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Unsupervised Bayesian Convex Deconvolution Based
on a Field With an Explicit Partition Function

Jean-François Giovannelli

Abstract—This paper proposes a non-Gaussian Markov field
with a special feature: an explicit partition function. To the best
of our knowledge, this is an original contribution. Moreover, the
explicit expression of the partition function enables the develop-
ment of an unsupervised edge-preserving convex deconvolution
method. The method is fully Bayesian, and produces an estimate
in the sense of the posterior mean, numerically calculated by
means of a Monte-Carlo Markov chain technique. The approach
is particularly effective and the computational practicability of
the method is shown on a simple simulated example.

Index Terms—Bayesian statistics, convex potentials, deconvo-
lution, hyperparameters estimation, Monte-Carlo Markov chain,
partition function, regularization, unsupervised estimation.

I. INTRODUCTION

THE research concerning regularization for ill-posed in-
verse problems was first carried out by Phillips et al. in

the sixties and are compiled in [1]. For the specific problem of
deconvolution they lead to the contributions of Hunt [2] based
on toroidal models and fast implementation by the fast Fourier
transform (FFT). These methods rely on quadratic penalization,
i.e., Gaussian laws in a Bayesian framework. The solutions thus
formulated are linear w.r.t. the data and numerically efficient.
However, their resolution is limited: the capability to properly
restore sharp edges is limited.

At the beginning of the 1980s, in order to overcome these
limitations, Geman and Geman [3] (see also [4]) introduced a
much superior Markovian field including hidden variables [5].
The hidden variables (also referred to as dual or auxiliary vari-
able) are binary and interactive variables modeling sharp edges
and closed contours. The data processing then relies on a de-
tection-estimation strategy and allows the recovery of distinct
zones with abrupt changes. The calculation of the solution in
the sense of the maximum a posteriori is based on a simulated
annealing algorithm which requires intensive numerical compu-
tations. For the sake of computational efficiency in some cases,
Geman and Reynolds [6] and then Geman and Yang [7] intro-
duced auxiliary (also referred to as dual) variables: the sampling
of a correlated non-Gaussian field reduces to the sampling of a
correlated Gaussian field for one part and to the sampling of a
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separable field for the other. Furthermore, the construction pro-
posed by [7] is founded on the work of Hunt and the toroidal
models: the sampling of the correlated Gaussian field reduces
to the sampling of an inhomogeneous white Gaussian field fol-
lowed by an FFT. The proposal below takes advantage of this
construction.

The case of fields with convex potential [8]–[13] (see also
[14] and [15]) was laid down in the nineties as fulfilling a com-
promise between the quality of the reconstructed images and
the computational burden. In this framework, a particular atten-
tion has been paid to the case of potentials [9]–[13]:
a quadratic behavior around the origin and a linear behavior at
large values allow edge preservation. In this context, the con-
structions of [6] and [7] respectively led to two algorithms:
Arthur and Legend [16] (see also [17]). The work presented here
concerns this type of potential.

With such potentials, the regularized solutions usually neces-
sitate the adjustment of three hyperparameters: two parameters
to control the law for the image and one parameter to control
the law for the noise. Several attempts are dedicated to the ques-
tion of hyperparameter estimation and the investigated solutions
are frequently based on statistical approaches: (approximated
or pseudo) likelihood, Bayesian strategies, EM and SEM algo-
rithms, etc. The reader may consult papers such as [18]–[24] and
reference books such as [25, part VI], [26, Ch. 7], or [27, Ch. 8].
These approaches are potentially very powerful but they come
up against a major difficulty: the partition function of existing
a priori fields depends on hyperparameters and is not explicitly
given.

The first novelty of the paper lies in the fact that it proposes
a new random field with an explicit partition function. To this
end, the paper build an original type of compound (toroidal)
field with potential. The work is largely inspired by
the Bayesian interpretation of dual variables in terms of loca-
tion mixture of Gaussian proposed by [28]. Moreover, it is also
inspired by [29] (itself based on the contributions of Hunt [2]
and Geman and Yang [7]). However, none of these contribu-
tions put forward the idea of a field with an explicit partition
function. Afterward, the paper proposes a second novelty: a full
Bayesian unsupervised (i.e., including hyperparameter estima-
tion) edge-preserving convex deconvolution method, thanks to
the knowledge of the partition function. It is based on a pos-
terior law for the whole set of unknown parameters (including
hyperparameters) and a minimum mean square error strategy.

The paper is presented in the following manner. Section II in-
troduces the notations and states the problem. Section III is de-
voted to the construction of the proposed field, and Section IV
proposes its use for image deconvolution and demonstrates the
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numerical practicability. Conclusions and perspectives are de-
livered in Section V. Most of the calculations are explained in
Appendices I–VIII.

II. NOTATION AND PROBLEM STATEMENT

Work is carried out on real images, with
pixels, represented in a matrix form. denotes the generic el-
ement of the matrix its squared norm

and its FFT 2-D. The transformation is normalized: the Par-
seval relationship is written as and the sum
of the pixels is . The symbols and respec-
tively represent the circular convolution and the Schur product
(termwise) of matrices. If represents a circular filter and an
input object, the output is written in the spatial do-

main resulting in in the Fourier domain. If
for all , the associated filter is invertible.

In the subsequent developments about deconvolution,
, and , respectively, denote the observed data, the

unknown object, the convolution matrix and the observation
noise. With these notations, the observation equation is written

(1)

The deconvolution problem consists in recovering the unknown
object given the observed data and given the observation
model . The ill-posedness of the problem has been well
identified for several decades and the problem is nowadays
often tackled in a Bayesian framework using Markov priors. In
a Gibbs form, the prior law writes

where is the partition function (normalizing constant) and
is the Gibbs energy controlled by a set of parameters (such as

variance, threshold, scale, correlation length, etc.) collected in a
vector . The general methodology is well known: the solution
is determined from the a posteriori law and a point estimate can
be chosen as the mean or the maximizer, for instance. Anyway,
the posterior law (and the point estimates) depends upon hy-
perparameters notably on the parameters of the prior . The in-
ference about these parameters can be attempted in a statistical
framework whose keystone is an exact and explicit likelihood
function (in an usual sense or in a posterior sense). This func-
tion is itself founded on a complete expression for the prior law
including the partition function as it depends on . It is given as
a large dimension integral

(2)

It is a commonplace to say that can be explicitly given
for two well-known classes of (continuous state) field:

i) is quadratic, i.e., the field is Gaussian;
ii) is separable, i.e., the field is white.

In other cases, and especially for nonseparable and
non-Gaussian fields, the theoretical calculation and the nu-
merical computation of (2) are desperate tasks [25, p. 281]

and they have never been achieved.1 However, its achievement
is made possible and simple in the next section, for a special
nonseparable and non-Gaussian field.

III. PRIOR FIELD WITH PARTITION FUNCTION

Taking advantage of i) and ii) the proposed random field is a
compound field involving two variables: a pixel variable noted
as and an auxiliary (or dual or hidden) variable noted as .
The joint law for is defined by the law of for one
part and by the law of for the other part. The former is a
Gaussian component [case i)] and the latter is a separable com-
ponent (case ii)].

A. Toroidal Gaussian Field for

Let us consider two matrices and with for all
and the toroidal (circular shift invariant) Gaussian field with a
density parametrized in the form

(3)

where is an inverse variance. The matrix designs
the field structure and especially the neighborhood system and
the form of the cliques. In the Fourier domain, the potential is
separable and naturally develops in two forms

which has three essential consequences for the following
developments.

1) The law for is separable and each is Gaussian with

mean and inverse variance . As a
result, the sampling of reduces to the sampling of an
inhomogeneous white Gaussian noise followed by an FFT
2-D.

2) The change of variable is invertible, is white
and each is Gaussian with mean and common in-
verse variance .

3) The partition function is easily tractable in the
Fourier domain thanks to a change of variable

and does not depend on .
In relation to existing works such as [7], [16], and [27]–[29],

the main idea here is simply to focus on the case where the
change of variable is invertible (point 2 above)
that is to say the number of cliques and the number of pixels are
equal.

1The partition function is, however, known for the Ising field [30]. It is a
binary field out of the scope of the developed work.
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Remark 1: The partition function does not depend on
as a counterpart of a limitation: the number of cliques and the

number of pixels are equal. As an illustration of the limitation,
let us point out that depends on for a field based on
horizontal cliques plus vertical cliques (the number of cliques is
greater than the number of pixels).

B. Compound Field

A separable and homogeneous field is then introduced for
the auxiliary variable with a density , product of
the . The joint density is written as

and the marginal law is obtained by inte-
grating the auxiliary variables

Since the partition function does not depend on , the
calculations can be achieved

which involves a separable convolution product.
Remark 2: The proposed construction is possible for any

probability density function . In this sense, it is possible to
design a large class of potential functions.

Thus, a wide range of law is available, but the convex poten-
tial case is the one of interest here, as mentioned in the intro-
duction. So, the following property is of importance.

Property 1: For any log-concave probability density function
, the probability density function is log-concave [31, The-

orem 7], [32].

C. Laplace Law for Auxiliary Variables

The following developments are dedicated to the case of aux-
iliary variables under a Laplace law suggested by [28].

As mentioned by [28] itself, among the Huber-like distri-
butions, such a Laplace-convolved-Gauss probability will have
two main advantages: i) the convolution involved in the mar-
ginal law (Section III-B) will be made explicit and ii) the
sampling of auxiliary variables (Section IV-C) will be directly
feasible thanks to the inversion of the cumulative density func-
tion . The Laplace law is written in the form

(4)

where is a scale parameter, and is the
norm. The partition function is simply calculated thanks to

separability

According to (3) and (4), the joint density for takes the
form

(5)

and the partition function is explicit: .
The marginal law for involves the 1-D convolution of a

Gaussian density and a Laplacian density

where is defined in Appendix II. Thus, the potential function
appears

with

(6)

It is named the log-erf potential and it is shown in Fig. 3. The
details of the calculations concerning this potential are given in
Appendix III. Concerning the first derivative, one has

and concerning the second derivative at origin, one has

with ( is given in Appendix I). As ex-
pected (see Property 1), this is a convex potential. It is a
potential which can be reconciled with other more common

potentials (Huber, log-cosh, hyperbolic, fair function).
In the case of the Huber potential

if
if

(7)

by identifying the second derivatives at zero and the slopes at
infinity, one has

and (8)

Compared log-erf and Huber potentials and their derivatives are
shown in Fig. 3. Using the expansions (14) and (13) of Ap-
pendix I, two limit cases can be identified, according to the value
of the ratio

for

for

In the two limit cases, on a log-log scale, there is linear behavior
of and as a function of , for a fixed (see Fig. 4). The
intersection of the two linear behaviors can be identified as a
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Fig. 1. Sample of the field, with  =  = 1 (" is also set to 1).

Fig. 2. Histograms (image at Fig. 1). From top to bottom: Histogram of image
pixels X , histogram of auxiliary variables B, and histogram of differences �X .

critical behavior for . The critical value will be
used for the initialization of simulations of Section IV-D (see
also Appendix VIII).

D. Practical Case

In practice, the field is based on a 3 3 Laplacian filter, de-
fined by and represented by the matrix

. At null frequency, one has and as a consequence the
mean level of the image is not managed. So, an extra parameter
is introduced to drive the mean level: it is denoted by
and the characteristic matrix is set to .

Remark 3: If , the field cannot be normalized and
each clique is formed from the four nearest neighbors (cross-like
clique). If , the field can be normalized and each clique is
spread out over the entire image.

The following developments take and the partition
function of the joint field writes:

with

Fig. 3. From top to bottom: Potential function, first and second derivative. Solid
line: log-erf potential'(x) of (6) and dotted line: corresponding Huber potential
of (7). The potential parameters are  =  = 1, and, hence, the equivalent
Huber parameters are � ' 0:32 and s ' 1:56, according to (8).

Fig. 4. � and s as a function of  , for a fixed  ( = 1) on a log-log scale.
As expected, the plot essentially shows two linear behaviors and a critical case
for  =

p
2�(log

p
2� � 0:4).

Fig. 1 gives a sample of the field with and Fig. 2
gives histograms of the image pixels, the auxiliary variables
(a Laplace histogram) and the differences (an over-Gaussian
histogram).

Remark 4: It is noteworthy that the marginal model is
homogeneous, but the conditional model is nonhomoge-
neous (except if all the are equal).

IV. DECONVOLUTION

As a result of the previous section, a new random field is
now available with a special feature: an explicit (and simple)
partition function. In this section, the field serves as a prior in a
deconvolution method whose specificity is to be unsupervised
(i.e., including hyperparameter estimation). More precisely,
the method relies on a full Bayesian framework and the so-
lution is determined from an a posteriori law based on an a
priori law (given as follows) for the object, the noise, and the
hyperparameters.
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A. Prior Choices

1) Object Law: The a priori field is defined in the previous
section. The joint density for is given by (5) and it is
driven by three parameters: and .

2) Noise Law: This work is founded on the usual case of
zero-mean white Gaussian noise with inverse variance denoted

. The density is written

3) Hyperparameter Law: Four parameters are to be man-
aged: and . The three parameters of major impor-
tance are ; the fourth parameter drives the
prior mean level of the image and it is considered as a nuisance
parameter. Anyway, very few is a priori known about these pa-
rameters and the idea is to use noninformative or diffuse and
separable priors.

• The proposed prior law for the three parameters
and is a conjugate law. It is a gamma law (see (15),
Appendix IV) with parameters respectively denoted

and . It allows for easy com-
putations with the posterior law. Moreover, it includes
diffuse and noninformative prior: the uniform prior
and the Jeffrey’s prior are obtained as limit cases for

and for respectively.
• The last parameter is considered as a nuisance parameter

and the proposed strategy resorts to integration out. The
desired prior law is a Dirac law, so that no information is
accounted for about the mean level of the image (it is set on
the basis of observed data only). Formally, in a first step, a
uniform density over is introduced and in a second
step the limit law for is considered.

B. Joint Law

Thus, the joint law is established for

where is a
normalization constant and is part of the Co-logarithm of
the density involving

The a posteriori density is formed for and , given
thanks to the Bayes rule

and it is parametrized by the and . Then, is integrated
out and the law for given writes

It is also parametrized by the and , so, the limit is set
when tends to 0. The detail of the calculations is given in
Appendix V and it is shown that a probability density function is

obtained if the mean level of the object is observed, i.e., .

C. Posterior Law and Posterior Mean

Thus, the total posterior law can be deduced for all the un-
known parameters given the observed data

(9)

where involves

In practice, the chosen point estimate is the posterior mean (i.e.,
the minimum mean square error). Its calculation is performed by
means of Monte-Carlo Markov chain stochastic sampling algo-
rithm [25], [33]: auxiliary variables, object, and hyperparame-
ters are successively sampled given the other in a Gibbs strategy.

1) Sampling Auxiliary Variables: The sampling of auxiliary
variables is delicate but can be directly done. It is based on the
inversion of the cumulative density function (cdf) . It is
sufficient to uniformly sample in and to compute

. The calculations can be found in Appendix VI.
2) Sampling Object: The object is a toroidal Gaussian field

and the are independent with mean and inverse vari-

ance (see calculations in Appendix VII)

(10)

(11)

where superscript stands for the complex conjugate. Thus, the
sampling is reduced to the sampling of an inhomogeneous white
Gaussian noise followed by an FFT 2-D.

3) Sampling Hyperparameters: Each parameter and
follows a gamma2 law derived form (9) (see Appendix IV)

with respective parameters and

and

and

and

The description of the method and the algorithm are now
complete and synthesized in Table II. The remainder of this sec-
tion illustrates the implementation practicability.

2The sampling of the Gamma variables is achieved using the Matlab function
gamrnd.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE I
QUANTITATIVE COMPARISON BY MEANS OF L2 AND L1 DISTANCES BETWEEN TRUE IMAGE

AND DATA (COLUMN 1), TRUE IMAGE AND ESTIMATED IMAGES (COLUMN 2 TO 8)

TABLE II
DETAILED ALGORITHM (PSEUDO-CODE)

Fig. 5. From left to right: Original imageXXX , observed data YYY , deconvolved imageXXX , and deconvolved imageXXX . At the top: Gray-level images; at the
bottom: profile of the 100th row (which encroaches on both the rectangle and the rhombus). In order to evaluate the relative dynamics in each case, all the images
are shown in the same grayscale between �0.5 and 2. The four shown profiles are also presented between �0.5 and 2.

D. Computation Feasibility

This part illustrates the previous developments and it only
aims at demonstrating the numerical practicability of the
method. It is built on a deliberately simple image appro-
priate in order to evaluate the capabilities and the limitations of
the proposed approach: the image is set up from homogeneous
zones separated by sharp edges (see Fig. 5, on the left). It is a
128 128 image composed of a black background and three
objects with gray levels gradually changing between 0.7 and

2.1. The difference between neighboring pixels varies between
0 and 2.1 in absolute value. Regarding the Laplacian of the
image, , the set of can be split in two sets: 94%
of the are less than (inside homogeneous zones) and
6% of the are greater than (located around edges).
No value is between and .

The impulse response of the system is Gaussian shaped with
six pixels width at half-maximum, the noise variance is
and the resulting observed image is shown in Fig. 5 (in the
second column). The resolution is clearly degraded and details
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Fig. 6. Distances between the true image XXX and conditional posterior mean XXX as a function of the parameters  ;  ; and  , around the posterior mean
value . From left to right: Error is shown as a function of  ;  ; and  . Top row gives L2 distance and bottom row gives L1 distances. The black dots give the
minimum distances reported in Table I.

of the edges are no longer visible (neither on the gray-level
image nor on the shown profile). The dynamic is also strongly
affected, notably at about the 64th sample of the shown profile.

The procedure is initialized by the empirical least-squares hy-
perparameters given in Appendix VIII. The object is initial-
ized by the observed data (and there is no need to initialize the
auxiliary variables). Moreover, practically, the are set
to corresponding to the Jeffrey’s prior.

The proposed algorithm3 generates samples of the a poste-
riori law . Practically, the algorithm be-
haves as expected: the stationary law is attained after a burn-in
time (about 200 iterations) and remains in a steady behavior.
The empirical mean of the generated images is recursively com-
puted and the algorithm is stopped when its variation becomes
smaller than a given value (in quadratic norm). In the pre-
sented example , the algorithm produced 953 itera-
tions and computation time was 47 s.

The resulting generated hyperparameters and are
shown in Fig. 7. The left part of the figure shows the 953 it-
erates of the three parameters: after about 200 iterations the
three parameters are stabilized and seem to be under the sta-
tionary law of the chain. The empirical mean value (approxi-
mating the posterior mean) of the parameters, respectively, are

and . The iterates
are also shown on the right hand side of Fig. 7 as histograms:
they are clearly very concentrated around the posterior mean
(with small variance), i.e., the marginal law for the hyperparam-
eters are quasi-Dirac distributions.

Considering the numerical value, in the sense of (8), the
equivalent regularization parameter is and the
equivalent threshold is . It is noticeable that the
threshold value correctly split the in two sets (less than

3The proposed algorithm has been implemented with the computing environ-
ment Matlab on a PC, with a 2-GHz AMD-Athlon CPU, and 512 MB of RAM.
Code is �100 lines long.

Fig. 7. Monte-Carlo Markov chain for the three hyperparameters generated by
the proposed Gibbs sampler. From top to bottom:  ;  ; and  . The left part
of the figure shows the samples as a function of iteration index and the right part
of the figure shows the samples as histograms.

—greater than ). The point is that the method
automatically adjusts hyperparameters to correctly separate the

. This is a first argument in favor of the proposed strategy in
order to tune the threshold of an Gibbs potential. The
resulting image is shown in Fig. 5 (on the third column). The
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effect of deconvolution is notable on the image in gray level,
as well as on the shown profile. The three objects are correctly
positioned, the orders of magnitude are respected and the zero
level is correctly reconstructed: it can be seen on the entire
image and in particular on the shown profile. The dynamic
is also correctly restored: this aspect is notable on the shown
profile around the maximum (64th sample). The true dynamic
occupies the range 0–1.9 whereas the dynamic of the observed
data scarcely exceeds 0–1.4: the proposed method restores the
dynamic to 0–1.88 that is to say 99% of the original variation.

A global quantitative comparison has been achieved by eval-
uating i) the distance between original image and observed
data and ii) the distance between original image and es-
timated image . The considered distances are normalized
L2 and L1 distances. The main results are listed in Table I, first
and second columns and show an improvement by a factor 2.95
(11.62% to 3.93%) for L2 distance and a factor 1.82 (35.47% to
19.47%) for L1 distance.

In order to deepen the numerical study, a second esti-
mate has been computed: the conditional posterior
mean (CPM), i.e., the mean of the conditional posterior law

. is clearly a function of the
hyperparameters and a twofold evaluation is proposed.

• The first estimate is the one obtained with . Practi-
cally, the marginal estimate and the conditional esti-
mate are quasi-equal; this is due to the fact that
the marginal law for the hyperparameters are quasi-Dirac
distributions. Quantitatively, regarding L2 distances, the
PM produces 3.93% whereas the CPM produces 3.94%;
regarding L1 distances, the PM produces 19.47% whereas
the CPM produces 19.50%. In both cases, the modification
is almost imperceptible.

• The measurement of errors has also been explored for the
CPM as a function and , around the posterior
mean . Results are given in Fig. 6: in each case, smooth
variation of distances is observed when varying parame-
ters and an optimum is visible. It is reported on Table I and
shows almost imperceptible modification: optimization of
the hyperparameters (based on the true image ) allows
negligible improvement (smaller than 0.1% for L2 error
and smaller than 0.5% for L1 error). So, the main conclu-
sion is that, the unsupervised proposed approach is a rele-
vant tool in order to tune parameters: it works (without the
knowledge of the true image), as well as an optimized ap-
proach (based on the knowledge of the true image).

Finally, a third estimate has been computed: the Maximum
A posteriori (MAP). It has been computed for the log-erf and
the Huber potentials. Both of them have been computed with
equivalent hyperparameters (given above): for the
log-erf potential and for the Huber potential. The two
MAP solutions (log-erf and Huber) are visually indiscernible:
this is expected from so similar potential. The results are pre-
sented in Fig. 5, right column: the estimated map suffers from
cross-like artifact, due to the cross-like structure of the neigh-
borhood system. Quantitatively speaking, the measurements of
errors are given on Table I: log-erf and Huber produce almost
similar errors. Moreover, the errors are greater than the one pro-
duced by the PM and the CPM.

The restoration is nevertheless imperfect and of limited reso-
lution: the sharp edges remain slightly smoothed and limited in
amplitude. The ringing effect also affects the quality of the de-
convolved image. This diagnostic is long awaited in the frame-
work of convex deconvolution. Anyway, the important point is
not so much the property of the deconvolved image itself (in-
trinsic of any convex deconvolution) but the (new) practical ca-
pability to automatically tune the hyperparameters. Moreover,
the potential improvement is certainly wide considering more
heavy-tailed law for the auxiliary variables, as explained in the
next section.

V. CONCLUSION

This paper presents a twofold novelty in the field of statistical
image reconstruction and restoration.

1) The partition function is explicitly given for a specific non-
Gaussian Markov field, with an Gibbs potential.
It is built as a compound field involving: an auxiliary vari-
able following a separable Laplace distribution and a pixel
variable following a Gaussian distribution given the auxil-
iary variable.

2) An unsupervised deconvolution method is deduced, based
on the exact likelihood taking advantage of the knowledge
of the partition function. The method is fully Bayesian, and
the point estimate is the posterior mean computed thanks
to a Monte-Carlo Markov chain technique.

The paper focuses on the deconvolution problem, but it is
also possible to deal with simpler questions than deconvolution:
parameter estimation from direct observation of the field, edge
enhancement or denoising.

Moreover, the paper relies on Gaussian noise, but the case of
non-Gaussian noise is also envisaged, in particular the use of
robust norms to reject abnormal data (outliers). To this end, a
separable version of the proposed field could be suit-
able as a law for noise measurement. The proposed method can
be directly applied in the case of large support operator, e.g., re-
construction problems such as Fourier synthesis [34].

The proposed methodology also remains valid for other linear
model and the required modification concerns the sampling of
the object. It remains Gaussian but its sampling is no longer
possible in a single step for the entire image by FFT 2-D. The
Gibbs sampling techniques constitute an adapted tool but the
calculation time would be (maybe dramatically) extended. For
nonlinear problems, the law for the object is no longer Gaussian
and a case by case study is required.

Concerning the a priori field, other laws for auxiliary vari-
ables are certainly desirable. The possible improvements are nu-
merous considering more heavy-tailed law in order to overcome
the limitation of the convex deconvolution. The methodology
still remains valid but the difficulty then concerns the sampling
of the auxiliary variables. The direct sampling by inversion of
the cumulative density function may not be possible, however,
the rejection or the Hastings–Metropolis algorithms could be
used to overcome this difficulty.

In the case of myopic deconvolution, it is also conceivable to
estimate (part of) the parameters of the observation system. Here
again, a case by case study is necessary, but the delicate question
of the system parameter sampling can probably be tackled by
means of rejection or Hastings–Metropolis algorithms.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIOVANNELLI: UNSUPERVISED BAYESIAN CONVEX DECONVOLUTION 9

APPENDIX I
ERF, ERFC, ERFCX

The erf function is defined for by

(12)

and ierf denotes the reciprocal function. Elsewhere,
and . Concerning the latter,

there are the following expansions:

(13)

(14)

and the derivative .

APPENDIX II
GAUSS AND LAPLACE CONVOLUTION

Considering the calculations, a large part of the proposed de-
velopments is based on the convolution of a Gaussian function
and a Laplacian function.

A. Preliminary Calculi

For and , write

simply written as when there is no ambiguity. On
rewriting the argument of the exponential, we have

with . The change of variable ,
yields

where the function erf is defined by (12). In particular, one has
and

B. Convolution

For , write

written simply as when there is no ambiguity. By the
change of variables , and , it is
shown that

It can thus be deduced that

respectively for and . These relationships are
useful for the study of the potential function (next Appendix)
and for the inversion of the cdf of (Appendix VI).

APPENDIX III
LOG-ERF POTENTIAL FUNCTION

According to the results of the previous Appendix the poten-
tial function of the marginal field , (6), Section III-C is written

By putting
, the potential function can be written

up to additive constants. The derivation shows that

and it can easily be deduced that

and, in particular

and

Moreover, concerning the second derivative at origin

with .

APPENDIX IV
GAMMA PROBABILITY DENSITY FUNCTION

The gamma probability density function is parametrized by
and in the form

(15)

where is the indicator function of . The expected value
is , the variance is and it is maximal for
in the case .
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APPENDIX V
INTEGRATION OF HYPERPARAMETER

A. Preliminary Result

Given a function and assume that
can be integrated. By integrating from 0 to the Taylor

expansion of at origin, one shows that

(16)

Then, give a function such that
can be integrated over . By using (16), it can be seen that

(17)

provided that can still be integrated over .

B. Posterior Law

The a posteriori law (Section IV-B) for and given
(parametrized by the coefficient ) is written, after simpli-

fication by

where represents all the parameters and

To apply the relationship (17), it is sufficient to ensure that
can be integrated. Since the norms in are equiva-

lent, can be found such as for all
. Thus, the integrand can be majored by a Gaussian integrand

and convergence ensured if and only if .
In the limit, when , we have the result (9).

APPENDIX VI
INVERSION OF CDF

The sampling of auxiliary variables (Section IV-C) given the
object is based on the inversion of cdf of . For

(18)

is to be resolved. In order to solve this equation, write

and . Moreover, and
. Equation (18) is resolved differently depending

on whether (i.e., ) or (i.e., ) and yields

if

if

where is defined in Appendix I and

Thus, it is possible to sample simply from uniformly
distributed over [0, 1].

APPENDIX VII
CONDITIONAL POSTERIOR LAW FOR

The posterior law ) given by (9) in Section IV-C
involves

and the conditional posterior law ) required to
sample object in Section IV-C2 involves

In the Fourier domain

that is to say a separable summation. Moreover, it can be
rewritten and identified to a sum of quadratic terms

with and given in (10) and (11).

APPENDIX VIII
EMPIRICAL LEAST SQUARES HYPERPARAMETERS

The initialization of the algorithm is based on second order
statistics of the analyzed data, in the Fourier domain. Consid-
ering the structure of the a priori field and the noise, for all

, such as one has

and

where and are two independent zero-mean white
Gaussian noise with unitary variance. Moreover, considering

the observation (1), one also has . With

and , we have

Thus, the parameters and can be selected at the minimum
of the least squares criterion

It is found that

and
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with , and

. These values for and are used to initialize
the proposed algorithm (Section IV-C): and

. The third parameter is initialized at the critical value:
.
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