and vy: From the SPRITE
algorithm, we have

v
(k+1)
P = argmin

vP

L(a(k+1), [vP v(k)
x v(k)

y v
(k)
C ],u(k))

then by using (8) and from [46], it becomes:

v
(k+1)
P = argmin

vP

{
μ‖vP ‖1 + ρP

2
‖Pa(k+1) − vP + u

(k)
P ‖22

}

= proxμ‖·‖1/ρP

(
Pa(k+1) + u

(k)
P

)

= Sμ/ρP

(
Pa(k+1) + u

(k)
P

)

where proxμ‖·‖1/ρP
is the proximal operator of μ‖ · ‖1/ρP and

Sμ/ρP
the soft thresholding operator for complex variables.

A similar reasoning is applied for the vx and vy updates and
provides the second part of (11).

2) For thevC-Update: Let us consider the SPRITE algorithm
and from (8), we have:

v
(k+1)
C = argmin

vC
L(a(k+1), [v

(k+1)
P v(k+1)

x v(k+1)
y vC ],u(k))

= argmin
vC

{
IC(vC) +

ρC
2
‖a(k+1) − vC + u

(k)
C ‖22

}

= proxIC
(
a(k+1) + u

(k)
C

)

= PC(a(k+1) + u
(k)
C )

where proxIC is the proximal operator of the characteristic
function IC of C and PC is the Euclidean projection onto C.
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